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Jamming in Fixed-Rate Wireless Systems with
Power Constraints - Part I: Fast Fading Channels

George T. Amariucai and Shuangqing Wei

Abstract

This is the first part of a two-part paper that studies the problem of jamming in a fixed-rate transmission system with fading,
under the general assumption that the jammer has no knowledge about either the codebook used by the legitimate communication
terminals, or the source’s output. Both transmitter and jammer are subject to power constraints which can be enforced over each
codeword (short-term / peak) or over all codewords (long-term / average), hence generating different scenarios. All our jamming
problems are formulated as zero-sum games, having the probability of outage as pay-off function and power control functions
as strategies. The paper aims at providing a comprehensive coverage of these problems, under fast and slow fading, peak and
average power constraints, pure and mixed strategies, withand without channel state information (CSI) feedback. In this first
part we study the fast fading scenario. We first assume full CSI to be available to all parties. For peak power constraints,a Nash
equilibrium of pure strategies is found. For average power constraints, both pure and mixed strategies are investigated. With pure
strategies, we derive the optimal power control functions for both intra-frame and inter-frame power allocation. Maximin and
minimax solutions are found and shown to be different, whichimplies the non-existence of a saddle point. In addition we provide
alternative perspectives in obtaining the optimal intra-frame power control functions under the long-term power constraints. With
mixed strategies, the Nash equilibrium is found by solving the generalized form of an older problem dating back to Bell and
Cover [1]. Finally, for comparison purposes, we derive a Nash equilibrium of the game in which no CSI is fed back from the
receiver. We show that full channel state information brings only a very slight improvement in the system’s performance.

Keywords: Fast fading channels, fixed rate,λ-capacity, jamming, zero-sum game, outage probability, power control.

I. I NTRODUCTION.

The importance of designing anti-jamming strategies cannot be overstated, due to the extremely wide deployment of wireless
networks, the very essence of which makes them vulnerable toattacks. Although the bases of jamming and anti-jamming
strategies have been set in the 80’s and 90’s [2], [3], [4], new interest has been recently generated by the increasing demand
for wireless security. Jamming and anti-jamming strategies were developed for the broadcast channel [5], the multipleaccess
channel [6], and even studied from the perspective of an arbitrarily varying channel [7]. Under all scenarios, the jamming
problem is formulated as a two-player, zero-sum game. The corresponding objective functions are the sum-rate [5], the ergodic
capacity [6] or theλ-capacity [7]. Although most often the jammer is assumed to have access to either the transmitter’s output
or input [2], [4], [8] and consequently is able to produce correlated jamming signals, the correlation assumption can only be
accurate for repeater protocols, or other situations wherethe jammer gets the chance to jam a signal about which it has already
obtained some information from eavesdropping previous transmissions.

The approach of [7] is quite relevant to our work. The jammingproblem is viewed as a special case of an arbitrarily varying
channel (AVC). Constraints are placed either on the power invested in each codeword (peak power constraints), or on the power
averaged over all codewords (average power constraints). The λ-capacity, which is used to evaluate system performance, is
defined as the maximum transmission rate that guarantees a probability of codeword error less thanλ, under random coding.
It is shown that when peak power constraints are imposed on both transmitter and jammer, theλ-capacity is constant for
0 ≤ λ < 1, and therefore is the same as the channel capacity. No fadingis assumed in [7], and consequently no power control
strategies are necessary. However, fading channels are often the more practical models for wireless applications.

Traditionally, fast fading channels are characterized by their ergodic capacity, which is completely determined by the
probability distribution of the channel coefficient and thetransmitter power constraints. The physical interpretation of this
measure of channel quality is related to the capabilities ofchannel codes. In the fast fading scenario, the codewords are assumed
long enough to reveal the long-term statistical propertiesof the fading coefficient (in practical systems, this requirement may be
satisfied by the use of interleaving [9]). Implicitly, powerconstraints are imposed over each codeword. Therefore, forachieving
asymptotic error free communication, all codewords need tobe transmitted at the same rate not exceeding the channel’s ergodic
capacity.

However, applications like video streams in multimedia often require fixed data rates that could exceed the channel’s ergodic
capacity, but can tolerate non-zero codeword error probabilities. Therefore, in situations when the transmitter’s available power
is not sufficient for supporting a certain rate for each codeword in the traditional framework, the transmitter can choose to
concentrate its power on transmitting only a subset of the codewords, while dropping the others. This maneuver ensures error
free decoding of the transmitted messages, at the cost of a non-zero probability of message decoding error, which is feasible
when power constraints are imposed over the ensemble of all codewords, instead of over each single codeword. This justifies
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Fig. 1. Channel model

the evaluation of fixed rate systems in fast fading channels by a quantity that is best known to characterize slow fading channels:
the outage probability. Note that unlike the case of slow fading, in fast fading channels, due to the large codeword length, the
channel conditions affecting the transmission of different codewords are asymptotically identical.

In this paper, we consider a fast fading AWGN channel where codewords (we denote the span of a codeword by the term
frame) are considered long enough to reveal the long-term statistical properties of the fading coefficient. Our channel model
is depicted in Figure 1. It was shown in [10] that the ergodic capacity of the fast fading AWGN channel can be achieved by
a constant-rate, constant-power Gaussian codebook, provided that when the fading coefficients are available at the transmitter,
the transmitter employs a dynamic scaling of the code symbols, by the appropriate power allocation function. For this reason
we assume in out model that the transmitter uses a capacity-achieving complex Gaussian codebook. The jammer is assumed
to have no knowledge about this codebook or the actual outputof the transmitter, and hence its most harmful strategy is to
transmit white complex Gaussian noise [11].

The channel coefficient is a complex number, the squared absolute value of which will be denoted throughout this paper
by h. The average powers invested by the transmitter and jammer in transmitting and jamming a codeword, respectively, are
denoted byPM and JM . The transmitter and the jammer are subject to either peak power constraints (over each frame, or
codeword) of the formPM ≤ P and JM ≤ J , or average power constraints (over all frames) of the formEPM ≤ P and
EJM ≤ J , where the expectation is taken with respect to the players’strategies of allocating the powersP andJ between
frames.

A codeword is decoded with strictly positive probability oferror (i.e. outage) if the ergodic capacity calculated overthe
frame is below the fixed rateR. The probability of this event (the equivalent ofλ in [7]) will be denoted as theprobability
of outagePout. The transmitter aims at minimizing the probability of outage for a fixed rateR, while the jammer attempts to
maximize it. Our contributions can be summarized as below:

• We first investigate the scenario where full channel state information (CSI) is available to all parties. For this case we
show that peak power constraints are not efficient for high rate transmissions or large jammer power;

• We formulate the scenario of average transmitter/jammer power constraints as a two-person, zero-sum game with the
probability of outage as the pay-off function.

• Under average power constraints, we first investigate pure strategies and find the maximin and minimax solutions, as a
result of two levels of power control: one within frames and one concerning the additional randomization introduced by
the transmitter. Optimal strategies are derived for both levels, and it is shown that a Nash equilibrium of pure strategies
does not exist in general.

• As a result, we investigate mixed strategies and find the (unique) Nash equilibrium by solving a generalized version of a
game that was first discussed by Bell and Cover [1] and then extended by Hughes and Narayan [7].

• Finally, for comparison purposes, we find the optimal transmitter and jammer mixed strategies for the case when the
receiver does not feed back the CSI. Our results show that CSIfeedback only brings slight improvements in the overall
transmission quality.

One comment is in order. Note that Nash equilibria of mixed strategies are not always the best approach to practical jamming
situations. An equilibrium of mixed strategies usually assumes that none of the two players knows exactly when or with what
power the other player is going to transmit. While this may generally be true for the legitimate transmitter, a smart jammer
might constantly eavesdrop the channel and detect both the legitimate transmitter’s presence and its power level. Therefore,
many real jamming scenarios might be more accurately characterized by the solutions of themaximin problem formulation
with pure strategieswhen the jammer tries to minimize and the transmitter tries to maximize the objective, and the solutions of
theminimax problem formulation with pure strategieswhen the jammer tries to maximize and the transmitter tries to minimize
the objective (the latter case applies to the present paper). At worst, these solutions provide a valid lower bound on system
performance.



3

The paper is organized as follows. Section II formalizes thepeak power constrained problem when full CSI is available to
all parties. It turns out that this problem has an intuitive solution. Under the same full CSI assumption, Section III studies
the problem of average power constraints and pure strategies, and is divided into three subsections. The first one presents
the optimal strategies for allocating power over one frame.Using the results therein, the maximin and minimax solutions are
derived in Subsection III-B. Some numerical results are shown in Subsection III-C. Section IV investigates the problemof full
CSI, average power constraints and mixed strategies and provides the Nash equilibrium point. The scenario when the channel
coefficients are only known to the receiver is investigated in Section V. Finally, conclusions are drawn in Section VI.

II. CSI AVAILABLE TO ALL PARTIES. JAMMING GAME WITH PEAK POWER CONSTRAINTS.

This game represents a more general version of the game discussed in Section IV.B of [6], and its solution relies on the
results therein. The transmitter’s goal is to:

{
Minimize Pr(C(P (h), J(h)) < R)
Subject to PM = Eh[P (h)] ≤ P ,

(1)

while the jammer’s goal is to:
{

Maximize Pr(C(P (h), J(h)) < R)
Subject to JM = Eh[J(h)] ≤ J ,

(2)

where

C(P (h), J(h)) = Eh

[
log

(
1 +

hP (h)

σ2
N + J(h)

)]
.

is the ergodic capacity, which is completely determined by the p.d.f. of the channel coefficientp(h) and the transmitter/jammer
power control strategiesP (h) andJ(h). The expectation is defined asEh[f(h)] =

∫
h

f(h)p(h)dh.
We prove that this game is closely related to the two player, zero-sum game of [6], which has the mutual information

between Tx and Rx as cost/reward function:

Tx

{
Maximize C(P (h), J(h))
Subject to PM ≤ P ,

(3)

Jx

{
Minimize C(P (h), J(h))
Subject to JM ≤ J .

(4)

This latter game is characterized by the following proposition, proved in Section IV.B of [6]:

Proposition 1: The game of (3) and (4) has a Nash equilibrium point given by the following strategies:

P ∗(h) =






[
1
λ
−

σ2
N

h

]

+
if h <

σ2
N λ

1−σ2
N

ν

h

λ(h+ λ
ν
)

if h ≥
σ2

N λ

1−σ2
N

ν

(5)

J∗(h) =





0 if h <

σ2
N λ

1−σ2
N

ν

h

ν(h+ λ
ν
)
− σ2

n if h ≥
σ2

N λ

1−σ2
N

ν

(6)

whereλ andν are constants that can be determined from the power constraints and[x]+ = max{x, 0}.

The connection between the two games above is made clear in the following theorem, the proof of which follows in the
footsteps of [12] and is given in Appendix I.

Theorem 1:Let P ∗(h) and J∗(h) denote the Nash equilibrium solutions of the game describedby (3) and (4). Then the
original game of (1), (2) has a Nash equilibrium point, whichis given by the following pair of strategies:

P̂ (h) =

{
P ∗(h) if C(P ∗(h), J∗(h)) ≥ R
Pa(h) if C(P ∗(h), J∗(h)) < R

(7)

Ĵ(h) =

{
Ja(h) if C(P ∗(h), J∗(h)) > R
J∗(h) if C(P ∗(h), J∗(h)) ≤ R,

(8)
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wherePa(h) andJa(h) are some arbitrary power allocations satisfying the respective power constraints. (Note that no particular
improvements are obtained by settingPa(h) = Ja(h) = 0, since only peak power constraints are in effect.)

The results are intuitive: if the ergodic capacity under theoptimal jammer/transmitter strategies is larger than the fixed rate
R, reliable communication can be established over each frame, and hence the probability of outage isPout = 0. In this case,
the actual power allocation of the jammer does not matter anymore, since the jammer has already lost the game.

On the other hand, if the ergodic capacity is less thanR, outage occurs on all frames (Pout = 1), and the actual transmitter
strategy makes no difference. As will be shown in the next section, enforcing average power constraints in this case gives the
transmitter more freedom, and results in a smaller outage probability.

III. CSI AVAILABLE TO ALL PARTIES. JAMMING GAME WITH AVERAGE POWER CONSTRAINTS: PURE STRATEGIES.

In this section power constraints are imposed over a large number of frames rather than on each frame. The transmitter and
jammer may increase their transmission and jamming powers over any frame fromP to PM , and fromJ to JM , respectively.
To satisfy the average power constraints imposed byP and J , less power has to be allocated to other frames. We shall
prove that for both players, the optimal way to control the power allocation between frames is to employ ON/OFF strategies.
Since all frames are equivalent from the point of view of their corresponding channel realizations, the manner in which the
“discarded” codewords are picked is somewhat random. However, note that this type of randomization only aims at ensuring
that a possibly largerPM or JM is obtained. We don’t consider mixing strategies in this section [13]. Although each player
picks up a frame randomly, we assume this is known by its opponent when considering the maxmin and minimax problems
as formulated below. That is, the maximin scenario assumes the transmitter has perfect non-causal access to the jammer’s
strategy (we say the jammer “plays first”), while the minimaxcase assumes the jammer has perfect, non-causal access to the
transmitter’s strategy (we say the transmitter “plays first”). The first player in the minimax or maxmin cases is always more
vulnerable in the sense that the follower has the freedom to adapt its strategy such that it minimizes the first player’s payoff.

The minimax scenario is the more practical one. In addition to being pessimistic from the system designer’s point of view,
it accurately models the situation where the jammer (who is not interested in exchanging any information of its own) listens
to the feedback carrying the channel coefficients and sensesthe transmitter’s presence and power level, hence estimating the
transmitter’s strategy. The maximin scenario is not of lessimportance, since it is required for determining the non-existence
of a Nash equilibrium and for comparison with the minimax approach.

An important remark should be made here. We shall prove in thesequel that under both the pure strategies and the mixed
strategies scenarios, the optimal power allocation over a frame is done similarly. Therefore, the major difference between the
two cases is in the strategies of allocating power to different frames. We should note that it is easier for one of the players
to detect the presence of the other player over a frame, than to estimate the other player’s transmission power. Under the
minimax solution of pure strategies, the jammer only needs to detect the presence of the transmitter (the optimal strategies
are of ON/OFF type) to have complete information about the transmitter’s behavior. However, if the transmitter chose touse
mixed strategies, a complete characterization of its behavior would require not only knowledge about its presence, butalso
about the power it decided to allocate to that frame.

The average power constrained jamming game can be formulated as:

Tx

{
Minimize Pr(C(P (h), J(h)) < R)
Subject to E[PM ] ≤ P

(9)

Jx

{
Maximize Pr(C(P (h), J(h)) < R)
Subject to E[JM ] ≤ J

(10)

wherePM and JM are defined as in (1), (2), the expectation is taken over all frames with respect to the power allocation
strategies introduced by the transmitter and jammer, andP andJ are the upper-bounds on average transmission power of the
source and jammer, respectively.

A. Power Allocation within a Frame

The game between transmitter and jammer has two levels. The first (coarser) level is about power allocation between frames,
and has the probability of outage as a cost/reward function.The probability of outage is determined by the number of frames
over which the transmitter is not present or the jammer is successful in inducing outage. This set is established in the first level
of power control which is investigated in detail in the next two subsections, but which cannot be derived before the second
level strategies are available.

The second (finer) level is that of power allocation within a frame. In this subsection we derive the optimal second level of
power allocation strategies for both maximin and minimax problems, and show they are connected by a special kind of duality.

Note that decomposing the problem into several (two or three) levels and solving each one separately does not restrict the
generality of our solution. Our proofs are of a contradictory type. Instead of directly deriving each optimal strategy,we assume
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an optimal solution has already been reached and show it has to satisfy a set of properties. We first assume these properties are
not satisfied, and then show that under this assumption thereis room for improvement. Thus we prove that any solution not
satisfying our set of properties cannot be optimal (i.e. theproperties are necessary). We pick the properties in such a manner
that they are sufficient for the complete characterization of the optimal solution. That is, we make sure that the system of
necessary properties has a unique solution.

In the maximin case (when jammer plays first), assume that thejammer has already allocated some powerJM to a given
frame. Depending on the value ofJM , and its own power constraints, the transmitter decides whether it wants to achieve
reliable communication over that frame. If it decides to transmit, it needs to spend as little power as possible (the transmitter
will be able to use the saved power for achieving reliable communication over another set of frames, and thus to decrease
the probability of outage). Therefore, the transmitter’s objective is to minimize the powerPM spent for achieving reliable
communication over each frame. Note that if the jammer is present over a frame, the value ofPM required to achieve reliable
communication over that frame is a function ofJM . However, the transmitter should attempt to minimize the required PM

even when the jammer is absent. The jammer’s objective is then to allocate the given powerJM over the frame such that the
requiredPM is maximized.

In the minimax scenario (when transmitter plays first) the jammer’s objective is to minimize the powerJM used for jamming
the transmission over a given frame. The jammer will only transmit if the transmitter is present with somePM . The transmitter’s
objective is to distributePM within a frame such that the power required for jamming is maximized.

The two problems can be formulated as follows:

Problem 1 (for the maximin solution - jammer plays first)

max
J(h)≥0

[
min

P (h)≥0
PM = Eh[P (h)], s.t. C(P (h), J(h)) ≥ R

]

s.t. Eh [J(h)] ≤ JM ; (11)

Problem 2 (for the minimax solution - transmitter plays first)

max
P (h)≥0

[
min

J(h)≥0
JM = Eh[J(h)], s.t. C(P (h), J(h)) ≤ R

]

s.t. Eh[P (h)] ≤ PM . (12)

Let m denote the probability measure introduced by the probability density function (p.d.f.) ofh, i.e., for a setA ⊆ R+,
we havem(A ) =

∫
A

p(h)dh. Denotex(h) = J(h) + σ2
N . Note that the expectation is defined asEh[f(h)] =

∫
h

f(h)p(h)dh.
Similarly, we defineEh∈X [f(h)] =

∫
h∈X

f(h)p(h)dh.

Solution of Problem 1

The transmitter’s optimization problem:

min
P (h)≥0

Eh[P (h)], s. t. Eh

[
log

(
1 +

hP (h)

σ2
N + J(h)

)]
≥ R (13)

has linear cost function and convex constraints. Write the Lagrangian as:

L1 = Eh[P (h)] − λ

{
Eh

[
log

(
1 +

hP (h)

σ2
N + J(h)

)]
− R

}
. (14)

With the notationc = exp(R) , the resulting KKT conditions yield the unique solution [14]:

P (h) =

[
λ −

x(h)

h

]

+

, h ∈ R+, (15)

where

λ = c
1

m(M′)

{
exp

[
Eh∈M ′

(
log

x(h)

h

)]} 1
m(M′)

, (16)

and M ′ ⊂ R+ is the set of channel coefficients over whichλ ≥ x(h)/h, and [z]+ = max{z, 0}. We say the transmitter is
“non-absent” overM ′, and “absent” onR+ \ M ′.

The following proposition, the proof of which is given in Appendix II-A, states that the jammer should only be present
where the transmitter is non-absent.

Proposition 2: The jammer should only transmit where the transmitter is ”non-absent”. Otherwise, ifJ(h) > 0 and λ <
x(h)/h for h in some setS ⊂ R+, the jammer can decreaseJ(h) over h ∈ S and maintain the same required transmitter
power over the frame.
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Substituting (16) in (13), the jammer’s problem can be formulated as:

Find max
x(h)≥σ2

N

c
1

m(M′) m(M ′)·

·

{
exp

[
Eh∈M ′

(
log

x(h)

h

)]} 1
m(M′)

− Eh∈M ′

(
x(h)

h

)
(17)

subject toEh[x(h)] ≤ (JM + σ2
N ) (18)

Since the setM ′ depends on the jammer power allocationJ(h), solving the optimization problem above analytically is
difficult. This is why we next provide an alternative method for finding the solution. Our method examines the properties of
the setsM ′ over which the transmitter is present andM ′′ over which the jammer is present, as well as those of the optimal
transmitter/jammer strategies.

Fixing M ′, the Lagrangian for the jammer’s optimization problem can be written as

L2 = −PM + µ
{
Eh[x(h)] − (JM + σ2

N )
]
. (19)

This yields the new KKT conditions:

1

x(h)

{
exp

[
Eh∈M ′

(
log

x(h)

h

)]} 1
m(M′)

c
1

m(M′) −

−
1

h
− µ = 0 for h ∈ M ′′, (20)

Eh∈M ′′x(h) = JM + σ2
Nm(M ′′), (21)

µ ≥ 0, (22)

whereM ′′ is the set of channel coefficients on which the jammer transmits non-zero power.
For fixedM ′ andM ′′, the jammer’s optimal strategy has to satisfy these KKT conditions. The resulting optimal strategy is

x(h) =
h

1 + µh

{
c exp

[
Eh∈M ′

(
log

x(h)

h

)]} 1
m(M′)

. (23)

The expression above states that for any two channel realizations with coefficientshi, hj belonging toM ′′, we have

x(hi)

hi

≥
x(hj)

hj

⇔ hi ≤ hj ⇔ x(hi) ≤ x(hj). (24)

Note that for any two channel realizationshi, hj /∈ M ′′ (i.e. x(hi) = x(hj) = σ2
N ) we also have

x(hi)

hi

≥
x(hj)

hj

⇔ hi ≤ hj . (25)

The following proposition brings more insight into the optimal jamming strategy. Its proof is deferred to Appendix II-B.

Proposition 3: The optimal jamming strategy is such thatx(h)/h is a continuous decreasing function ofh over all of R+,
andM ′′ is of the formM ′′ = [h∗,∞). Moreover, this implies thatM ′ is of the formM ′ = [h0,∞).

The optimal transmitter/jammer strategies for allocatingpower over a frame are described in Figure 2.
Substituting (23) into (16), we get a new expression forλ:

λ =
x(h)

h
(1 + µh), for h ∈ M ′′ (26)

which together with (15) yields

P (h) = µx(h), for h ∈ M ′′. (27)

An interesting remark which supports the results of the nextsubsection is that, for the optimal solution ofProblem 1, µ
has to be strictly greater than zero, hence eliminating the possibility that the jammer allocates positive power to frames where
the transmitter, although “non-absent”, could allocate zero power. In Appendix II-B it is shown how this remark followsfrom
Proposition 3.
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Taking expectation overh ∈ M ′′ in (23), and using the constraint (21), we get

x(h) =
JM + m(M ′′)σ2

N
1+µh

h
Eh∈M ′′

h
1+µh

, (28)

for h ∈ M ′′ andx(h) = σ2
N for h /∈ M ′′.

To solve forµ, substitute (28) into (23):
[

JM + m(M ′′)σ2
N

Eh∈M ′′
h

1+µh

]m(M ′)−m(M ′′)

=

= c exp

[
Eh∈M ′′

(
log

1

1 + µh

)]
·

· exp

[
Eh∈M ′−M ′′

(
log

σ2
N

h

)]
. (29)

The second level power allocation solution for the maximin problem is thus completely determined by the triple(M ′, M ′′, µ),
or equivalently by(h0, h∗, µ). By Proposition 3 above,x(h∗) = σ2

N (by continuity inh∗), andλ = σ2
N/h0. Rearranging these

two relations, along with (29) in a more convenient form, we obtain the following system of equations, which has to hold for
any solution to our problem:

h0 =
h∗

1 + µh∗
, (30)

JM

σ2
N

=

∫ ∞

h∗

(
h

1+µh

h∗

1+µh∗

− 1

)
p(h)dh, (31)

R =

∫ h∗

h∗

1+µh∗

log

(
h

1 + µh∗

h∗

)
p(h)dh −

−

∫ ∞

h∗

log

(
1

1 + µh

)
p(h)dh. (32)

The equations above lead to the following result:

Proposition 4: The solution of the maximin second level power allocation problem is unique.
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Proof: It is easy to see that the right hand side of (31) is a strictly decreasing function ofh∗, for fixed µ, and a strictly
decreasing function ofµ, for fixed h∗, while being equal to a constant. Hence, for givenJM , (31) yieldsµ as a strictly
decreasing function ofh∗.

Similarly, the right hand side of (32) is a strictly decreasing function ofh∗, for fixed µ, and a strictly increasing function
of µ, for fixed h∗, while being equal to a constant. Hence, (32) yieldsµ as a strictly increasing function ofh∗.

Since (31) and (32) have to be satisfied simultaneously by anysolution, the solution has to be unique.

Another insightful remark that follows from (30)–(32) is that asJM increases, bothµ andh∗ should be decreasing.
The following proposition, characterizing thePM (JM ) function, is necessary for deriving the optimal power allocation

between frames in the next section. The proof is deferred to Appendix II-C.

Proposition 5: Under the optimal maximin second level power control strategies, the “required” transmitter powerPM over
a frame is a strictly increasing, unbounded and concave function of the powerJM that the jammer invests in that frame.

Throughout the remainder of this paper, we shall denote byPM (JM ) the function that characterizes the “required” transmitter
power over a frame where the jammer invests powerJM , in the maximin case.

Solution of Problem 2

To solve the minimax intra-frame power allocation problem by using the same techniques as inProblem 1 turns out to
be more difficult. Instead we use the above solution ofProblem 1and show that for both problems, the second level power
allocation follows the same rules.

Theorem 2:If JM,1 is the value used for the second constraint inProblem 1above, andPM,1 is the resulting value of the
cost/reward function, then solvingProblem 2with PM = PM,1 yields the cost/reward functionJM = JM,1. Moreover, any
pair of second level power allocation strategies that makesan optimal solution ofProblem 1, should also make an optimal
solution ofProblem 2, and this also holds conversely.

Proof: The result is a direct consequence of Theorem 8 in Appendix II-D, if we denotex = P (h), y = J(h), f(x) =
Eh[P (h)], g(y) = Eh[J(h)] andh(x, y) = C(P (h), J(h)).
We shall denote byJM (PM ) the function that characterizes the “required” jamming power over a frame where the transmitter
invests powerPM , in the minimax case. By Theorem 2, we have thatJM (PM (JM )) = JM andPM (JM (PM )) = PM .

Further comments on the power control within frames

Although the second level optimal power allocation strategies for the maximin and minimax problems coincide, this result
should not be associated to the notion of Nash equilibrium, since the two problems solved above do not form a zero-sum
game, while for the game of (9) and (10), first level power control strategies are yet to be investigated.

Instead, the result should be interpreted as a form of duality. In fact, a much stronger result can be observed as a consequence
of Theorem 8. Namely, a similar “duality” property linksProblem 1andProblem 2above to the auxiliary problem of (3) and
(4) appearing in the peak power constraints scenario. This explains the resemblance between the solution of the peak power
constraints auxiliary problem (6) and the solution ofProblem1(26), (27).

Also, this common solution implies thatP (h) = µ(J(h)+σ2
N ) over the setM ′′ of channel realizations where both jammer

and transmitter are present. Although the transmitter is also active over the set of nonzero measureM ′ \ M ′′ as in Figure
2, under practical conditions the measurem(M ′ \ M ′′) of this set is relatively small. This is the reason why thePM (JM )
curve appears to be linear (although it is not) in Figure 3 of the numerical results section.

B. Power Allocation between Frames

The Maximin Solution

In this subsection we present the first level optimal power allocation strategies for the maximin problem. Recall that all
frames are equivalent in the sense that they are all characterized by the same channel realizations (although not necessarily
occurring in the same chronological order).

The maximin scenario assumes that the transmitter is completely aware of the jammer’s power control strategy (only pure
strategies are considered in this section). Given a jammer’s strategy that allocates different jamming powers to different frames,
the optimal way of allocating the transmitter’s power is always to ensure that reliable communication is obtained on theframes
that require the least amount of transmitter power. The jammer’s optimal strategy (which is based solely on this knowledge
about the transmitter’s strategy) is presented in the following theorem.

Theorem 3:Under the maximin scenario it is optimal for the jammer to allocate the same amount of powerJM = J to all
frames.

Proof: The proof relies on the concavity ofPM (JM ). Consider the optimal maximin inter-frame power allocation
strategies. LetS , X denote the sets of frames over which the transmitter and the jammer are present, respectively. Note
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that the jammer can itself compute the optimal transmitter strategy in response to its own, and hence is fully informed ofthe
transmitter’s response.

We first look at the set of framesS where the transmitter is active. Denote the power invested by the jammer in this set
by JS . Note thatP is the average “required” transmitter power overS .

If the two players’ strategies are both optimal, then by modifying the allocation ofJS over the frames ofS , the new
average “required” transmitter power overS can only be less than or equal toP . In other words, if we denote byjM the
generic power level allocated by the jammer to a frame inS , then

P = max
jM

∫

S

PM (jM )djM (33)

subject to
∫

S

jMdjM = JS . (34)

By writing the KKT conditions for the maximization problem in (33) and (34) above, it is straightforward to see that, at
an optimum,dPM(jM )

djM
should be constant all overS . Taking into account the fact thatPM (jM ) is concave, we have that a

uniform jamming power allocation ofJS over S achieves this optimum.
We next look at the set of framesX \ S where the transmitter cannot afford to be active. This meansthat the “required”

transmitter power overX \ S is greater than or equal toPM (JS ), or equivalently, the power invested by the jammer is
greater than or equal toJS . But since the jammer already knows the transmitter’s strategy, investing more thanJS in any
of the frames ofX \ S would be a waste.

Therefore, under the optimal maximin inter-frame power allocation strategies, the jammer can invest the same amount of
power into all the frames ofX

⋃
S (which meansS ⊂ X ).

But since the transmitter decides to match the required transmitter power onS , there can be no frames where the jammer
is not active, and henceX is the set of all frames.

The jamming power allocated to each frame isJM = J . In this case the transmitter faces an indifferent choice space. The
power required for the transmitter to achieve reliable communication isPM (JM ). Hence, the transmitter’s optimal strategy
is to randomly pick as many frames as possible and allocate power PM (JM ) to each of them. This is equivalent to saying
the transmitter is present over a frame with probabilitypt, given bypt = P

PM (J ) . The resulting probability of outage is now
Pout = 1 − pt.

Note that ifP ≥ PM (J ), the probability of outage can be reduced to zero. This corresponds to the case when the ergodic
capacity of the channel, computed in the conventional way, with peak power constraints, is larger than the rateR.

The Minimax Solution

Theorem 2 showed that for the minimax problem the power allocation within a frame, as well as the relationship between
the total powers used by transmitter and receiver over a particular frame, are identical to the maximin problem. Hence, by
rotating thePM (JM ) plane, we get the characteristicJM (PM ) curve for the minimax problem.

The minimax scenario assumes that the jammer knows exactly when and with what power level the transmitter transmits.
Given a transmitter’s strategy that allocates different powers to different (equivalent) frames, the optimal way of allocating the
jammer’s power is such that outage is first induced on the frames that require the least amount of jamming power.

Under these conditions, the transmitter’s optimal strategy is presented in the following theorem.

Theorem 4:Under the minimax scenario it is optimal for the transmitterto transmit over a maximum number of frames,
with the same powerPM that minimizes the probability of outage.

Proof: The proof relies on the convexity ofJM (PM ). Consider the optimal minimax inter-frame power allocation
strategies, and letS , X denote the sets of frames over which the transmitter and the jammer are present, respectively. It is
clear in this scenario thatX ⊂ S .

We first look at the set of framesX where the jammer is active. Denote the power invested by the jammer in this set by
JX , and the power invested by the transmitter byPX . Note thatJX is the average “required” jamming power overX .

If the two players’ strategies are both optimal, then by modifying the allocation ofPX over the frames ofX , the new
average “required” jamming power overX can only be less than or equal toJX . In other words, if we denote bypM the
generic power level allocated by the transmitter to a frame in X , then

JX = max
pM

∫

X

JM (pM )dpM (35)

subject to
∫

X

pMdpM = PX . (36)
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From the KKT conditions for the maximization problem in (35)and (36) above, we see that, at an optimum,dJM (pM )
dpM

should be constant all overX . Taking into account the fact thatJM (pM ) is convex, we have that a uniform transmitter
power allocation ofPX over X achieves this optimum.

We should emphasize here that the above arguments holdunder the assumption that the jammer is active over the wholeset
X , i.e. whenJM (pM ) > 0 overX . Of course, the overall required jamming power is increasedby increasing the transmitter
power over some frames ofX , while neglecting the others. But this action modifies the set X itself, and thus the initial
assumptions.

We next look at the set of framesS \ X where the jammer cannot afford to be active. This means that the “required”
jamming power overS \ X is greater than or equal toJM (PX ), or equivalently, the power invested by the transmitter is
greater than or equal toPX . But since the transmitter already knows the jammer’s strategy, investing more thanPX in any
of the frames ofS \ X would be a waste.

Therefore, under the optimal maximin inter-frame power allocation strategies, the transmitter can invest the same amount
of power into all the frames ofS .

The frames over which the transmitter allocates the optimalPM can be chosen at random. This is equivalent to the transmitter
being active over a frame with probabilitypt given bypt = P

PM
. Searching for the optimalPM is equivalent to searching for

the optimalpt.
The jammer’s strategy is to attack as many of the frames wherethe transmitter is present as possible. In order to induce

outage over these frames, the jammer needs to allocateJM (PM ) to each of them. This is equivalent to the jammer transmitting
JM (PM ) on a frame on which the transmitter is present, with probability pj given bypj = J

ptJM (PM ) . Note thatpj represents
the conditional probability that the jammer transmits overa frame, given that the transmitter is present over that frame. Outage
over a frame occurs in two circumstances: either the transmitter (and consequently also the jammer) decides to ignore the
frame, or the transmitter attempts to transmit the corresponding codeword, but the jammer is present (and since this is the
minimax scenario, it is also successful).

The resulting probability of outage isPout = (1 − pt) + pjpt or, only as a function ofPM :

Pout = (1 −
P

PM

) +
J

JM (PM )
. (37)

The transmitter finds the optimal value ofPM as the argument that minimizesPout above. A numerical approach should perform
exhaustive search with the desired resolution in the interval [P , PM,max], wherePM,max can be set such that∀PM > PM,max

we havePout(PM ) > 1 − ǫ for a fixed ǫ. SincePout → 1 asPM → ∞ independently of theJM (PM ) curve, such a finite
boundPM,max exists for anyǫ.

Note that if thePM (JM ) curve is strictly concave, the jammer can never achieve an outage probabilityPout = 1. This is
because the transmitter can invest all its power over a smallenough set of frames, such that the jamming power required tojam
all the frames in this set exceeds the jammer’s power budget.If however the probability measurem is chosen such thatPM (JM )
is an affine function of the formPM = PM,0+1/θJM , and furthermore ifJ ≥ θ(P−PM,0), then J

JM (PM ) ≥
P−PM,0

PM−PM,0
≥ P

PM

for all values ofPM , and the probability of outage becomesPout = 1.

C. Some Numerical Results

An example of thePM (JM ) curve is given in Figure 3 for a fixed rateR = 2, noise powerσ2
N = 10 and a channel

coefficient distributed exponentially, with parameterλ = 1/6.
For the same parameters used to generate Figure 3, the probability of outage was computed for a jammer power constraint

J = 10 and different values of the transmitter power constraintP . The results were plotted in Figure 4. For comparison, the
same figure showsPout(P) for the case when the jammer does not use any power control strategy (non-intelligent jammer).
Since the jammer’s first level of power control for the maximin scenario reduces to uniformly distributing the availablepower to
all frames, the only difference between the maximin scenario and the non-intelligent jammer scenario is in the power allocation
within frames. However, as seen from Figure 4, this difference is almost negligible.

Figure 5 shows how the outage probability varies with the rate R, for fixed power constraintsP = 30 and J = 10.
The Pout(R) curves delimitate the achievable capacity vs. outage regions for both peak power constraints and average power
constraints (minimax and maximin cases).

Note that even for the minimax solution of the average power constraints problem, there exist values ofP (Figure 4), or of
the rateR (Figure 5) for which the outage probability is less than thatachievable under peak power constraints.

Also note that the maximin curve coincides with the peak power constraints curve at large transmitter power (in Figure 4)
or at small rates (in Figure 5). Recall that the jammer’s strategy in the maximin scenario is the same as in the peak power
constraints scenario (i.e. the jammer allocates the same amount of powerJ to each frame). Due to the favorable conditions in
the regions characterized by largeP or smallR, the transmitter can also spread its power uniformly over all frames (just like
in the peak power constraints scenario), overcoming the jammer completely (hence the resulting zero probability of outage).



11

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

200

J
M

P
M

P
M

 vs. J
M

 for σ
N
2 =10, R=2, h distributed exponentially with parameter λ=1/6

 

 

Fig. 3. PM vs. JM curve whenR = 2, σ2
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N
= 10 andh is distributed exponentially, with parameterλ = 1/6.

IV. CSI AVAILABLE TO ALL PARTIES. JAMMING GAME WITH AVERAGE POWER CONSTRAINTS: M IXED STRATEGIES.

In the previous section we studied the maximin and minimax solutions of the jamming game when only pure strategies
were allowed. Implicitly, we assumed that the power controlstrategies employed by the first player are perfectly known to the
second player, even if they include a form of ON/OFF randomization. We made a case that such a situation as the minimax
case can emerge when the jammer does not transmit unless it senses that the transmitter is on (and it can always serve as a
pessimistic scenario for the transmitter).

However,our previous assumption may sometimes be inappropriate from a practical point of view. For example, if the
transmitter does not stick with the optimal minimax solution, the jammer may have a hard time following the transmitter’s
behavior. The reason for this is that, as we have already mentioned, the jammer would find it much harder to correctly estimate
the amount of power that the transmitter invests in a given frame, than to just detect the presence of the transmitter.

In this section we investigate the jamming game with averagepower constraints when mixed (probabilistic) strategies are
considered. Similarly to the pure strategies scenario of the previous section, this game is played on two levels, with the first
(coarser) level dealing with power allocation between frames. Its cost/reward function is the probability of outage. We assume
that the jammer’s and transmitter’s randomized strategiesconsist of picking the power values to be invested over a frame in
a random manner. In our previous notation,PM and JM are now random variables, and each frame is characterized bya
realization(pM , jM ) of the pair(PM , JM ).

Given this realization, each player has to distribute its power over the frame in an optimal way. This is the purpose of the
second (finer) level of power control. The objective of each player at this level is to make the best of the available resources
(i.e. the powers(pM , jM )). This means maximizing (or minimizing, respectively) theaverage rate supported by the frame, in
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Fig. 5. Outage probability vs. rate forP = 30, J = 10, σ2

N
= 10 andh is distributed exponentially, with parameterλ = 1/6.

the hope that the resulting average rate will be above (or below, respectively) the system’s fixed rateR.

A. Power allocation within a frame

We can formulate the second level of power control similarlyto the two-player, zero-sum game of (3) and (4) having the
ergodic capacity calculated over a frameC(P (h), J(h)) as cost function. The difference is that under the current scenario,
none of the players knows the other player’s constraints, because(PM , JM ) is a random event. Theorem 5 below provides the
optimal transmitter/jammer strategies for power allocation within a frame.

Theorem 5:Given a realization(pM , jM ) of (PM , JM ), let PM (jM ) denote the solution ofProblem 1in Section III with
JM = jM , andJM (pM ) denote the solution ofProblem 2in Section III with PM = pM .

The transmitter’s optimal strategy is the solution of the game in (3) and (4), where the jammer is constrained toEh[J(h)] ≤
JM (pM ) and the transmitter is constrained toEh[P (h)] ≤ pM . The jammer’s optimal strategy is the solution of the game in
(3) and (4), where the transmitter is constrained toEh[P (h)] ≤ PM (jM ) and the jammer is constrained toEh[J(h)] ≤ jM .

Note that each of the two players deploys the strategy that results from the most pessimistic scenario that it can handle
successfully.

Proof: Denote the solution of the game in (3) and (4), where the jammer is constrained toEh[J(h)] ≤ JM (pM ) and
the transmitter is constrained toEh[P (h)] ≤ pM by (P1(h), J1(h)), and the solution of the game in (3) and (4), where the
transmitter is constrained toEh[P (h)] ≤ PM (jM ) and the jammer is constrained toEh[J(h)] ≤ jM by (P2(h), J2(h)).

Denote the solution of the game in (3) and (4), where the jammer is constrained toEh[J(h)] ≤ jM and the transmitter is
constrained toEh[P (h)] ≤ pM by (P0(h), J0(h))..

By the duality property of Theorem 8 in Appendix II-D, we musthaveC(P1(h), J1(h)) = R andC(P2(h), J2(h)) = R.
We will show that (i) even if mixed strategies are consideredfor the game in (3) and (4), any Nash equilibrium has the

same value as the Nash equilibrium of pure strategies; (ii) even if the jammer’s powerjM is different fromJM (pM ), the
transmitter’s strategy is still optimal; (iii) even if the transmitter’s powerpM is different fromPM (jM ), the jammer’s strategy
is still optimal.

(i): Since the game of (3) and (4) is a two-person zero-sum game, all Nash equilibria of mixed strategies yield the same
value of the cost/reward function [13]. Moreover, the two players are indifferent between all equilibria. It was shown in [6]
that this game has a Nash equilibrium of pure strategies. Butany equilibrium of pure strategies is also an equilibrium ofmixed
strategies [13] and hence it is enough to consider the equilibrium of pure strategies found in [6].

(ii),(iii): Assume the transmitter plays the strategy given by P1(h).
If jM = JM (pM ), it is clear that the optimal solution for both transmitter and jammer is the solution of the game in (3)

and (4), where the jammer is constrained toEh[J(h)] ≤ jM and the transmitter is constrained toEh[P (h)] ≤ pM . In this
case, it is as if each player knows the other player’s power constraint.

If jM < JM (pM ), then by Lemma 4 in Appendix II-C we have thatJ0(h) < J1(h). SinceC(P (h), J(h)) is a strictly
decreasing function ofJ(h) (under the order relation defined in Appendix II-D), this implies thatC(P1(h), J0(h)) > R. Note
that J0(h) is the jammer’s strategy when the jammer knows the transmitter’s power constraintpM . Thus we have shown that
when the transmitter playsP1(h) and jM < JM (pM ), the jammer cannot induce outage over the frame even if it knew the
value ofpM .
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The conditionjM > JM (pM ) is equivalent topM < PM (jM ) (by Theorem 8). In this case, since the jammer plays
the strategy given byJ2(h), a similar argument as above (but this time applied to the transmitter’s strategy) shows that the
transmitter cannot achieve reliable communication over the frame even if it knew the exact value ofjM .

This accomplishes the proof and shows that(P1(h), J2(h)) is a Bayes equilibrium [13] for the game with incomplete
information describing the power allocation within a frame.

B. Power allocation between frames

Due to the form of the optimal second level power allocation strategies described in the previous subsection, the outage
probability can be expressed as

Pout = Pr{JM ≥ JM (PM )} =

= 1 − Pr{PM ≥ PM (JM )}, (38)

wherePM (JM ) is the strictly increasing, unbounded and concave functionof Proposition 5. The optimal mixed strategies for
power allocation between frames are presented in the following theorem.

Theorem 6:The unique Nash equilibrium of mixed strategies of the two-player, zero-sum game with average power
constraints described in (9) and (10) is attained by the pairof strategies(FP (pM ), FJ (jM )) satisfying:

FP (PM (y)) ∼ kpU([0, 2v])(y) + (1 − kp)∆0(y), (39)

FJ (JM (x)) ∼ kjU([0, JM (2v)])(x) + (1 − kj)∆0(x), (40)

whereU([r, t])(·) denotes the CDF of a uniform distribution over the interval[r, t], and∆0(·) denotes the CDF of a Dirac
distribution (i.e. a step function), and the parameterskp, kj ∈ [0, 1] andv ∈ [max{J , JM (P)/2},∞) are uniquely determined
from the following steps:

1) Find the unique valuev0 which satisfies:

PJ = [PM (2v0) − P ](2v0 − J ). (41)

2) ComputeS(v0) =
∫ 2v0

0 PM (y)dy − 2v0P .
3) If S(v0) < 0, thenv is the unique solution of

∫ 2v

0

PM (y)dy − 2vP = 0, (42)

kp = 1 (43)

and

kj =
JPM (2v)

2v[PM (2v) − P ]
. (44)

4) If S(v0) = 0 thenv = v0, kp = kj = 1.
5) If S(v0) > 0, thenv is the unique solution of

∫ 2v

0

PM (y)dy − PM (2v)(2v − J ) = 0, (45)

kp =
2vP

PM (2v)[2v − J ]
(46)

and

kj = 1. (47)

Proof: The proof follows directly from Theorem 9 in Appendix III, bysubstitutingx = PM , y = JM , g(y) = PM (y),
g−1(x) = JM (x), a = P andb = J . It is also interesting to note that the condition

∫ b

0 g(y)dy <
∫∞

g(b) g−1(x)dx is satisfied
becausePM (y) is unbounded (Proposition 5).
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Fig. 6. Outage probability vs. transmitter power constraint P whenJ = 10, R = 2, σ2
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= 10 andh is distributed exponentially, with parameterλ = 1/6.
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C. Numerical results

For the same parameters as in subsection III-C we evaluated numerically the optimal probabilistic power control strategies.
Figure 6 shows the probability of outage obtained under the mixed strategies Nash equilibrium, versus the transmitter power
constraintP , for a fixed rateR = 2, noise powerσ2

N = 10, a jammer power constraintJ = 10 and a channel coefficient
distributed exponentially, with parameterλ = 1/6. All the previously obtained curves are shown for comparison.

Figure 7 shows the same probability of outage whenP = 30 and the system rateR is varied.
In both figures it can be seen that the system performance under the Nash equilibrium of mixed strategies is better (from

the transmitter’s point of view) than the minimax and worse than the maximin solutions of the pure strategies game. This is
expected since the pure strategies solutions assume that the second player (the “follower”) is constantly at a disadvantage with
the first player (the “leader”).

V. CSI AVAILABLE TO RECEIVER ONLY. JAMMING GAME WITH AVERAGE POWER CONSTRAINTS: M IXED STRATEGIES

In this section we investigate the scenario when the receiver does not feed back any channel state information. Since we
have already shown that the long term power constraints problem is the more interesting and challenging one, we further focus
only on the scenario of average power constraints and mixed strategies. As in the previous sections, we have to discuss two
levels of power control: within a frame and between frames.

A. Power allocation within a frame

The jammer and transmitter powers allocated to each frame will be established in the next subsection. For now we are
concerned with the optimal power allocation within a frame,given the amounts of power invested in that frame by each
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one of the players. For a given frame, denote these powers byPM and JM , to be consistent with our previous notation.
Both the transmitter and the jammer will choose a probability distribution for the randomly variable power levelsP and J ,
respectively, such thatEP P ≤ PM and EJJ ≤ JM , where the notationsEP and EJ denote the expectations with respect
to these probability distributions. For the generic channel use, the channel coefficienth, the transmitter’s powerP and the
jammer’s powerJ are all independent random variables, which yield the randomly variable instantaneous mutual information
log
(
1 + hP

J+σ2
N

)
. For a frame, this results in the ergodic capacityEh,P,J log

(
1 + hP

J+σ2
N

)
, whereEh denotes expectation with

respect to the channel coefficient.
The transmitter’s purpose is to use the allocated powerPM in an attempt to make this ergodic capacity larger than the rate

R. Similarly, the jammer is concerned with usingJM for making the ergodic capacity fall belowR. The problem of allocating
the power within the frame can be written as:

max
P :EP P≤PM

min
J:EJ J≤JM

Eh,P,J log

(
1 +

hP

J + σ2
N

)
. (48)

DenoteL(P, J) = Eh log
(
1 + hP

J+σ2
N

)
and let us observe that

dL

dP
= Eh

h

Ph + J + σ2
N

> 0, (49)

dL

dJ
= −Eh

Ph

(Ph + J + σ2
N )(J + σ2

N )
< 0, (50)

d2L

dP 2
= −Eh

(
h

Ph + J + σ2
N

)2

< 0, (51)

d2L

dJ2
=

= Eh

Ph(Ph + 2J + 2σ2
N )

[J2 + J(Ph + 2σ2
N ) + σ2

N (Ph + σ2
N )]2

> 0, (52)

which implies thatL(P, J) is a strictly increasing, concave function ofP for fixed J , and a strictly decreasing, convex function
of J for fixed P .

Thus, we can write

Eh,P log

(
1 +

hP

JM + σ2
N

)
≤

≤ Eh log

(
1 +

hPM

JM + σ2
N

)
≤

≤ Eh,J log

(
1 +

hPM

J + σ2
N

)
, (53)

and hence the uniform distribution ofPM andJM over the frame achieves a Nash equilibrium. A frame to which the transmitter
allocates powerPM and the jammer allocates powerJM is in outage if and only if

Eh log

(
1 +

hPM

JM + σ2
N

)
≤ R. (54)

The probability of this event depends on the power allocation between frames and is the subject of the first level of power
control treated in the next subsection.

But before we get to that, we need to make several comments. Note that if we force equality in (54) above, we obtain a
P ′

M (JM ) curve as in Section III. It is straightforward to see that theP ′
M (JM ) curve is affine, because solving (54) with

equality yieldsPM = µ′(JM +σ2
N ) whereµ′ is the (unique) solution ofEh log (1 + µ′h) = R. Recall that the curvePM (JM )

of Section III (with full CSI) isalmostaffine due to the fact that the measure of the set of channel realizations, within a frame,
over which the transmitter is present but the jammer is not, is often quite small. For this reason, we expect theP ′

M (JM ) and
the PM (JM ) curves to be very close to each other.

Although the two curves are still different in general, theyhave the same physical interpretation: if the jammer invests
powerjM over a frame, and the powerpM invested by the transmitter satisfiespM < P ′

M (jM ), then the frame is in outage.
Otherwise, ifpM > P ′

M (jM ), the frame supports the asymptotically error-free decoding of the transmitted codeword.
As in Section III, we shall denote byJ ′

M
(PM ) the “inverse” of theP ′

M (JM ) function, or the symmetric of theP ′
M (JM )

curve with respect to the first bisector.
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B. Power allocation between frames

The arguments of this subsection are very similar to those ofSubsection IV-B and will not be discussed in great detail. We
have seen that the outage probability can be expressed as

Pout = Pr{JM ≥ J ′
M

(PM )} =

= 1 − Pr{PM ≥ P ′
M (JM )}, (55)

whereP ′
M (JM ) is an affine, and hence strictly increasing and unbounded function of the formP ′

M (JM ) = µ′JM + µ′σ2
N .

The optimal mixed strategies for power allocation between frames are presented in the following theorem.

Theorem 7:The unique Nash equilibrium of mixed strategies of our two-player, zero-sum game with average power
constraints is attained by the pair of strategies(FP (pM ), FJ (jM )) satisfying:

FP (x) ∼ kpU([µ′σ2
N , 2vµ′ + µ′σ2

N ])(x) + (1 − kp)∆0(x),

FJ (y) ∼
2v

2v + σ2
N

kjU([0, 2v])(y) + (1 −
2v

2v + σ2
N

kj)∆0(y),

whereU([r, t])(·) denotes the CDF of a uniform distribution over the interval[r, t], and∆0(·) denotes the CDF of a Dirac
distribution (i.e. a step function), and the parameterskp, kj ∈ [0, 1] andv ∈ [max{J , J ′

M
(P)/2},∞) are uniquely determined

from the following steps:

1) If

P ≥ µ′σ2
N +

1

2
µ′J



1 +

√

1 +
2σ2

N

J



 , (56)

then

v =
P − µ′σ2

N

µ′
, (57)

kp = 1 (58)

and

kj =
µ′J (2P − µ′σ2

N )

2(P − µ′σ2
N )2

. (59)

2) If

P < µ′σ2
N +

1

2
µ′J



1 +

√

1 +
2σ2

N

J



 , (60)

then

v =
1

2
J



1 +

√

1 +
2σ2

N

J



 , (61)

kp =
2vP

µ′(2v + σ2
N )(2v − J )

(62)

and

kj = 1. (63)

Proof: The proof follows directly from Theorem 9 in Appendix III, bysubstitutingx = PM , y = JM , g(y) = P ′
M (y),

g−1(x) = J ′
M

(x), a = P andb = J . It is also interesting to note that the condition
∫ b

0 g(y)dy <
∫∞

g(b) g−1(x)dx is satisfied
becauseP ′

M (y) is unbounded.



17

1 2 3 4 5 6 7 8 9 10

15

20

25

30

35

J
M

P
M

P
M

 vs. J
M

 for σ
N
2 =10, R=2, h distributed exponentially with parameter λ=1/6

 

 

Fig. 8. PM vs. JM curve with and without CSI feedback whenR = 2, σ2
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= 10 andh is distributed exponentially, with parameterλ = 1/6.
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Fig. 9. Outage probability vs. transmitter power constraint P with and without CSI feedback whenJ = 10, R = 2, σ2

N
= 10 and h is distributed

exponentially, with parameterλ = 1/6. (Mixed strategies.)

C. Numerical results

In this subsection we provide the numerical evaluation of our system’s performance when no channel state information is
fed back by the receiver. The parameters are identical to those used in the numerical evaluation of the previous sections.

The newPM (JM ) curve is given in Figure 8. It can be seen that for a given jamming power allocated to a frame, the
transmitter power required to ensure asymptotically error-free transmission over that frame is only slightly larger if no CSI is
fed back than when full CSI is available to all parties.

This observation explains the very small difference in achievable outage probabilities that can be observed in Figures9 and
10.

VI. CONCLUSIONS

We have shown that for a high transmission rateR the jammer could have enough power to keep the ergodic capacity
below R. In this scenario, if the transmitter imposes average powerconstraints rather than peak power constraints, reliable
communication is possible at the cost of a non-zero probability of outage.

If both transmitter and jammer use average power constraints, their optimal strategies result as solutions of a two-person
zero-sum game. This game is played on two levels of power control. The second level (power control within a frame) exhibits
similar strategies for the pure (maximin and minimax cases)and mixed strategies scenarios. However in the pure strategies
scenario, maximin and minimax first level power control (between frames) is generally done differently, implying the non-
existence of a Nash equilibrium. A Nash equilibrium was derived for the mixed strategies scenario, placing the value of the
objective function between those of the minimax and maximinpure strategies solutions.
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Although it may seem that the mixed strategies game makes more sense from a practical point of view, the pure strategies
minimax scenario may be a more appropriate model for the casewhen the jammer does not attempt to jam unless it senses that
the transmitter is on. In any circumstances, the minimax scenario with pure strategies serves as a lower bound (the pessimistic
approach) to the system’s performance.

The feedback of CSI by the legitimate receiver is known to bring benefits (in terms of achievable transmission rate) when
nobody attempts to jam the transmission. However, for a fastfading AWGN channel, these improvements are shown to be
marginal [15]. We have shown that a similar conclusion holds(this time in terms of outage probability) for the case when the
parties that communicate over the fast fading AWGN channel are under attack from a jammer. The CSI fed back can easily
be intercepted by the jammer, which can then use this information to the transmitter’s disadvantage. If one should also take
into account the loss of bandwidth and the complexity required for CSI feedback and processing, keeping the transmitter(and
jammer) ignorant of the channel coefficients may seem a better choice.

The same remark cannot be made for a parallel slow fading AWGNchannel. It was shown in [12] that when CSI is fed
back and no jamming is present, the improvements in terms of probability of outage are significant. In Part II of this paper
[16] we show that this conclusion also holds if we consider the jamming scenario. In doing this we exploit the similarities
that the parallel slow fading channel bears to the fast fading channel, and develop new and even more interesting techniques
to make up for the additional complexity incurred by this newmodel.

APPENDIX I
PEAK POWER CONSTRAINTS - PROOF OFTHEOREM 1

This proof follows the one described in the Appendix B of [12]. The probability of outage can be written as:

Pr(C(P (h), J(h)) < R) = E[χ{C(P (h),J(h))<R}], (64)

whereχ{A } denotes the indicator function of the setA . Replacing the power allocations by the solutions of the game described
by (3) and (4), we define

χ∗ = χ{C(P∗(h),J∗(h))<R}. (65)

We next use the fact that the pair(P ∗(h), J∗(h)) determines an equilibrium of the game (3), (4). Thus, for anyrandom
power allocationP (h) satisfying the power constraint, we can write:

χ∗ ≤ χ{C(P (h),J∗(h))<R}, with probability 1. (66)

Similarly, for any randomJ(h), we have

χ∗ ≥ χ{C(P∗(h),J(h))<R}, with probability 1. (67)

Now pick some arbitrary power allocation functionsPa(h) andJa(h), which satisfy the peak power constraints, and set

P̂ (h) = (1 − χ∗)P ∗(h) + χ∗Pa(h), (68)
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and

Ĵ(h) = (1 − χ∗)Ja(h) + χ∗J∗(h), (69)

It is easy to see thatEhP̂ (h) ≤ P with probability 1 , EhĴ(h) ≤ J with probability 1, and moreover that

χ∗ = χ{C( bP(h), bJ(h))<R}. (70)

Note that transmitter and jammer could pickPa(h) = 0 and Ja(h) = 0 respectively, but this strategy would not improve
their performances (power cannot be saved), since the only power constraints are set over frames.

Now, using (64), (66) and (67), we get:

Pr(C(P (h), Ĵ(h)) < R) ≥

≥ Pr(C(P̂ (h), Ĵ(h)) < R) ≥

≥ Pr(C(P̂ (h), J(h)) < R), (71)

which proves the existence of a Nash equilibrium of the original game.

APPENDIX II
AVERAGE POWER CONSTRAINTS: PURE STRATEGIES

A. Proof of Proposition 2

In proving the proposition, we take a contradictory approach. It suffices to show that the situationJ(h) > 0 andλ < x(h)/h
cannot be part of the solution ofProblem 1.

Assume thatJ(h) > 0 andλ < x(h)/h for h in some setS ⊂ R+. If the jammer decreases the value ofJ(h) on S , two
situations are possible. In the first one,J(h) is reduced to zero onS , and the transmitter is still ”absent”. This happens if
σ2

N > λh. In this case, modifying the value ofJ(h) has no impact upon the value ofλ, and hence neither upon the outcome.
In the second caseJ(h) is reduced to some positive valueJ ′(h), such that the transmitter decides to be ”non-absent” over

S . This happens ifJ ′(h) + σ2
N = λ′h. Note that the value ofλ might be changed to someλ′. However, as we shall see

briefly, if we considerJ ′(h) that satisfiesJ ′(h) + σ2
N = λ′h, then we haveλ′ = λ.

To prove this, letλ be given by (16), and assume thatλ − x(h)/h ≥ 0 for h ∈ M ′, andλ − x(h)/h < 0 for h ∈ S . Now
modify x(h) by decreasingJ(h) as above. We have

λ′ = c
1

m(M′
S

S )

{
exp

[
Eh∈M ′

S
S

(
log

x(h)

h

)]} 1
m(M′

S
S )

=
x(h)

h
, for h ∈ S . (72)

Note that forh ∈ S we havex(h)
h

= λ′, so

Eh∈S log
x(h)

h
= log λ′

m(S ). (73)

Taking logarithm of (72):

1

m(M ′) + m(S )

[
log c + Eh∈M ′

(
log

x(h)

h

)
+

+Eh∈S

(
log

x(h)

h

)]
= log

x(h)

h
, for h ∈ S , (74)

and noting that the left hand side of (II-A) is independent ofthe actual realizations ofh, we can compute the expectation over
h ∈ S , and get:

m(S )

m(M ′) + m(S )

[
R + Eh∈M ′

(
log

x(h)

h

)]
=

=
m(M ′)

m(M ′) + m(S )
Eh∈S

(
log

x(h)

h

)
. (75)

Using (73), this leads to

log λ =
1

m(M ′)

[
R + Eh∈M ′

(
log

x(h)

h

)]
=

=
1

m(S )
Eh∈S

(
log

x(h)

h

)
= log λ′. (76)
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Therefore the outcome is maintained because, although “non-absent”, the transmitter still invests zero power onS .
Hence if such a situation where the jammer transmits on a set of channel coefficient values over which the transmitter is

“absent” occurs, the jammer can save power and maintain the same outcome. Meanwhile the new set over which jammer
transmits becomes a subset of the new set over which the transmitter is “non-absent”.

B. Proof of Proposition 3

We already know that the optimalx(h) is a continuous function ofh ∈ M ′′ if M ′ andM ′′ are fixed.
The following lemma shows that under this scenario the optimal x(h) is also unique.

Lemma 1:For fixedM ′ andM ′′, the KKT conditions (20)–(22) admit a unique solution.

Proof: ConsiderM ′ and M ′′ to be fixed. The constantµ resulting from (20)–(22) can be computed as in (29). This
implies thatJM (µ) is a strictly decreasing function, hence an injection.

Thus, for a givenJM there exists a unique corresponding value ofµ, and sincex(h) is a deterministic function ofµ, a
unique solutionx(h).

Suppose the jammer’s optimal power distributionx∗(h) is not continuous over the wholeR+.
Note that an optimal power distributionx∗(h) obtained for fixedM ′ andM ′′ can only be a globally optimal solution (i.e.

over all possible choices ofM ′ and M ′′), if by keeping the sameM ′ and extendingM ′′ to a setM ′′
n that contains a

discontinuity point , the new optimal strategy is either thesame asx∗(h), or violates the constraintx(h) ≥ σ2
N . But an optimal

strategy has to be continuous overM ′′
n, and hence the constraintx(h) ≥ σ2

N has to be violated on the left-most side ofM ′′
n

(according to (28)).
Also note that if under the optimal strategy the jammer allocates some powerJx over a setM ⊂ R+, then the distribution

of Jx overM should be done optimally, according to (28), (29). This implies that by extending the setM by a setN disjoint
from M ′′, and re-allocatingJx overMx

⋃
N , the constraintx(h) ≥ σ2

N will be violated on the left-most side ofMx

⋃
N .

The arguments above imply the following:

1) The optimal jamming power allocation should be such thatx(h) = σ2
N on the left-most point ofM ′′: otherwise extend

M ′′ by an arbitrarily small set to the left and increaseJM until x(h) = σ2
N on the left-most point of the new setM ′′

n;
by continuity ofx(h), the left-most point ofM ′′ should be arbitrarily close toσ2

N .
2) The optimal jamming power allocation should be such thatM ′′ = [h∗,∞): otherwise take a subsetMx ⊂ M ′′, such

that there exists a setN situated to the right ofMx, and denote byJx the jamming power originally allocated toMx.
By re-allocatingJx over Mx

⋃
N , the constraintx(h) ≥ σ2

N will be violated on the left-most side ofMx. If N is
picked of arbitrarily smallm-measure, by the previous arguments we should havex(h) arbitrarily close toσ2

N at the
left-most point ofMx. But sinceMx is arbitrary, this yields the contradiction thatx(h) = σ2

N for any h to the left of
N .

This proves Proposition 3.
Note that ifµ = 0, thenP (h) = 0 over M ′′, and sincex(h)/h is decreasing over the wholeR+, andM ′′ = [h∗,∞), this

implies that the transmitter does not transmit at all. However, this strategy does not achieve an ergodic capacity larger than
the rateR, and hence it results in a contradiction.

C. Proof of Proposition 5

Recall Proposition 5:Under the optimal maximin second level power control strategies, the “required” transmitter power
PM over a frame is a strictly increasing, unbounded and concavefunction of the powerJM that the jammer invests in that
frame.

The fact thatPM (JM ) is strictly increasing follows from Proposition 4 and Proposition 6. If JM,1 < JM,2 existed such
that PM (JM,1) = PM (JM,2), then when the jammer’s power constraint isJM,2, Problem 1would either have two different
solutions, or the solution would satisfy the constraint with strict inequality.

If JM → ∞ then (28) implies thatJ(h) → ∞ for any h. If PM was finite, this would implyC(P (h), J(h)) → 0, which
violates the constraints ofProblem 1. HenceJM (PM ) has to be unbounded.

In proving concavity of thePM (JM ) function for the case when the channel coefficienth belongs to a continuous alphabet,
we first show that the solution of the discretized problem (i.e. whenh belongs to a discrete alphabet, obtained by some
discretization of the original continuous alphabet) is unique and converges point-wise to the solution of the continuous problem
as the discrete alphabet converges to the original continuous alphabet.

This approach also serves the purpose of legitimizing numerical evaluations.
Next, we prove that for the discretized problemPM (JM ) is concave. Finally, we show that point-wise convergence ofa

sequence of concave functions is enough for the concavity ofits limit function.
Consider the uniformly spaced discretizationqZ+ of the interval[0,∞), and a p.m.f. of the channel coefficienth ∈ qZ+

that converges to the original p.d.f. asq goes to zero.
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The maximin second level power allocation problem can stillbe written as in (11), even though the integrals representing the
expectations can now be written as sums. Moreover, Propositions 2–3 and relations (15)–(29) hold with the only modification
that the term “continuous” should be crossed out.

The second level power allocation solution for the discretized maximin problem is completely determined by the triple
(M ′, M ′′, µ), or equivalently by(h0, h∗, µ). Instead of (30)–(32) we can now write

σ2
N

h0
≤ λ <

σ2
N

h0 − q
, (77)

σ2
N

1 + µh∗

h∗
≤ λ < σ2

N

1 + µ(h∗ − q)

h∗ − q
, (78)

R =

h∗−q∑

h0

log

(
λh

σ2
N

)
p(h) −

−

∞∑

h∗

log

(
1

1 + µh

)
p(h), (79)

or equivalently

QU

[
h∗ − q

1 − µ(h∗ − q)

]
≤ h0 ≤ QD

[
h∗

1 − µh∗
+ q

]
, (80)

∞∑

h=h∗

[
h

1+µh

h∗

1+µh∗

− 1

]
p(h) ≤

JM

σ2
N

≤

≤

∞∑

h=h∗

[
h

1+µh

h∗−q
1+µ(h∗−q)

− 1

]
p(h), (81)

h∗−q∑

h=QD[ h∗

1+µh∗ +q]

log

(
h

1 + µh∗

h∗

)
p(h) −

−

∞∑

h∗

log

(
1

1 + µh

)
p(h) ≤ R ≤

≤

h∗−q∑

h=QU

h
h∗−q

1+µ(h∗−q)

i
log

(
h

1 + µ(h∗ − q)

h∗ − q

)
p(h) −

−

∞∑

h∗

log

(
1

1 + µh

)
p(h), (82)

whereQD[h] denotes the largest element ofqZ+ that is less thanh andQU [h] denotes the smallest element ofqZ+ that is
larger thanh.

Lemma 2:For a givenJM the solution of the discretized maximin second level power allocation problem is unique.

Proof: It is straightforward to show that for fixedh∗ the left-most and the right-most terms of inequality (81) (which
upper-bound and lower-boundJM/σ2

N ) are strictly decreasing functions ofµ, and similarly the left-most and the right-most
terms of inequality (82) are strictly increasing functionsof µ.

Note that
∞∑

h=h∗

[
h

1+µh

h∗

1+µh∗

− 1

]
p(h) =

∞∑

h=h∗+q

[
h

1+µh

h∗

1+µh∗

− 1

]
p(h), (83)

QD

[
h∗ − q

1 + µ(h∗ − q)
+ q

]
= QU

[
h∗ − q

1 + µ(h∗ − q)

]
, (84)
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and
h∗−q∑

h=QD[ h∗

1+µh∗ +q]

log

(
h

1 + µh∗

h∗

)
p(h) −

−

∞∑

h∗

log

(
1

1 + µh

)
p(h) =

=

h∗∑

h=QD[ h∗

1+µh∗ +q]

log

(
h

1 + µh∗

h∗

)
p(h) −

−

∞∑

h∗+q

log

(
1

1 + µh

)
p(h). (85)

These arguments imply that by keepingµ constant and replacingh∗ by h∗ − q in both first terms of (81) and (82), we get
exactly the last terms of (81) and (82), respectively. Thus,if (h∗,µ) satisfy both (81) and (82), then decreasingh∗ (by more than
one step) and maintaining the sameµ violates both (81) and (82). In order for (81) to still hold,µ should be increased, while
in order for (82) to still hold,µ should be decreased. But onceh∗ andµ are given,λ and henceh0 are uniquely determined.
Therefore there cannot exist more than one solution to the discretized problem.

The following lemma deals with the convergence of this solution asq → 0.

Lemma 3:For a givenJM , the solution of the discretized maximin second level powerallocation problem converges to the
solution of the continuous problem asq → 0.

Proof: This follows by noticing that asq → 0 (77)–(79) become arbitrarily close to (30)–(32), and the sums involved in
the expectations converge to integrals (by the definition ofthe Riemann integral).

Next we prove that for the discretized problem, the resulting PM (JM ) function is concave. We first show in Lemma 4
that the optimal jammer strategy{x∗(h)}∞h=0 is a continuous function of the given jamming powerJM . Lemma 5 proves that
PM ({x(h)}) is continuous and has continuous first order derivatives. This implies thatPM (JM ) is in fact continuous and has
a continuous first order derivative. Finally, Lemma 6 shows that for any fixedM ′ andM ′′ the functionPM (JM ) is concave.

Lemma 4:The optimal jammer power allocation{x∗(h)}h∈qZ+ within a frame is a continuous increasing function of the
given jamming powerJM invested over that frame.

Proof: It is clear thatx(h) is continuous and increasing as a function ofJM if h∗ andh0 are fixed. At any point where
eitherh∗ or h0 change as a result of a change inJM , the optimal jamming strategy{x∗(h)}h∈qZ+ maintains continuity as a
result of the uniqueness of the solution (Lemma 2).

Lemma 5:Both PM ({x(h)}) and the derivativesdPM

dx(h) , for h ∈ qZ+ are continuous functions of{x(h)}h∈qZ+ .

Proof: Consider any two points{x1(h)}h∈qZ+ and{x2(h)}h∈qZ+ and any trajectoryT that connects them.
Without loss of generality, assume that the channel coefficients are always indexed in decreasing order of the quantities x(h)

h
.

For a given vector{x(h)}h∈qZ+ , the required transmitter power is

PM = λ
∑

h∈M ′

p(h) −
∑

h∈M ′

x(h)

h
p(h), (86)

while the derivatives are given by

dPM

dx(h)
=

[
λ

x(h)
−

1

h

]
p(h) (87)

for h ∈ M ′, with λ given by

λ(M ′) =

[
c
∏

h∈M ′

(
x(h)

h

)p(h)
] 1P

h∈M′ p(h)

. (88)

Note thatM ′ depends upon the choice of{x(h)}. For fixedM ′, the continuity and differentiability ofPM ({x(h)}) are
obvious. Thus, it suffices to show that these properties alsohold in a point ofT whereM ′ changes.

If we can show continuity and differentiability whenM ′ is increased by including one channel coefficienth0, then larger
variations ofM ′ can be treated as multiple changes by one channel coefficient, and continuity still holds.

Let {xk(h)}h∈qZ+ be a point ofT where the transmitter increases the number of frames over which it transmits as above,
and denote byT1 the part of the trajectoryT that is between{x1(h)} and{xk(h)}, andT2 = T \ T1.
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SinceP (h0) = 0 (i.e. λ = x(h0)
h0

), we haveλ(M ′) = λ(M ′
⋃
{h0}), because they both satisfy

∑

h∈M ′

[
λ −

x(h)

h

]
p(h) = PM . (89)

Define the “left” and “right” limitsPM ({xk(h)}−) andPM ({xk(h)}+) as:

PM ({xk(h)}−) = lim
{x(h)}→{xk(h)}

{x(h)}∈T1

PM ({x(h)}), (90)

PM ({xk(h)}+) = lim
{x(h)}→{xk(h)}

{x(h)}∈T2

PM ({x(h)}). (91)

We can now write:

PM ({x(h)}+) =

= λ
∑

h∈M ′
S
{h0}

p(h) −
∑

h∈M ′
S
{h0}

x(h)

h
p(h) =

= λ
∑

h∈M ′

p(h) −
∑

h∈M ′

x(h)

h
p(h) +

+ λp(h0) −
x(h0)

h0
p(h0) = PM ({x(h)}−) (92)

where the last equality follows sinceλ = x(h0)
h0

. This proves continuity.
Similar arguments can be used to show the continuity of the derivatives in (87).

Lemma 6: In the discretized case, for fixedh0 andh∗, the functionPM (JM ) is concave.

Proof:
Write (29) explicitly for the discretized problem:

MJM + σ2
N

∞∑

h=h∗

p(h) =

[
c

∞∏

h=h∗

(
1

1 + µh

)p(h)

·

·

h∗−q∏

h=h0

(
σ2

N

h

)p(h)




1
Ph∗−q

h=h0
p(h) ∞∑

h=h∗

h

1 + µh
p(h), (93)

and denote

g(µ) =

∞∏

h=h∗

(
1

1 + µh

) p(h)
Ph∗−q

h=h0
p(h)

·

∞∑

h=h∗

h

1 + µh
p(h) (94)

Note that for fixedh0 andh∗, JM is a linear function ofg.
From (15), (16) and (28) a similar relation can be found for the required transmitter powerPM :

MPM +

h∗−q∑

h=h0

σ2
N

hm

p(h) =

[
c

∞∏

h=h∗

(
1

1 + µh

)p(h)

·

·

h∗−q∏

h=h0

(
σ2

N

h

)p(h)




1
Ph∗−q

h=h0
p(h)

·

·




h∗−q∑

h=h0

p(h) −

∞∑

h=h∗

1

1 + µh
p(h)



 . (95)

Denote

f(µ) =

∞∏

h=h∗

(
1

1 + µh

) p(h)
Ph∗−q

h=h0
p(h)

·

·

[
∞∑

h=h0

p(h) −
∞∑

h=h∗

1

1 + µh
p(h)

]
, (96)
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df

dg
=

df
dµ

dg
dµ

=

1Ph∗−q

h=h0 p(h)

(∑∞
h=h0 p(h) −

∑∞
h=h∗

1
1+µh

p(h)
)
−

P
∞

h=h∗
h

(1+µh)2
p(h)

P
∞

h=h∗
h

1+µh
p(h)

1Ph∗−q

h=h0 p(h)

∑∞
h=h∗

h
(1+µh)2 p(h) +

P
∞

h=h∗
h2

(1+µh)2
p(h)

P
∞

h=h∗
h

1+µh
p(h)

(98)

and note that for fixedh0 andh∗, PM is a linear function off .
It suffices to show thatf(g) is concave. For this purpose, the derivativedf

dg
= df

dµ
(dµ

dg
)−1 should be a decreasing function of

g, and hence an increasing function ofµ.
Computing the derivatives from (94) and (96) we obtain (98).
Looking at the right hand side of (98) (the “large fraction”), we notice that the first term in the numerator increases with

µ. For the second term in the numerator, it is clear that asµ increases, its numerator decreases faster than its denominator.
This implies that the whole numerator of the “large fraction” is an increasing function ofµ. Similarly, the first term in the
denominator is clearly a decreasing function ofµ. The only thing left is the second term of the denominator. Itis straightforward
to show that its derivative with respect toµ can be written as

d

dµ

∑∞
h=h∗

h2

(1+µh)2 p(h)
∑∞

h=h∗

h
1+µh

p(h)
=

1
[∑∞

h=h∗

h
1+µh

p(h)
]2 ·

·

{[
∞∑

h=h∗

h2

(1 + µh)2
p(h)

]2

−

∞∑

h=h∗

h3

(1 + µh)3
p(h) ·

·

∞∑

h=h∗

h

(1 + µh)
p(h)

}
(98)

If we consider the fact that for any two real numbersa andb we have

(a2 + b2)2 − (a + b)(a3 + b3) = −ab(a − b)2 (99)

and the summations in (98) are positive, it is easy to see thatthe second term of the denominator of the “large fraction” is
decreasing withµ. Hence overall the derivative in (98) increases withµ.

Lemma 7:The limit of a point-wise convergent sequence of concave functions is concave.

Proof: Denote the sequence by(fn(x))∞n=1 and its limit by f(x). Point-wise convergence implies that for anyx and
∀ǫ > 0, ∃N(x) such that|f(x) − fn(x)| < ǫ, ∀n ≥ N(x).

Take two arbitrary pointsx andy, and pick some arbitraryα ∈ [0, 1]. DenoteN = max{N(x), N(y), N(αx + (1− α)y)}.
Then forn ≥ N and anyǫ > 0 we have

f(αx + (1 − α)y) > fn(αx + (1 − α)y) − ǫ ≥

≥ αfn(x) + (1 − α)fn(y) − ǫ >

> αf(x) + (1 − α)f(y) − 2ǫ, (100)

where the second inequality follows from the concavity offn. This implies thatf is also concave.

D. On a special kind of duality

Take x, y ∈ L2[R] and define the order relationx > y if and only if x(t) > y(t) ∀t ∈ R. Consider the continuous real
functionsf(x), g(y) andh(x, y) overL2[R], such thatf is a strictly increasing function ofx, g is a strictly increasing function
of y, andh is a strictly increasing function ofx for fixed y and a strictly decreasing function ofy for fixed x.

Define the following minimax and maximin problems:

max
y≥0

[
min
x≥0

f(x) s.t. h(x, y) ≥ H

]
s.t.g(y) ≤ G, (101)

max
x≥0

[
min
y≥0

g(y) s.t. h(x, y) ≤ H

]
s.t.f(x) ≤ F, (102)

min
y≥0

[
max
x≥0

h(x, y) s.t. f(x) ≤ F

]
s.t.g(y) ≤ G. (103)
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The following result is important in the proof of Theorem 8 below.

Proposition 6: For any of the three problems above, the optimal solution satisfies both constraints with equality.

Proof: Take problem (101). Let(x1, y1) be a solution such thatf(x1) = F , and assume thath(x1, y1) > H . Since
h is a continuous, strictly increasing function ofx for a fixed y, we can findxn < x1 such thath(xn, y1) = H . But then
f(xn) < f(x1), which means that there exists a better value ofx if y = y1, and hence that(x1, y1) is not a solution.

Therefore, the first constraint has to be satisfied with equality.
Now assume thatg(y1) < G. Then we can findy0 > y1, such thatg(y0) = G. However, sinceh(x1, y1) = H , we have

h(x1, y0) < H . In order for the first constraint to be satisfied, we need to replacex1 by some other valuex0. We prove next
that the valuex0 resulting from this modification will be such thatf(x0) > f(x1), which makes the pair(x1, y1) suboptimal,
thus contradicting the hypothesis that it is a solution, andproving that the second constraint should hold with equality.

Assume that the value ofx0 is such that

f(x0) = F0 ≤ F. (104)

Then, replacingy0 by y1, we have that(x0, y1) is either a second solution of Problem 1 (if the inequality in(104) holds
with equality), or a better choice (if the inequality in (104) holds with strict inequality). We can readily dismiss the latter
case, since(x1, y1) was assumed to be an optimal solution. For the former case,h is a strictly decreasing function ofy, thus
h(x0, y1) > R, which contradicts the first part of this proof. The same arguments work for the problem in (102).

Take problem (103), and denote by(x3, y3) one of its optimal solutions. Ifg(y3) < G, we can increasey up to a valueym

such thatg(ym) = G. But in turn, this yieldsh(x3, ym) < h(x3, y3), makingy3 suboptimal. Therefore, the first constraint has
to hold with equality.

Similarly, if f(x3) < F , we can increasex up to a valuexm such thatf(fm) = F , yielding h(xm, y3) > h(x3, y3), and
thus resulting in a contradiction. Thus the second constraint also holds with equality.

The main result of this section is the following theorem, which introduces a special kind of duality between the three
problems in (101), (102) and (103).

Theorem 8:(I) Choose any real values forG andH . Take problem (101) under these constraints and let the pair(x1, y1)
denote one of its optimal solutions, yielding a value of the objective functionf(x1) = F1. If we set the value of the
corresponding constraints in problems (102) and (103) toF = F1, then the values of the objective functions of problems (102)
and (103) under their optimal solutions areg(y) = G and h(x, y) = H , respectively. Moreover,(x1, y1) is also an optimal
solution of all problems.

(II) Choose any real values forF andH . Take problem (102) under these constraints and let the pair(x2, y2) denote one of
its optimal solutions, yielding a value of the objective function g(y2) = G2. If we set the value of the corresponding constraints
in problems (101) and (103) toG = G2, then the values of the objective functions of problems (101) and (103) under their
optimal solutions aref(x) = F andh(x, y) = H , respectively. Moreover,(x2, y2) is an optimal solution of all problems.

(III) Choose any real values forF andG. Take problem (103) under these constraints and let the pair(x3, y3) denote one
of its optimal solutions, yielding a value of the objective functionh(x3, y3) = H3. If we set the value of the corresponding
constraints in problems (101) and (102) toH = H3, then the values of the objective functions of problems (101) and (102)
under their optimal solutions aref(x) = F and g(y) = G, respectively. Moreover,(x3, y3) is an optimal solution of all
problems.

Proof: (I) Take problem (101) and let(x1, y1) be an optimal solution, such thatf(x1) = F . We need to show that
(x1, y1) is also an optimal solution of problems (102) and (103).

Sincex1 andy1 form a solution of problem (101), by Proposition 6, they satisfy the first constraint in problem (101) with
equality, and so they also satisfy the first constraint in problem (102). Furthermore, since the second constraint of problem
(102) readsf(x) ≤ F , we note thatx1 and y1 are in the feasible set. If we evaluate the cost function at this point, we get
g(y1) = G. Thus, keepingx = x1, in problem (102), we can only obtaing(y) ≤ G, by minimizing the cost function overy.

Now take any different valuex0 6= x1, satisfyingf(x0) = F . If the pair (x0, y1) satisfies the first constraint in problem
(101), then it is a solution of problem (101), and hence the constraints should hold with equality. This implies that(x0, y1)
also satisfies the first constraint of problem (102). If(x0, y1) does not satisfy the first constraint in problem (101), then it
certainly satisfies the first constraint of problem (102). Either way, the pair(x0, y1) makes a feasible solution of problem (102)
(although possibly not optimal) and, by evaluating the costfunction at this point, we getg(y1) = G.

Thus, for any valuex0 we pick, we should always obtain an optimal solution of problem (102) for whichg(y) ≤ G. But
any such optimal solution has to satisfy the first constraintwith equality, hence is also a solution of problem (101). In turn,
this impliesg(y) = G. But then the original pair(x1, y1) is a solution of problem (102), since it is feasible and yields the
same cost/reward function.

Take problem (103), and denote by(x3, y3) one of its optimal solutions. By Proposition 6 we havef(x3) = F andg(y3) = G.
Then eitherh(x3, y3) ≤ H , which implies that(x3, y3) is an optimal solution of problem (102), orh(x3, y3) ≥ H and then
(x3, y3) is an optimal solution of problem (101). Either way, the inequality should hold with equality, and hence(x3, y3) is
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an optimal solution of both problem (101) and problem (102),with h(x3, y3) = H . But this also implies that(x1, y1) is an
optimal solution of problem (103).

(II) A similar argument can be made if we consider an optimal solution (x2, y2) of problem (102), such thatg(y2) = G.
(III) Consider an optimal solution(x3, y3) of problem (103), such thath(x3, y3) = H , and suppose there exists an optimal

solution(x2, y2) of problem (102) is such thatg(y2) 6= G. By Proposition 6,(x2, y2) satisfiesf(x2) = F andh(x2, y2) = H .
If g(y2) < G, then(x2, y2) is an optimal solution of problem (103) which does not satisfy the constraints with equality, and
thus Proposition 6 is contradicted. Ifg(y2) = G2 > G, then if we construct a modified version of problem (103), where the
constraintg(y) ≤ G is replaced byg(y) ≤ G2, we know by the first part of this proof that(x2, y2) is an optimal solution of
this new problem, yieldingh(x2, y2) = H . But the same objective is attained by(x3, y3), and moreover(x3, y3) satisfies the
new problem’s constraints sinceg(y3) = G < G3, and thus is an optimal solution. However, one of the constraints is satisfied
with strict inequality, thus contradicting Proposition 6.Therefore,(x3, y3) has to be a solution of problem (102). A similar
argument can be made to prove it is also a solution of problem (101).

APPENDIX III
AVERAGE POWER CONSTRAINTS: M IXED STRATEGIES - A SPECIAL TWO-PLAYER, ZERO-SUM GAME WITH MIXED

STRATEGIES.

In this section, we present a general form of a special two-player, zero-sum game with mixed strategies. Particular forms
of this game have been investigated by other authors over thelast three decades. The first simplified version was presented by
Bell and Cover [1], and a slightly more general form was latersolved by Hughes and Narayan [7].

Problem Statement

Let g(y) : R+ → R+ be a monotone increasing, almost everywhere (a.e.) continuous function such thatg(0) = 0. For
any point of discontinuityy0 such thatg(y−

0 ) = x1 andg(y+
0 ) = x2 > x1, we defineg(y0) = x1 (g is left-continuous) and

g−1(x) = y1 for all x ∈ [x1, x2]. For any interval of non-zero measure(y1, y2) whereg is constant, i.e.g(y) = x0 for all
y ∈ (y1, y2), we defineg−1(x0) = y1 (g−1 is also left-continuous). On the rest ofR+, whereg is continuous and strictly
increasing,g−1 is defined as the usual inverse function ofg. Note thatg−1 is a monotone increasing, a.e. continuous function.

Consider the two-player, zero-sum game with mixed strategies defined as follows. The allowable strategies for Player 1 are all
non-negative, real-valued random variablesX satisfyingE[X ] ≤ a. The allowable strategies for Player 2 are all non-negative,
real-valued random variablesY satisfyingE[Y ] ≤ b. The payoff function isPr{X ≥ g(Y )}, which Player 1 seeks to maximize,
while Player 2 seeks to minimize, by properly picking the probability distributions ofX andY respectively. Throughout the
sequel, these probability distributions will be represented by their corresponding cumulative distribution functions (CDFs)
F 0

X(x) andF 0
Y (y).

Problem Solution

Theorem 9:(I) If there exists a solution withkx, ky ∈ [0, 1] and v ∈ [max{b/2, g−1(a)/2},∞) of the following three
equations:

kx

(
1 −

b

2v

)
= 1 − ky

(
1 −

a

g(2v)

)
, (105)

kx =
2va

∫ 2v

0
g(y)dy

, (106)

ky =
g(2v)b

∫ g(2v)

0
g−1(x)dx

. (107)

then this solution is unique and the unique Nash equilibriumof the two-player, zero-sum game described above is attained by
the pair of strategies

(
F 0

X(x), F 0
Y (y)

)
satisfying:

F 0
X(g(y)) ∼ kxU([0, 2v])(y) + (1 − kx)∆0(y), (108)

F 0
Y (g−1(x)) ∼ kyU([0, g(2v)])(x) + (1 − ky)∆0(x), (109)

whereU([r, t])(·) denotes the CDF of a uniform distribution over the interval[r, t], and∆0(·) denotes the CDF of a Dirac
distribution (i.e. a step function).

(II) If g is strictly increasing and continuous on[max{b/2, g−1(a)/2},∞), and
∫ b

0 g(y)dy <
∫∞

g(b) g−1(x)dx, then the system
in (105), (106) and (107) has a unique solution such thatkx, ky ∈ [0, 1] and v ∈ [max{b/2, g−1(a)/2},∞). Moreover, the
parameterskp, kj andv are uniquely determined from the following steps:
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1) Find the unique valuev0 which satisfies:

ab = [g(2v0) − a](2v0 − b). (110)

2) ComputeS(v0) =
∫ 2v0

0 g(y)dy − 2v0a.
3) If S(v0) < 0, thenv is the unique solution of

∫ 2v

0

g(y)dy − 2va = 0, (111)

kp = 1 (112)

and

kj =
bg(2v)

2v[g(2v) − a]
. (113)

4) If S(v0) = 0 thenv = v0, kp = kj = 1.
5) If S(v0) > 0, thenv is the unique solution of

∫ 2v

0

g(y)dy − g(2v)(2v − b) = 0, (114)

kp =
2va

g(2v)(2v − b)
(115)

and

kj = 1. (116)

.

Proof:
Before starting the actual proof, several remarks are in order. First, F 0

X(x) can be computed fromF 0
X(g(y)) by writing

x = g(g−1(x)), and thus by evaluatingF 0
X(g(y)) in y = g−1(x). A similar algorithm works for computingF 0

Y (y) from
F 0

Y (g−1(x)).
Second, note that by following this algorithm, for any pointof discontinuityy0 of g such thatg(y−

0 ) = x1 and g(y+
0 ) =

x2 > x1, we have:

F 0
X(x1) = F 0

X(g(g−1(x1))) = F 0
X(g(y0)) =

= F 0
X(g(g−1(x2))) = F 0

X(x2), (117)

i.e. Player 1 does not allowX to take values in(x1, x2), and

F 0
Y (y0) = F 0

Y (y+
0 ) = F 0

Y (g−1(g(y+
0 ))) =

= F 0
Y (g−1(x2)), (118)

while by the same rationalF 0
Y (y−

0 ) = F 0
Y (g−1(x1)), meaning that Player 2 uses a probability mass point iny0.

Third, for an interval of non-zero measure(y1, y2) whereg is constant, i.e.g(y) = x0 for all y ∈ (y1, y2), we have:

F 0
Y (y1) = F 0

Y (g−1(g(y1))) = F 0
Y (g−1(x0)) =

= F 0
Y (g−1(g(y2))) = F 0

Y (y2), (119)

i.e. Player 2 does not allowY to take values in(y1, y2), and

F 0
X(x0) = F 0

X(x+
0 ) = F 0

X(g(g−1(x+
0 ))) =

= F 0
X(g(y2)), (120)

while by the same rationalF 0
X(x−

0 ) = F 0
X(g(y1)), meaning that Player 1 uses a probability mass point inx0. We now proceed

with the proof of the first part of the theorem.
(I) Since this is a two-player, zero-sum game with mixed strategies, it has a unique Nash equilibrium. LetX0 ∼ F 0

X and
Y0 ∼ F 0

Y denote the random variables with the CDFs in (108) and (109),andX ∼ FX andY ∼ FY be any arbitrary random
variables.
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Note thatPr{X ≥ g(Y )} =
∫∞

0 [1 − FX(g(y))]dFY (y) =
∫∞

0 FY (g−1(x))dFX (x). We can write

Pr{X0 ≥ g(Y )} =

∫ ∞

0

[1 − F 0
X(g(y))]dFY (y) =

= 1 − kx

∫ ∞

0

U([0, 2v])(y)dFY (y) −

− (1 − kx)

∫ ∞

0

∆0(y)dFY (y) ≥

≥ kx

(
1 −

1

2v

∫ ∞

0

ydFY (y)

)
≥ kx

(
1 −

b

2v

)
, (121)

and

Pr{X ≥ g(Y0)} =

∫ ∞

0

F 0
Y (g−1(x))dFX (x) =

= ky

∫ ∞

0

U([0, g(2v)])(x)dFX(x) +

+ (1 − ky)

∫ ∞

0

∆0(x)dFX (x) ≤

≤ 1 − ky

(
1 −

1

g(2v)

∫ ∞

0

xdFX(x)

)
≤

≤ 1 − ky

(
1 −

a

g(2v)

)
. (122)

Note that equality holds in the first inequality of (121) ifFY (2v) = 1, and in the second inequality of (121) ifE[Y ] = b.
Similarly, equality holds in the first inequality of (122) ifFX(g(2v)) = 1, and in the second inequality of (122) ifE[X ] = a.

SinceF 0
Y (2v) = F 0

Y (g−1(g(2v))) = 1 and F 0
X(g(2v)) = 1 (see (108), (109)), equalities hold in (121) and (122) when

FX = F 0
X andFY = F 0

Y if and only if

a =

∫ ∞

0

xdF 0
X(x) (123)

and

b =

∫ ∞

0

ydF 0
Y (y). (124)

Although the two CDFsF 0
X(x) andF 0

Y (y) may not be continuous as functions inL1, they admit derivatives in the distribution
spaceD ′ [17], and thus we can write

∫ ∞

0

xdF 0
X(x) =

∫ ∞

0

x
dF 0

X(x)

dx
dx =

=

∫ ∞

0

g(y)
dF 0

X(g(y))

dg(y)

dg(y)

dy
dy =

=

∫ ∞

0

g(y)
dF 0

X(g(y))

dy
dy =

= (1 − kx)

∫ ∞

0

δ0(y)g(y)dy +
kx

2v

∫ ∞

0

g(y)dy, (125)

which along with (123) results in (106), and similarly
∫ ∞

0

ydF 0
Y (y) =

∫ ∞

0

g−1(x)
dF 0

Y (g−1(x))

dx
dx =

= (1 − ky)

∫ ∞

0

δ0(x)g−1(x)dx +

+
ky

g(2v)

∫ ∞

0

g−1(x)dx, (126)

which together (124) yields (107). The conditions for
(
F 0

X(x), F 0
Y (y)

)
to achieve a saddle-point is that equality holds between

the bounds in (121) and (122), which translates to (105), andthat there always exists a solution of the system given by (105),
(106) and (107).
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(II) This part of the theorem provides a general (although not necessary) condition for such a solution to exist and states that
under this condition no more than one such a solution can exist (although the uniqueness already follows as a consequenceof
the uniqueness of a Nash equilibrium). By substituting (106) and (107) in (105) we get

a(2v − b)
∫ 2v

0
g(y)dy

= 1 −
b(g(2v) − a)
∫ g(2v)

0
g−1(x)dx

. (127)

Denote the left hand side of (127) byL(v) and the right hand side byR(v) for simplicity. Note that for any functiong that
satisfies the conditions set in the problem formulation we have

∫ 2v

0

g(y)dy = 2vg(2v) −

∫ g(2v)

0

g−1(x)dx. (128)

This relation is best observed graphically in Figure 11.
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Fig. 11. The relationship between the integrals ofg(y) andg−1(x).

Computing the derivatives ofL(v) andR(v) with respect tov (these derivatives always exist forv ≥ max{b/2, g−1(a)/2})
we get

dL(v)

dv
=

2a
[∫ 2v

0 g(y)dy
]2 ·

·

[∫ 2v

0

g(y)dy − g(2v)(2v − b)

]
, (129)

and

dR(v)

dv
=

2g′(v)b
[∫ g(2v)

0
g−1(x)dx

]2 ·

·

[
2v(g(2v) − a) −

∫ g(2v)

0

g−1(x)dx

]
=

=
2g′(v)b

[∫ g(2v)

0
g−1(x)dx

]2

[∫ 2v

0

g(y)dy − 2va

]
, (130)

whereg′(v) > 0 denotes the first derivativedg(y)/dy, evaluated iny = v, and the second equality in (130) follows from (128).
Note thatL(v) and R(v) are both probabilities, hence belong to[0, 1]. Therefore, any possible solution of the system in

(105), (106) and (107) should satisfy2v ≥ b andg(2v) ≥ a, or equivalently:

v ≥ max{b/2, g−1(a)/2}. (131)

Therefore, in the sequel of this proof we shall implicitly assume that (131) holds true.
DenoteSL(v) =

∫ 2v

0 g(y)dy − g(2v)(2v − b) andSR(v) =
∫ 2v

0 g(y)dy − 2va. Since

d

dv

∫ 2v

0

g(y)dy = 2g(2v), (132)

we observe that
d

dv
SL(v) = −2g′(v)(2v − b) < 0 (133)
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and
d

dv
SR(v) = 2(g(2v) − a) > 0, (134)

which imply thatSL(v) is a strictly decreasing function ofv, while SR(v) is a strictly increasing function ofv, for the domain
of interestv ∈ [max{b/2, g−1(a)/2},∞).

Note that d
dv

SR(v) is strictly positive even in the limit asv → ∞, and thuslimv→∞ SR(v) = ∞. By writing SL(v) =∫ b

0 g(y)dy −
∫ g(2v)

g(b) g−1(x)dx, we also havelimv→∞ SL(v) = −∞.
A first possible solution:
An extremum ofL(v) is obtained by settingdL(v)

dv
= 0, or equivalently

∫ 2vl

0

g(y)dy = g(2vl)(2vl − b). (135)

In our previously introduced notation, this writesSL(vl) = 0. But sinceSL(v) is strictly decreasing on the domain of interest,
the extremum is unique and is a maximum.

The values ofL(v) andR(v) at this point are given by

L(vl) = R(vl) =
a

g(2vl)
. (136)

Moreover, substituting (135) and (128) back in (106) and (107) we get

kx,l =
2vla

g(2vl)(2vl − b)
(137)

and

ky,l = 1. (138)

Therefore(vl, kx,l, ky,l) are a solution of the system given by (105), (106) and (107) ifand only if kx,l ∈ [0, 1]. From (131)
it is implied that2vl ≥ b, and hence thatkx,l ≥ 0. The conditionkx,l ≤ 1 yields

2vla ≤ g(2vl)(2vl − b). (139)

A second possible solution:
An extremum ofR(v) is obtained by settingdR(v)

dv
= 0, or equivalently

∫ 2vr

0

g(y)dy = 2vra. (140)

In our previously introduced notation, this writesSR(vr) = 0. When this extremum ofR(v) exists, it is also unique and is a
minimum, sinceSR(v) is strictly increasing on the domain of interest.

The values ofL(v) andR(v) at this point are given by

L(vr) = R(vr) = 1 −
b

2vr

. (141)

Moreover, substituting (140) back in (106) and (107) we get

kx,r = 1 (142)

and

ky,r =
bg(2vr)

2vr(g(2vr) − a)
. (143)

Therefore(vr, kx,r, ky,r) are a solution of the system given by (105), (106) and (107) ifand only if ky,r ∈ [0, 1]. From (131)
it is implied thatg(2vr) ≥ a, and hence thatky,r ≥ 0. The conditionky,r ≤ 1 yields the same inequality as before:

2vra ≤ g(2vr)(2vr − b). (144)

Recall thatL(v) has a unique maximum, whileR(v) has a unique minimum. The immediate implication of this is that the
equationL(v) = R(v) can have a maximum of two solutions. These are the possible solutions discussed above.

To summarize, have two sets of relations:
∫ 2vl

0

g(y)dy = g(2vl)(2vl − b),

2vla ≤ g(2vl)(2vl − b) (145)
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and
∫ 2vr

0

g(y)dy = 2vra,

2vra ≤ g(2vr)(2vr − b) (146)

that could each yield a solution of the system in (105), (106)and (107).
In the remainder of this proof, we show that at least one of thesets (145) and (146) has a solution and the sets (145) and

(146) cannot both have different solutions.
Let v0 denote the value ofv in [max{b/2, g−1(a)/2},∞) for which

2v0a = g(2v0)(2v0 − b), asinF igure12. (147)
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Fig. 12. Findingv0.

Such a value exists and is unique since (147) is equivalent toab = (g(2v0) − a)(2v0 − b), where the term on the right
hand side is a strictly increasing function ofv0 on [max{b/2, g−1(a)/2},∞), with a minimum inv0 = max{b/2, g−1(a)/2}
which is 0 and limv→∞(g(2v) − a)(2v − b) = ∞. Note that this also implies that2va ≤ g(2v)(2v − b) can only be satisfied
if v > v0.

DenoteS = SL(v0) = SR(v0) the common value ofSL andSR in v0. If S = 0, thenvl = vr = v0. If S < 0 or S > 0,
sinceSL(v) is decreasing withv andSR(v) is increasing withv for the domain of interest, it is not possible to obtain solutions
larger thanv0 to both equationsSL(v) = 0 andSR(v) = 0.

However, a solution always exists. IfS < 0, the solution is guaranteed by the continuity ofSR(v) on the domain of interest,
and by the fact thatlimv→∞ SR(v) = ∞. If S > 0, the solution is guaranteed by the continuity ofSL(v) on the domain of
interest, and by the fact thatlimv→∞ SL(v) < 0, which follows from the condition

∫ b

0
g(y)dy <

∫∞

g(b)
g−1(x)dx. Note that

this condition is only necessary ifS > 0 and is illustrated in Figure 13.
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Fig. 13. The necessary condition for the existence of a solution whenS > 0.

A similar condition can be written for the case whenS < 0, that is limv→∞ SR(v) > 0 if and only if
∫ a

0
g−1(x)dx <∫∞

g−1(a)
g(y)dy. However, sinceg is a function and is defined overR+, this latter condition can only be violated ifg is constant

on [a,∞). But this is impossible under the former condition.
We have thus shown that under the condition thatg is strictly increasing and continuous on[max{b/2, g−1(a)/2},∞), and∫ b

0 g(y)dy <
∫∞

g(b) g−1(x)dx, the system given by (105), (106) and (107) always has a solution, and that this solution is unique.
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Several additional remarks

Bell and Cover [1] found the solution of our game for the particular case whena = b = 1 and g(y) = y. In the context
of Gaussian arbitrarily varying channels, Hughes and Narayan [7] extended the previous result to the case wherea andb are
any positive constants, andg(y) = y + c, with c ≥ 0. In the remainder of this section we show that our results canbe easily
particularized to obtain the same results as in [7].
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Fig. 14. Intuitive explanation for the optimality of the strategy in (108).

If we force g(0) = g(0−) = 0, the functiong(y) = y + c, ∀y > 0 is unbounded, linear, strictly increasing, and has only
one discontinuity iny = 0. Hence, it satisfies all the conditions set in the problem formulation, as well as those of part (II) of
our Theorem 9.

Substitutingg(y) = y + c in (145), we get (Case 1):

2v2
l − 2vlb − bc = 0 (148)

and

a ≤ vl + c, (149)

resulting in

vl =
b

2

[
1 +

√
1 +

2c

b

]
(150)
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Fig. 15. Intuitive explanation for the optimality of the strategy in (109).

under the condition that

a ≤ c +
b

2

[
1 +

√
1 +

2c

b

]
. (151)

The cost function for this case results from (136) as

Pr{X ≥ g(Y )} =
a

c + b
[
1 +

√
1 + 2c

b

] =

=
a

c

[
1 +

b

c

(
1 −

√
1 +

2c

b

)]
, (152)

and is also consistent with [7]. Note that althoughky = 1 for this case, this does not mean that Player 2 is always on. Recall
that a discontinuity ofg is translated into a mass point for the probability distribution of Y . In this case, the discontinuity in
y = 0 means thatY = 0 with probability c

g(2vl)
= 1 − b

vl
, which is the same as in [7].

Similarly, substitutingg(y) = y + c in (146), we get (Case 2):

vl =
b

2

[
1 +

√
1 +

2c

b

]
(153)

under the condition that

a ≥ c +
b

2

[
1 +

√
1 +

2c

b

]
. (154)
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Note that the two conditions (151) and (154) are mutually exclusive. The cost function for this case is

Pr{X ≥ g(Y )} = 1 −
b

2(a − c)
, (155)

and is consistent with [7].
In Figure 14 we offer an intuitive explanation of whyF 0

X(g(y)) should be uniform over[0, 2v], from a maximin point of
view. The functiong(y) is taken to be linear, with a discontinuity in0, similar to [7]. Assuming that Player 1 plays first
(maximin), we note that ifF 0

X(g(y)) is not uniform, the second player can pick a strategy that decreases the value of the
objectivePr{X ≥ g(Y )}. Therefore, in order to provide the second player with an indifferent choice space (the strategy of
Player 2 can be any probability distribution over[0, 2v]), Player 1 should pickF 0

X(x) such thatF 0
X(g(y)) is uniform over

[0, 2v].
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Fig. 16. The resulting strategiesF 0

X
(x) andF 0

Y
(y) for a linearg(y) with a discontinuity in0.

Similarly, in Figure 15 we offer an intuitive explanation ofwhy F 0
Y (g−1(x)) should be uniform over[0, g(2v)], from a

minimax point of view. Assuming that Player 2 plays first (minimax), note that ifF 0
Y (g−1(x)) is not uniform, the first player

can pick a strategy that increases the value of the objectivePr{X ≥ g(Y )}.
The optimal distributions resulting from Figures 14 and 15 are shown in Figure 16. They are consistent with our theoretical

results (and the results of [7]) forg(y) = y + c.
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