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Jamming in Fixed-Rate Wireless Systems with
Power Constraints - Part I: Fast Fading Channels

George T. Amariucai and Shuangqging Wei

Abstract

This is the first part of a two-part paper that studies the fgrobof jamming in a fixed-rate transmission system with fggin
under the general assumption that the jammer has no knowladgut either the codebook used by the legitimate commiimrica
terminals, or the source’s output. Both transmitter andnjgamare subject to power constraints which can be enforced each
codeword (short-term / peak) or over all codewords (lormgaté average), hence generating different scenarios. Alljaomming
problems are formulated as zero-sum games, having the lplibpaf outage as pay-off function and power control fuoas
as strategies. The paper aims at providing a comprehensiwerage of these problems, under fast and slow fading, pedk a
average power constraints, pure and mixed strategies, avithwithout channel state information (CSI) feedback. lis first
part we study the fast fading scenario. We first assume fullt@®e available to all parties. For peak power constraiatslash
equilibrium of pure strategies is found. For average povamrstraints, both pure and mixed strategies are investg&téth pure
strategies, we derive the optimal power control functioos oth intra-frame and inter-frame power allocation. Maii and
minimax solutions are found and shown to be different, whinplies the non-existence of a saddle point. In addition wwipe
alternative perspectives in obtaining the optimal intiexfe power control functions under the long-term power tairgs. With
mixed strategies, the Nash equilibrium is found by solvihg teneralized form of an older problem dating back to Betl an
Cover [1]. Finally, for comparison purposes, we derive aiNaguilibrium of the game in which no CSl is fed back from the
receiver. We show that full channel state information bsirgly a very slight improvement in the system’s performance

Keywords: Fast fading channels, fixed rat®,capacity, jamming, zero-sum game, outage probabilitygrocontrol.

|. INTRODUCTION.

The importance of designing anti-jamming strategies cabhemverstated, due to the extremely wide deployment oflesse
networks, the very essence of which makes them vulnerabkgtéeks. Although the bases of jamming and anti-jamming
strategies have been set in the 80’s and 90’s [2], [3], [4ly m@erest has been recently generated by the increasingum
for wireless security. Jamming and anti-jamming strategiere developed for the broadcast channel [5], the muldptess
channel [6], and even studied from the perspective of artrarlly varying channel [7]. Under all scenarios, the jammi
problem is formulated as a two-player, zero-sum game. Thesponding objective functions are the sum-rate [5], tiyo@ic
capacity [6] or the\-capacity [7]. Although most often the jammer is assumedawehaccess to either the transmitter’s output
or input [2], [4], [8] and consequently is able to produceretated jamming signals, the correlation assumption cdy bba
accurate for repeater protocols, or other situations wtieggammer gets the chance to jam a signal about which it meadt
obtained some information from eavesdropping previoussirassions.

The approach of [7] is quite relevant to our work. The jammpmgblem is viewed as a special case of an arbitrarily varying
channel (AVC). Constraints are placed either on the powersted in each codeword (peak power constraints), or ondheip
averaged over all codewords (average power constraintg).\fcapacity, which is used to evaluate system performance, is
defined as the maximum transmission rate that guaranteesbalglity of codeword error less thak under random coding.

It is shown that when peak power constraints are imposed dhn transmitter and jammer, th&-capacity is constant for
0 < X < 1, and therefore is the same as the channel capacity. No faglimgsumed in [7], and consequently no power control
strategies are necessary. However, fading channels ae thfé more practical models for wireless applications.

Traditionally, fast fading channels are characterized lhgirtergodic capacity which is completely determined by the
probability distribution of the channel coefficient and ttransmitter power constraints. The physical interpretatdf this
measure of channel quality is related to the capabilitiessha@innel codes. In the fast fading scenario, the codewoedassumed
long enough to reveal the long-term statistical propeniethe fading coefficient (in practical systems, this regmient may be
satisfied by the use of interleaving [9]). Implicitly, powasnstraints are imposed over each codeword. Thereforecteving
asymptotic error free communication, all codewords nedgetéransmitted at the same rate not exceeding the chanrgbdie
capacity.

However, applications like video streams in multimediaenftequire fixed data rates that could exceed the channgbslier
capacity, but can tolerate non-zero codeword error prdiiasi Therefore, in situations when the transmitter'sitable power
is not sufficient for supporting a certain rate for each coalelin the traditional framework, the transmitter can chods
concentrate its power on transmitting only a subset of thiewamrds, while dropping the others. This maneuver ensures e
free decoding of the transmitted messages, at the cost ohaem probability of message decoding error, which is ifdas
when power constraints are imposed over the ensemble obdéveords, instead of over each single codeword. This jastifi
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Fig. 1. Channel model

the evaluation of fixed rate systems in fast fading channebs duantity that is best known to characterize slow fadirgneciels:
the outage probability Note that unlike the case of slow fading, in fast fading cteds, due to the large codeword length, the
channel conditions affecting the transmission of différemdewords are asymptotically identical.

In this paper, we consider a fast fading AWGN channel wheeomrds (we denote the span of a codeword by the term
framég are considered long enough to reveal the long-term statigproperties of the fading coefficient. Our channel model
is depicted in Figure 1. It was shown in [10] that the ergodipacity of the fast fading AWGN channel can be achieved by
a constant-rate, constant-power Gaussian codebook,dedvhat when the fading coefficients are available at thesirdtter,
the transmitter employs a dynamic scaling of the code symlimyl the appropriate power allocation function. For thigsan
we assume in out model that the transmitter uses a capatiigydng complex Gaussian codebook. The jammer is assumed
to have no knowledge about this codebook or the actual outpttie transmitter, and hence its most harmful strategy is to
transmit white complex Gaussian noise [11].

The channel coefficient is a complex number, the squarediibsealue of which will be denoted throughout this paper
by h. The average powers invested by the transmitter and jamm&amnsmitting and jamming a codeword, respectively, are
denoted byP,; and Jy;. The transmitter and the jammer are subject to either peakepaconstraints (over each frame, or
codeword) of the formP,; < P andJy, < J , or average power constraints (over all frames) of the f@im,, < P and
EJy < J, where the expectation is taken with respect to the playsrategies of allocating the poweFs and 7 between
frames.

A codeword is decoded with strictly positive probability efror (i.e. outage) if the ergodic capacity calculated owber
frame is below the fixed rat&. The probability of this event (the equivalent &fin [7]) will be denoted as th@robability
of outageP,,;. The transmitter aims at minimizing the probability of ogeafor a fixed rateR, while the jammer attempts to
maximize it. Our contributions can be summarized as below:

o We first investigate the scenario where full channel staterimation (CSI) is available to all parties. For this case we
show that peak power constraints are not efficient for high teansmissions or large jammer power;

« We formulate the scenario of average transmitter/jammevepaonstraints as a two-person, zero-sum game with the
probability of outage as the pay-off function.

« Under average power constraints, we first investigate pustegies and find the maximin and minimax solutions, as a
result of two levels of power control: one within frames anmteaoncerning the additional randomization introduced by
the transmitter. Optimal strategies are derived for botele and it is shown that a Nash equilibrium of pure straggi
does not exist in general.

« As a result, we investigate mixed strategies and find theg(e)i Nash equilibrium by solving a generalized version of a
game that was first discussed by Bell and Cover [1] and theenebed by Hughes and Narayan [7].

« Finally, for comparison purposes, we find the optimal traitemand jammer mixed strategies for the case when the
receiver does not feed back the CSI. Our results show thatféslback only brings slight improvements in the overall
transmission quality.

One comment is in order. Note that Nash equilibria of mixedtsgies are not always the best approach to practical jagimi
situations. An equilibrium of mixed strategies usuallytamss that none of the two players knows exactly when or withtwh
power the other player is going to transmit. While this mayeally be true for the legitimate transmitter, a smart jaenm
might constantly eavesdrop the channel and detect bothetfignhate transmitter's presence and its power level. &tuze,
many real jamming scenarios might be more accurately cheriaed by the solutions of theaximin problem formulation
with pure strategiesvhen the jammer tries to minimize and the transmitter triemaiximize the objective, and the solutions of
the minimax problem formulation with pure strategieben the jammer tries to maximize and the transmitter tesinimize
the objective (the latter case applies to the present papemyorst, these solutions provide a valid lower bound onteys
performance.



The paper is organized as follows. Section Il formalizespbak power constrained problem when full CSl is available to
all parties. It turns out that this problem has an intuitivduon. Under the same full CSI assumption, Section Ilidgts
the problem of average power constraints and pure strategiad is divided into three subsections. The first one ptesen
the optimal strategies for allocating power over one fralhging the results therein, the maximin and minimax soligiare
derived in Subsection IlI-B. Some numerical results arenshim Subsection I1I-C. Section IV investigates the problehiull
CSI, average power constraints and mixed strategies anddgothe Nash equilibrium point. The scenario when the ohhn
coefficients are only known to the receiver is investigatedection V. Finally, conclusions are drawn in Section VI.

II. CSI AVAILABLE TO ALL PARTIES. AMMING GAME WITH PEAK POWER CONSTRAINTS.

This game represents a more general version of the gamesdatiun Section IV.B of [6], and its solution relies on the
results therein. The transmitter’'s goal is to:

{ Minimize Pr(C(P(h), J(h)) < R) (1)
Subjectto Py = E,[P(R)] < P,

while the jammer’s goal is to:

Maximize P(C(P ( ), J(h)) < ) @

Subjectto  Jy = Ep[J(h)] <
where

hP(h)
P(h h)) =E |1 1+ —=—"|.
CP(1).3(1) = B, [tog (14 20 )]

is the ergodic capacity, which is completely determinedhsy.d.f. of the channel coefficiep(h) and the transmitter/jammer
power control strategie®(h) and.J(h). The expectation is defined &, [f = [, f(

We prove that this game is closely related to the two playerp 2sum game of [6] WhICh has the mutual information
between Tx and Rx as cost/reward function:

T Maximize C(P(h),J(h)) 3
Subjectto Py < P,

Subjectto  Jy < J. (4)
This latter game is characterized by the following proposit proved in Section IV.B of [6]:
Proposition 1: The game of (3) and (4) has a Nash equilibrium point given leyftllowing strategies:

3 { Minimize C(P(h),J(h))

1 o2 . o2\
{X — TN} if h< 25
P*(h) = e (5)
,\(hir%) if h=> 171;12“/
7 () 0 <y ©)
* _ O'Nl/
- h 2 . o2 A
e o T hZ ey

where A andv are constants that can be determined from the power comistrand|z]+ = max{z, 0}.

The connection between the two games above is made cleae ifolllowing theorem, the proof of which follows in the
footsteps of [12] and is given in Appendix I.

Theorem 1:Let P*(h) and J*(h) denote the Nash equilibrium solutions of the game descrilye¢B) and (4). Then the
original game of (1), (2) has a Nash equilibrium point, whistgiven by the following pair of strategies:

P(h) if C@P*(h),J*(h) >R

?(h):{ Py(h) it C(P*(h),J*(h)) < R "

N Ju(h) i C(P*(h),J*(h)) > R
J(h):{ J(h) it C(P*(h),J*(h) < R, (8)



whereP,(h) andJ, (k) are some arbitrary power allocations satisfying the retpepower constraints. (Note that no particular
improvements are obtained by settify(h) = J,(h) = 0, since only peak power constraints are in effect.)

The results are intuitive: if the ergodic capacity under tipdimal jammer/transmitter strategies is larger than tkedirate
R, reliable communication can be established over each framg hence the probability of outage#s,; = 0. In this case,
the actual power allocation of the jammer does not mattemamg, since the jammer has already lost the game.

On the other hand, if the ergodic capacity is less tiaroutage occurs on all frame®J,; = 1), and the actual transmitter
strategy makes no difference. As will be shown in the nextisecenforcing average power constraints in this casesgilie
transmitter more freedom, and results in a smaller outagbaiility.

IIl. CSI AVAILABLE TO ALL PARTIES. JAMMING GAME WITH AVERAGE POWER CONSTRAINTS. PURE STRATEGIES.

In this section power constraints are imposed over a largebau of frames rather than on each frame. The transmitter and
jammer may increase their transmission and jamming powess any frame fromP to P,;, and from7 to Jy,, respectively.
To satisfy the average power constraints imposedrbynd 7, less power has to be allocated to other frames. We shall
prove that for both players, the optimal way to control thevppallocation between frames is to employ ON/OFF strategie
Since all frames are equivalent from the point of view of th@rresponding channel realizations, the manner in whieh t
“discarded” codewords are picked is somewhat random. Heweote that this type of randomization only aims at engurin
that a possibly largeP,, or Jy; is obtained. We don’t consider mixing strategies in thistisec[13]. Although each player
picks up a frame randomly, we assume this is known by its oppbwhen considering the maxmin and minimax problems
as formulated below. That is, the maximin scenario assuimedransmitter has perfect non-causal access to the jasmmer’
strategy (we say the jammer “plays first”), while the minin@ase assumes the jammer has perfect, non-causal access to th
transmitter’s strategy (we say the transmitter “plays fjrsthe first player in the minimax or maxmin cases is alwaysreno
vulnerable in the sense that the follower has the freedond&piaits strategy such that it minimizes the first player'ggia

The minimax scenario is the more practical one. In additmbeing pessimistic from the system designer’s point of yiew
it accurately models the situation where the jammer (whooisimterested in exchanging any information of its own)dist
to the feedback carrying the channel coefficients and sethgegansmitter's presence and power level, hence estignaltie
transmitter’s strategy. The maximin scenario is not of liesportance, since it is required for determining the nors@nce
of a Nash equilibrium and for comparison with the minimax ieggeh.

An important remark should be made here. We shall prove insdtpgiel that under both the pure strategies and the mixed
strategies scenarios, the optimal power allocation oveamé is done similarly. Therefore, the major differencensssn the
two cases is in the strategies of allocating power to diffefeames. We should note that it is easier for one of the playe
to detect the presence of the other player over a frame, thagstimate the other player’s transmission power. Under the
minimax solution of pure strategies, the jammer only needddtect the presence of the transmitter (the optimal sfiege
are of ON/OFF type) to have complete information about thedmitter's behavior. However, if the transmitter choseise
mixed strategies, a complete characterization of its biehavould require not only knowledge about its presence, dgb
about the power it decided to allocate to that frame.

The average power constrained jamming game can be formudete

Minimize PrC(P(h),J(h)) < R)
TX{ Subject to E[Py] <P ©

3 { Maximize P{C(P(h),J(h)) < R) (10)

Subject to ElJu|<J

where Py, and J,, are defined as in (1), (2), the expectation is taken over athés with respect to the power allocation
strategies introduced by the transmitter and jammer,7arahd 7 are the upper-bounds on average transmission power of the
source and jammer, respectively.

A. Power Allocation within a Frame

The game between transmitter and jammer has two levels. idtédoarser) level is about power allocation between figme
and has the probability of outage as a cost/reward funciibe. probability of outage is determined by the number of fsam
over which the transmitter is not present or the jammer igsssful in inducing outage. This set is established in tis¢ IBvel
of power control which is investigated in detail in the newbtsubsections, but which cannot be derived before the skcon
level strategies are available.

The second (finer) level is that of power allocation withinranfie. In this subsection we derive the optimal second lefvel o
power allocation strategies for both maximin and minimasigdems, and show they are connected by a special kind oftguali

Note that decomposing the problem into several (two or dhieeels and solving each one separately does not restect th
generality of our solution. Our proofs are of a contradigttype. Instead of directly deriving each optimal strategg, assume



an optimal solution has already been reached and show ibhsettisfy a set of properties. We first assume these propextee
not satisfied, and then show that under this assumption thex@om for improvement. Thus we prove that any solution not
satisfying our set of properties cannot be optimal (i.e.ghaperties are necessary). We pick the properties in suclaraner
that they are sufficient for the complete characterizatibithe optimal solution. That is, we make sure that the systém o
necessary properties has a unique solution.

In the maximin case (when jammer plays first), assume thajattnener has already allocated some powgr to a given
frame. Depending on the value df,, and its own power constraints, the transmitter decidesthérdat wants to achieve
reliable communication over that frame. If it decides tan#mit, it needs to spend as little power as possible (thestnéter
will be able to use the saved power for achieving reliable mwamication over another set of frames, and thus to decrease
the probability of outage). Therefore, the transmitteffjeative is to minimize the poweP,; spent for achieving reliable
communication over each frame. Note that if the jammer isgmeover a frame, the value &%, required to achieve reliable
communication over that frame is a function &f;. However, the transmitter should attempt to minimize thguneed Py,
even when the jammer is absent. The jammer’s objective is thallocate the given powef,; over the frame such that the
required Py, is maximized.

In the minimax scenario (when transmitter plays first) tharj@er’s objective is to minimize the powdl, used for jamming
the transmission over a given frame. The jammer will onlysrait if the transmitter is present with song;. The transmitter’'s
objective is to distributeP,, within a frame such that the power required for jamming is imézed.

The two problems can be formulated as follows:

Problem 1 (for the maximin solution - jammer plays first)

i [ = 1. >
jmax [ min Pay = By [P(R)], st.C(P(h), J(h) > ]

SLE, [J()] < Jus (11)

Problem 2 (for the minimax solution - transmitter plays first)

1 ;o= 1. <
s [ min Ty = Ba[7(h)], st.O(P(h), J(h) < R

st.EL[P(h)] < Pu. (12)

Let m denote the probability measure introduced by the prolighiiensity function (p.d.f.) of, i.e., for a seter C R,
we havem(«) = [ p(h)dh. Denotex(h) = J(h) + o%,. Note that the expectation is definedBg|f (k)] = [, f(h)p(h)dh.
Similarly, we defineEnc .z [f(h)] = [, f(h)p(h)dh.

Solution of Problem 1
The transmitter’'s optimization problem:

) hP(h)
E;| P LE, |1 1+ ——7F— > 1
i n[P(Rh)], s. t.Ep [og< +U]2V+J(h))] >R (13)
has linear cost function and convex constraints. Write thgrangian as:
hP(h)
L1 = Ep[P(h)] — A Eg |1 14— - . 14
With the notationc = exp(R) , the resulting KKT conditions yield the unique solution [14
P(h) = [)\ — @] , h e Ry, (15)
ho 1y
where
1 m(iﬂ’)
A= c¢maD {exp [Ehe///r <log x(}f))} } , (16)

and.#' C R, is the set of channel coefficients over whigh> z(h)/h, and[z]+ = max{z,0}. We say the transmitter is
“non-absent” over#’, and “absent” oriRy \ .Z’.

The following proposition, the proof of which is given in Aepdix II-A, states that the jammer should only be present
where the transmitter is non-absent.

Proposition 2: The jammer should only transmit where the transmitter isn“absent”. Otherwise, i/(k) > 0 and A <
x(h)/h for h in some set C R, the jammer can decreaséh) over h € . and maintain the same required transmitter
power over the frame.



Substituting (16) in (13), the jammer’s problem can be folated as:

Find max =077 m(A")-

z(h)>0%
: {eXP {Ehe%’ <1Og x(h)ﬂ }mw{) — Ene <@> (17)
h h
subject toE, [z(h)] < (Jar + 0%) (18)

Since the set#’ depends on the jammer power allocatid(v), solving the optimization problem above analytically is
difficult. This is why we next provide an alternative methax finding the solution. Our method examines the propertfes o
the sets#’ over which the transmitter is present and” over which the jammer is present, as well as those of the gptim
transmitter/jammer strategies.

Fixing .#’, the Lagrangian for the jammer’s optimization problem canwisitten as

Ly = — Py + p{Ep[z(h)] — (Jur +0%)] - (19)
This yields the new KKT conditions:

1

. (1h) {exp [Ehe.//{' (log @ﬂ } " o -

1
—E—uzoforhe(///”, (20)
Enc.arz(h) = Jy + oam(a"), (21)
p >0, (22)

where.#" is the set of channel coefficients on which the jammer tratssmon-zero power.
For fixed.#’ and.#", the jammer’s optimal strategy has to satisfy these KKT @amtk. The resulting optimal strategy is

_h z(h) w7
z(h) = TS0 {cexp [Ehe///r (log " )}} . (23)
The expression above states that for any two channel réalisawith coefficientsy;, h; belonging to.#"”, we have
”““(hh’?) > ”““(hhj) & hi < hy < x(hi) < z(hy). (24)
( J

Note that for any two channel realizatiohs, h; ¢ .#" (i.e. z(h;) = z(h;) = 0%;) we also have
w(hi) _ w(hy)

h; — hj
The following proposition brings more insight into the opél jamming strategy. Its proof is deferred to Appendix LI-B

Proposition 3: The optimal jamming strategy is such thath)/h is a continuous decreasing function /ofover all of R,
and.#" is of the form.#" = [h*, 00). Moreover, this implies that#’ is of the form.#’ = [h°, o).

The optimal transmitter/jammer strategies for allocatpuyver over a frame are described in Figure 2.
Substituting (23) into (16), we get a new expression Xor
z(h)

A= T(1+uh), for h e ." (26)

which together with (15) yields
P(h) = px(h), for h e 4" . (27)

An interesting remark which supports the results of the reisection is that, for the optimal solution Bfoblem 1 4
has to be strictly greater than zero, hence eliminating thesipility that the jammer allocates positive power to femmvhere
the transmitter, although “non-absent”, could allocatezmower. In Appendix 1I-B it is shown how this remark follovitom
Proposition 3.
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Fig. 2. Optimal second level power control strategies

Taking expectation oveli € .#" in (23), and using the constraint (21), we get

"\ 2
w(h) = LI 0CA oy (28)
W Bhea T3

for h € .#" andz(h) = o% for h ¢ .#".
To solve foru, substitute (28) into (23):

Jm + m((///”)ajz\,

~|m(.//l’)—m(.//[”)

Ene.a Ti5m
1
ol ()]
ok
exp |Ene.ar—.am 10g7 : (29)

The second level power allocation solution for the maximioigem is thus completely determined by the triplg’, .7, 1),
or equivalently by(h°, h*, 1). By Proposition 3 above;(h*) = 0% (by continuity inh*), and\ = 0%, /h". Rearranging these
two relations, along with (29) in a more convenient form, weain the following system of equations, which has to hold fo
any solution to our problem:

Ko "

_ 30
1+ ph*’ (30)
h
J > "
J_A; — / < Lk 1) p(h)dh, (31)
N 14+ph*
h* 1 .
R:/ log (h +hffh )p(h)dh_
e 1
— / log (1 n ,Uh> p(h)dh. (32)

The equations above lead to the following result:
Proposition 4: The solution of the maximin second level power allocatioobbem is unique.



Proof: It is easy to see that the right hand side of (31) is a strictlgreasing function of*, for fixed i, and a strictly
decreasing function of:, for fixed ~*, while being equal to a constant. Hence, for givép, (31) yieldsu as a strictly
decreasing function of*.

Similarly, the right hand side of (32) is a strictly decrewmsifunction ofh*, for fixed p, and a strictly increasing function
of u, for fixed h*, while being equal to a constant. Hence, (32) yieldas a strictly increasing function af*.
Since (31) and (32) have to be satisfied simultaneously bysahytion, the solution has to be unique. |

Another insightful remark that follows from (30)—(32) isathas.J,; increases, botln and h* should be decreasing.
The following proposition, characterizing thBy;(Jy,) function, is necessary for deriving the optimal power adliien
between frames in the next section. The proof is deferredgpefdix II-C.

Proposition 5: Under the optimal maximin second level power control sgegs, the “required” transmitter powet,; over
a frame is a strictly increasing, unbounded and concavetifimof the power.J,, that the jammer invests in that frame.

Throughout the remainder of this paper, we shall denoteAyy(.J,,) the function that characterizes the “required” transmitte
power over a frame where the jammer invests povigr, in the maximin case.

Solution of Problem 2

To solve the minimax intra-frame power allocation problegn using the same techniques asRmoblem 1turns out to
be more difficult. Instead we use the above solutiorPasblem 1land show that for both problems, the second level power
allocation follows the same rules.

Theorem 2:1f Jy;,; is the value used for the second constrainPioblem labove, andP,, ; is the resulting value of the
cost/reward function, then solvingroblem 2with Py, = Pas 1 yields the cost/reward functiody; = Jas,1. Moreover, any
pair of second level power allocation strategies that mae®ptimal solution ofProblem 1 should also make an optimal
solution of Problem 2 and this also holds conversely.

Proof: The result is a direct consequence of Theorem 8 in Appenéi lif we denotex = P(h), y = J(h), f(x) =
E,[P(h)], g(y) = EnlJ(h)] andh(z,y) = C(P(h), J(h)). N
We shall denote by#,,(Pyr) the function that characterizes the “required” jamming poaver a frame where the transmitter
invests powetP,,, in the minimax case. By Theorem 2, we have thét;(Za(Jar)) = Ju and Par(_Za(Par)) = Pur.

Further comments on the power control within frames

Although the second level optimal power allocation stregedor the maximin and minimax problems coincide, this hesu
should not be associated to the notion of Nash equilibriuintesthe two problems solved above do not form a zero-sum
game, while for the game of (9) and (10), first level power ocalrgtrategies are yet to be investigated.

Instead, the result should be interpreted as a form of quétitfact, a much stronger result can be observed as a coesegu
of Theorem 8. Namely, a similar “duality” property link&roblem landProblem 2above to the auxiliary problem of (3) and
(4) appearing in the peak power constraints scenario. Ttptams the resemblance between the solution of the pealepow
constraints auxiliary problem (6) and the solutionRybblem1(26), (27).

Also, this common solution implies th&(h) = u(J(h) +o3%;) over the set#” of channel realizations where both jammer
and transmitter are present. Although the transmitter $® active over the set of nonzero measu# \ .#" as in Figure
2, under practical conditions the measuté.#’ \ .#") of this set is relatively small. This is the reason why th&,(Ja)
curve appears to be linear (although it is not) in Figure 3haf humerical results section.

B. Power Allocation between Frames
The Maximin Solution

In this subsection we present the first level optimal powécation strategies for the maximin problem. Recall that al
frames are equivalent in the sense that they are all chaizedeby the same channel realizations (although not nadgss
occurring in the same chronological order).

The maximin scenario assumes that the transmitter is caetplaware of the jammer’'s power control strategy (only pure
strategies are considered in this section). Given a janmsénategy that allocates different jamming powers to dhifie frames,
the optimal way of allocating the transmitter's power is ajis to ensure that reliable communication is obtained orfrtmes
that require the least amount of transmitter power. The jansroptimal strategy (which is based solely on this knowgked
about the transmitter’s strategy) is presented in the follg theorem.

Theorem 3:Under the maximin scenario it is optimal for the jammer t@ea#ite the same amount of powéy; = 7 to all
frames.

Proof: The proof relies on the concavity of?,,(J,;). Consider the optimal maximin inter-frame power allocatio
strategies. Let”, 2" denote the sets of frames over which the transmitter and ahemjer are present, respectively. Note



that the jammer can itself compute the optimal transmittiextesgy in response to its own, and hence is fully informedhef
transmitter’s response.

We first look at the set of frames” where the transmitter is active. Denote the power invesiethb jammer in this set
by Js. Note thatP is the average “required” transmitter power ovgt.

If the two players’ strategies are both optimal, then by madg the allocation of 7 over the frames of?, the new
average “required” transmitter power ovef can only be less than or equal . In other words, if we denote by,; the
generic power level allocated by the jammer to a frameZinthen

P = max gzju(j]u)dj]u (33)
Im ) o
subject to
/ Jmdin = T (34)
7

By writing the KKT conditions for the maximization problem (33) and (34) above, it is straightforward to see that, at
an optimum,mgj’igm should be constant all ove¥’. Taking into account the fact tha?,,(jas) is concave, we have that a
uniform jamming power allocation affs» over.” achieves this optimum.

We next look at the set of frame®™ \ . where the transmitter cannot afford to be active. This mehasthe “required”
transmitter power over?” \ . is greater than or equal t6,,(J), or equivalently, the power invested by the jammer is
greater than or equal t¢g»». But since the jammer already knows the transmitter's egggtinvesting more thays in any
of the frames ofZ" \ . would be a waste.

Therefore, under the optimal maximin inter-frame powepedition strategies, the jammer can invest the same amount of
power into all the frames of2" | J.# (which meansy C ).

But since the transmitter decides to match the requiredsinétter power on¥’, there can be no frames where the jammer
is not active, and hencg’ is the set of all frames. ]

The jamming power allocated to each frameJig = 7. In this case the transmitter faces an indifferent choiccepThe
power required for the transmitter to achieve reliable camivation is Py, (Jys). Hence, the transmitter's optimal strategy
is to randomly pick as many frames as possible and allocatep®,,(Jy;) to each of them. This is equivalent to saying
the transmitter is present over a frame with probability given byp; = The resulting probability of outage is now
Py =1~- Pt

Note that if P > Py (7), the probability of outage can be reduced to zero. This epwads to the case when the ergodic
capacity of the channel, computed in the conventional waty) peak power constraints, is larger than the r&te

_Pr__
Py (T)"

The Minimax Solution

Theorem 2 showed that for the minimax problem the power atioo within a frame, as well as the relationship between
the total powers used by transmitter and receiver over dcpdat frame, are identical to the maximin problem. Hencg, b
rotating theZy; (Jar) plane, we get the characteristigy; (Par) curve for the minimax problem.

The minimax scenario assumes that the jammer knows exattinvand with what power level the transmitter transmits.
Given a transmitter’s strategy that allocates differenv@is to different (equivalent) frames, the optimal way dbedting the
jammer’s power is such that outage is first induced on the désathat require the least amount of jamming power.

Under these conditions, the transmitter's optimal stnatisgpresented in the following theorem.

Theorem 4:Under the minimax scenario it is optimal for the transmitt@rtransmit over a maximum number of frames,
with the same poweP,,; that minimizes the probability of outage.

Proof: The proof relies on the convexity of7,/(Pyr). Consider the optimal minimax inter-frame power allocatio
strategies, and let”, 2" denote the sets of frames over which the transmitter andaimenjer are present, respectively. It is
clear in this scenario tha?™ C ..

We first look at the set of frame&” where the jammer is active. Denote the power invested byairemer in this set by
Ja, and the power invested by the transmitterBy-. Note that 7, is the average “required” jamming power ov&f.

If the two players’ strategies are both optimal, then by rhodg the allocation ofP4 over the frames of2", the new
average “required” jamming power ovet” can only be less than or equal B, . In other words, if we denote by,; the
generic power level allocated by the transmitter to a frame?i, then

L max / v (par)dpar (35)

subject to

/ pydpyr = Pa. (36)
x
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From the KKT conditions for the maximization problem in (3&)d (36) above, we see that, at an optimLﬁ%{fv%“
should be constant all ove®™. Taking into account the fact thafZy;(pas) is convex, we have that a uniform transmitter
power allocation ofP4 over 2™ achieves this optimum.

We should emphasize here that the above argumentsumaler the assumption that the jammer is active over the wéetle
2, i.e. when_Zy(par) > 0 over 2. Of course, the overall required jamming power is incredsgthcreasing the transmitter
power over some frames o, while neglecting the others. But this action modifies the 8¢ itself, and thus the initial
assumptions.

We next look at the set of frameg’ \ 2" where the jammer cannot afford to be active. This means tiat'required”
jamming power over \ 2" is greater than or equal t97);(P2-), or equivalently, the power invested by the transmitter is
greater than or equal t® 4. But since the transmitter already knows the jammer’s agatinvesting more tha®,- in any
of the frames of¥ \ .2~ would be a waste.

Therefore, under the optimal maximin inter-frame powebpedltion strategies, the transmitter can invest the sameuaimo
of power into all the frames of”. [ ]

The frames over which the transmitter allocates the optiRalcan be chosen at random. This is equivalent to the transmitte
being active over a frame with probability given byp, = PiM. Searching for the optimaP,, is equivalent to searching for
the optimalp;.

The jammer’s strategy is to attack as many of the frames wtierdransmitter is present as possible. In order to induce
outage over these frames, the jammer needs to allogai€ P),) to each of them. This is equivalent to the jammer transngjttin
Zm(Pyr) on aframe on which the transmitter is present, with prolighil; given byp; = 7“/5(%). Note thatp; represents
the conditional probability that the jammer transmits oadrame, given that the transmitter is present over that éra@utage
over a frame occurs in two circumstances: either the tramtemijand consequently also the jammer) decides to ignage th
frame, or the transmitter attempts to transmit the corradpay codeword, but the jammer is present (and since thikeas t
minimax scenario, it is also successful).

The resulting probability of outage B, = (1 — p;) + p;p; or, only as a function ofPy;:

P J

PM) + TP (37)
The transmitter finds the optimal value Bf; as the argument that minimizéy,,; above. A numerical approach should perform
exhaustive search with the desired resolution in the i@, P/ 1q.], Where Pa mq. can be set such th&tPy; > Pasomax
we haveP,,;(Py) > 1 — e for a fixede. SinceP,,; — 1 as Py; — oo independently of the#y,(Py) curve, such a finite
bound Py ma. €Xists for anye.

Note that if theZ?,,(Jys) curve is strictly concave, the jammer can never achieve aageuprobabilityP,,; = 1. This is
because the transmitter can invest all its power over a snalligh set of frames, such that the jamming power requirgahto
all the frames in this set exceeds the jammer’s power butfgeiwever the probability measure is chosen such tha¥, (Jas)
is an affine function of the forni,; = P_M’OJrl/eJM’ and furthermore if7 > 6(P — Pa0), then /M{PM) > Pif—Pngo > PLM
for all values of Py;, and the probability of outage becomBs,; = 1.

Pout - (1 -

C. Some Numerical Results

An example of the?),(Jys) curve is given in Figure 3 for a fixed rat8 = 2, noise powers%, = 10 and a channel
coefficient distributed exponentially, with parameter= 1/6.

For the same parameters used to generate Figure 3, the pitybafboutage was computed for a jammer power constraint
J = 10 and different values of the transmitter power constr@ntThe results were plotted in Figure 4. For comparison, the
same figure show#®,,.(P) for the case when the jammer does not use any power contatégyr (non-intelligent jammer).
Since the jammer’s first level of power control for the maxinstenario reduces to uniformly distributing the availgidever to
all frames, the only difference between the maximin scenanid the non-intelligent jammer scenario is in the powercaltion
within frames. However, as seen from Figure 4, this diffeeeis almost negligible.

Figure 5 shows how the outage probability varies with thes &t for fixed power constraint$ = 30 and 7 = 10.

The P,,+(R) curves delimitate the achievable capacity vs. outage nsgior both peak power constraints and average power
constraints (minimax and maximin cases).

Note that even for the minimax solution of the average povesistraints problem, there exist values™f(Figure 4), or of
the rateR (Figure 5) for which the outage probability is less than thelthievable under peak power constraints.

Also note that the maximin curve coincides with the peak posamstraints curve at large transmitter power (in Figure 4)
or at small rates (in Figure 5). Recall that the jammer’'stefia in the maximin scenario is the same as in the peak power
constraints scenario (i.e. the jammer allocates the sanweiainof power7 to each frame). Due to the favorable conditions in
the regions characterized by largeor small R, the transmitter can also spread its power uniformly oveframes (just like
in the peak power constraints scenario), overcoming thenjancompletely (hence the resulting zero probability ofage).
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Py Vs, for 02N=1O, R=2, h distributed exponentially with parameter A=1/6
200 T T T T T T T T T

o

Fig. 3. P vs. Jys curve whenR = 2, a?v =10 and h is distributed exponentially, with parametér= 1/6.

PoutVs:-P for R=2, J=10, 0'§=10. h distributed exponentially with parameter A=1/6
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Fig. 4. Outage probability vs. transmitter power constrdhwhen 7 = 10, R = 2, 012\, = 10 andh is distributed exponentially, with paramet&r= 1/6.

IV. CSI AVAILABLE TO ALL PARTIES. JAMMING GAME WITH AVERAGE POWER CONSTRAINTS. MIXED STRATEGIES.

In the previous section we studied the maximin and minimaytems of the jamming game when only pure strategies
were allowed. Implicitly, we assumed that the power congtehtegies employed by the first player are perfectly knosvthe
second player, even if they include a form of ON/OFF randatiin. We made a case that such a situation as the minimax
case can emerge when the jammer does not transmit unlesssiésséhat the transmitter is on (and it can always serve as a
pessimistic scenario for the transmitter).

However,our previous assumption may sometimes be inapptepfrom a practical point of view. For example, if the
transmitter does not stick with the optimal minimax solatithe jammer may have a hard time following the transmégter’
behavior. The reason for this is that, as we have alreadyiorett, the jammer would find it much harder to correctly estien
the amount of power that the transmitter invests in a givamg, than to just detect the presence of the transmitter.

In this section we investigate the jamming game with averageer constraints when mixed (probabilistic) strategies a
considered. Similarly to the pure strategies scenario efgfevious section, this game is played on two levels, withfitst
(coarser) level dealing with power allocation between feanlts cost/reward function is the probability of outage ¥¢sume
that the jammer’'s and transmitter's randomized strateg@ssist of picking the power values to be invested over a éram
a random manner. In our previous notatidfy, and Jy, are now random variables, and each frame is characterizeal by
realization(pas, jar) Of the pair(Pas, Jur).

Given this realization, each player has to distribute ites@oover the frame in an optimal way. This is the purpose of the
second (finer) level of power control. The objective of eatdyer at this level is to make the best of the available reseair
(i.e. the powerspys, jar)). This means maximizing (or minimizing, respectively) tneerage rate supported by the frame, in
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Pyt V- R for P=30, J=10, cilzlo. h distributed exponentially with parameter A=1/6
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Fig. 5. Outage probability vs. rate fo? = 30, J = 10, 012\, = 10 and h is distributed exponentially, with paramet&r= 1/6.

the hope that the resulting average rate will be above (@mvhalespectively) the system’s fixed rate

A. Power allocation within a frame

We can formulate the second level of power control similadythe two-player, zero-sum game of (3) and (4) having the
ergodic capacity calculated over a frar6€ P (%), J(h)) as cost function. The difference is that under the curreeharo,
none of the players knows the other player's constraintsabse( Py, Jyr) is a random event. Theorem 5 below provides the
optimal transmitter/jammer strategies for power allozatwithin a frame.

Theorem 5:Given a realization(pas, jar) of (Par, Jar), let @y (jar) denote the solution dProblem lin Section Il with
Ju = ju, and _Zy(par) denote the solution oProblem 2in Section IIl with Py = pay.

The transmitter’s optimal strategy is the solution of thengan (3) and (4), where the jammer is constrainedigd.J (k)] <
Zm(par) and the transmitter is constrained®y,[P(h)] < pas. The jammer’s optimal strategy is the solution of the game in
(3) and (4), where the transmitter is constrainedgP(h)] < Zum(jn) and the jammer is constrained K,[J(h)] < jas.

Note that each of the two players deploys the strategy thatlteefrom the most pessimistic scenario that it can handle
successfully.

Proof: Denote the solution of the game in (3) and (4), where the jammeonstrained td&[J (k)] < _Zm(pa) and
the transmitter is constrained B, [P(h)] < par by (Pi(h), Ji(h)), and the solution of the game in (3) and (4), where the
transmitter is constrained tB,[P(h)] < Zy(ja) and the jammer is constrained By, [J(h)] < jar by (P2 (h), J2(h)).

Denote the solution of the game in (3) and (4), where the jamseonstrained td&,[J(h)] < jyn and the transmitter is
constrained tdE;,[P(h)] < pa by (Py(h), Jo(h))..

By the duality property of Theorem 8 in Appendix II-D, we mimtve C(P; (h), J1(h)) = R andC(Ps(h), J2(h)) = R.

We will show that (i) even if mixed strategies are considefedthe game in (3) and (4), any Nash equilibrium has the
same value as the Nash equilibrium of pure strategies; {@ndf the jammer's poweyiy, is different from _#y;(pas), the
transmitter’s strategy is still optimal; (iii) even if theansmitter's powep,, is different from 22y, (j,s), the jammer’s strategy
is still optimal.

(i): Since the game of (3) and (4) is a two-person zero-sumegaath Nash equilibria of mixed strategies yield the same
value of the cost/reward function [13]. Moreover, the twayars are indifferent between all equilibria. It was showr{6]
that this game has a Nash equilibrium of pure strategiesaBytequilibrium of pure strategies is also an equilibriummaked
strategies [13] and hence it is enough to consider the équith of pure strategies found in [6].

(i), (iii): Assume the transmitter plays the strategy giviey P (h).

If jar = Zm(par), it is clear that the optimal solution for both transmitterdgjammer is the solution of the game in (3)
and (4), where the jammer is constrainedEg[J(h)] < jas and the transmitter is constrained B, [P(h)] < pas. In this
case, it is as if each player knows the other player’s powestaint.

If jar < Zum(pa), then by Lemma 4 in Appendix 1I-C we have théi(h) < Ji(h). SinceC(P(h), J(h)) is a strictly
decreasing function of (h) (under the order relation defined in Appendix II-D), this iep thatC(P; (h), Jo(h)) > R. Note
that Jy(h) is the jammer’s strategy when the jammer knows the tranerisitbower constrainp,,. Thus we have shown that
when the transmitter play®; (h) and jyn < _Za(par), the jammer cannot induce outage over the frame even if iwkihe

value ofpyy.



13

The conditionj, > _Zu(par) is equivalent topy, < Py (ja) (by Theorem 8). In this case, since the jammer plays
the strategy given by/x(h), a similar argument as above (but this time applied to thestratter's strategy) shows that the
transmitter cannot achieve reliable communication overftame even if it knew the exact value §f;.

This accomplishes the proof and shows ti& (1), J2(h)) is a Bayes equilibrium [13] for the game with incomplete
information describing the power allocation within a frame [ |

B. Power allocation between frames

Due to the form of the optimal second level power allocatitnategies described in the previous subsection, the outage
probability can be expressed as

Pout = Pr{Jy > Zm(Pu)} =
Z].—PT{PMZQZJW(JM)}, (38)

where 2, (Jar) is the strictly increasing, unbounded and concave funatioRroposition 5. The optimal mixed strategies for
power allocation between frames are presented in the follpuheorem.

Theorem 6:The unique Nash equilibrium of mixed strategies of the tiaypr, zero-sum game with average power
constraints described in (9) and (10) is attained by the qlagtrategies Fr(par), Fs(jar)) satisfying:

Fp(Zu(y)) ~ kpU((0,20])(y) + (1 = kp) Ao (y), (39)

Fy( (@) ~ kU0, Ju (20)]) () + (1 = k) Ao(2), (40)

whereU([r,t])(-) denotes the CDF of a uniform distribution over the intervak], and Aq(-) denotes the CDF of a Dirac
distribution (i.e. a step function), and the parametgrs:; € [0, 1] andv € [max{.7, #(P)/2}, c0) are uniquely determined
from the following steps:

1) Find the unique valuey, which satisfies:
PT =[P (2v) — P](2vg — T). (41)

2) ComputeS(vg) fo Py (y)dy — 209P.
3) If S(vy) < 0, thenw is the unique solution of

2v
/ Pra(y)dy — 20P =0, (42)
0
ky =1 (43)
and
o j@M (211)
5 = P (20) P “

4) If S(UO) = 0 thenv = vy, kp = kj =1.
5) If S(vo) > 0, thenw is the unique solution of

2v
[ 2uwiy - 2utoee -2 =0 (45)
0
20P
o = P (20)[20 — TJ] (46)
and

ki = 1. (47)

Proof: The proof follows directly from Theorem 9 in Appendix I, bgubstltutlngx =Py, y= JM, 9(y) = Py (y),
= fu(x), a="P andb= 7. Itis also interesting to note that the condltlgﬁ(pg )Ydy < fg(b (x)dx is satisfied

becauseZ),(y) is unbounded (Proposition 5). [ ]
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Fig. 6. Outage probability vs. transmitter power constrdhwhen 7 = 10, R = 2, 012\, = 10 andh is distributed exponentially, with paramet&r= 1/6.
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Fig. 7. Outage probability vs. rate fgp = 30, 7 = 10, o, = 10 andh is distributed exponentially, with parametar=1/6.

C. Numerical results

For the same parameters as in subsection 1lI-C we evaluatedmcally the optimal probabilistic power control strgites.
Figure 6 shows the probability of outage obtained under tiredhstrategies Nash equilibrium, versus the transmittevgr
constraintP, for a fixed rateR = 2, noise powelr3, = 10, a jammer power constrainf = 10 and a channel coefficient
distributed exponentially, with paramet&r= 1/6. All the previously obtained curves are shown for compariso

Figure 7 shows the same probability of outage when:- 30 and the system rat® is varied.

In both figures it can be seen that the system performancer uheeNash equilibrium of mixed strategies is better (from
the transmitter's point of view) than the minimax and workart the maximin solutions of the pure strategies game. Ehis i
expected since the pure strategies solutions assume thatetond player (the “follower”) is constantly at a disadege with
the first player (the “leader”).

V. CSI AVAILABLE TO RECEIVERONLY. JAMMING GAME WITH AVERAGE POWER CONSTRAINTS MIXED STRATEGIES

In this section we investigate the scenario when the receiwes not feed back any channel state information. Since we
have already shown that the long term power constraintsi@nmols the more interesting and challenging one, we furtheu$
only on the scenario of average power constraints and mittategies. As in the previous sections, we have to discuss tw
levels of power control: within a frame and between frames.

A. Power allocation within a frame

The jammer and transmitter powers allocated to each frantlebeiestablished in the next subsection. For now we are
concerned with the optimal power allocation within a franggjen the amounts of power invested in that frame by each
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one of the players. For a given frame, denote these powergbyand J,;, to be consistent with our previous notation.
Both the transmitter and the jammer will choose a probabdistribution for the randomly variable power levels and J,
respectively, such thdEp P < Py andE;J < Jy;, where the notationEp and E; denote the expectations with respect
to these probability distributions. For the generic chdnuse, the channel coefficiert, the transmitter's poweP and the
jammer’s powerJ are all independent random variables, which yield the ramgorariable instantaneous mutual information

log (1 + B ) For a frame, this results in the ergodic capadity p s log (1 + h—’;) whereE;, denotes expectation with
N

J+(7?\, T J+
respect to the channel coefficient.

The transmitter’'s purpose is to use the allocated pofgrin an attempt to make this ergodic capacity larger than tkee ra
R. Similarly, the jammer is concerned with usigg, for making the ergodic capacity fall beloR. The problem of allocating
the power within the frame can be written as:

hP
Eh7p7(]10g (1 + 7) . (48)

max min 5
P:EpP<Py J:E;J<Jy J+oy

DenoteL (P, J) = Ej log (1 + %) and let us observe that
N

dL h
— =E— 49
Pl oy (49)
dL Ph
) 0 50
dJ PRt Jt o) tod) (50)
d>L h 2
N P 51
dp? h(Ph+J+a,2V) <0, (1)
L
dJj?
Ph(Ph +2J + 202
h(Ph +2J + 20%;) >0, (52)

T M F J(Ph+ 20%) + 02, (Ph+ 0%
which implies that.(P, J) is a strictly increasing, concave function Bffor fixed J, and a strictly decreasing, convex function
of J for fixed P.

Thus, we can write

hP
E,pl 1+ —1] <
h,P0g<+JM+O_12V)

hPxr
< E, L 1 — | <
S h0g<+JM+U]2\7)

h Py

< Ep sl 14— 53
< B tog (1+ 7 ). 59)
and hence the uniform distribution &%, and.J); over the frame achieves a Nash equilibrium. A frame to whitghttansmitter
allocates powet’); and the jammer allocates pows, is in outage if and only if

hPA]
E;, log (1 + Tt 012\/> <R. (54)
The probability of this event depends on the power allocabetween frames and is the subject of the first level of power
control treated in the next subsection.

But before we get to that, we need to make several commente. tRat if we force equality in (54) above, we obtain a
2 v (Jar) curve as in Section 111, It is straightforward to see that th,,(Jys) curve is affine, because solving (54) with
equality yieldsPy; = u/(Jy +0%) wherey/ is the (unique) solution o, log (1 + ¢/h) = R. Recall that the curve?,, (Jy)
of Section III (with full CSI) isalmostaffine due to the fact that the measure of the set of channigtagans, within a frame,
over which the transmitter is present but the jammer is sotfien quite small. For this reason, we expect #4é,,(Jy,) and
the 22, (Jr) curves to be very close to each other.

Although the two curves are still different in general, thietve the same physical interpretation: if the jammer irs/est
power jy; over a frame, and the power, invested by the transmitter satisfips; < &2’y (), then the frame is in outage.
Otherwise, ifpyr > 2’3 (j0r), the frame supports the asymptotically error-free decgdihthe transmitted codeword.

As in Section Ill, we shall denote by’ (P)r) the “inverse” of the??’ y;(Jar) function, or the symmetric of the?’ ;(Jar)
curve with respect to the first bisector.
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B. Power allocation between frames

The arguments of this subsection are very similar to thosulifsection 1V-B and will not be discussed in great detail. We
have seen that the outage probability can be expressed as

Pout = PT{JM > j/]y[(PM)} =
=1- P?“{PM > c@/M(JM)}, (55)

where 2’/ (Jy) is an affine, and hence strictly increasing and unboundectiimof the form?’ y;(Jar) = w/ Jar + p' 0%
The optimal mixed strategies for power allocation betweames are presented in the following theorem.

Theorem 7:The unique Nash equilibrium of mixed strategies of our tiaypr, zero-sum game with average power
constraints is attained by the pair of strategi&% (par), F7(jar)) satisfying:

Fp(z) ~ kyU([' 0%, 20i’ + 1l oy]) () + (1 = kp) Ao (),

2v 2v
~——k;U(]0,2 1——k)A
211—|—0']2V J ([07 v])(y)+( 2U+U]2V J) O(y)’

whereU([r,t])(-) denotes the CDF of a uniform distribution over the intervak], and Aq(-) denotes the CDF of a Dirac
distribution (i.e. a step function), and the parameigts:; < [0, 1] andv € [max{J, #',,(P)/2}, cc) are uniquely determined
from the following steps:

Fi(y)

1) If
12 1 / 20]2V
P>plok+ i/ T |14+4/1+ =2, (56)
2 J
then
P_ /0_2
v=—b (57)
kp=1 (58)
and
W IQ2P — poy)
k; = . 59
TP ) )
2) If
12 1 / 2(7]2\7
P<poy+-pT |1+4/1+—1, (60)
2 J
then
“lohiy 1+ﬁ (61)
v = 5 7 |
2P
= 2
b T R0 — ) (62)
and
kj=1. (63)

Proof: The proof follows directly from Theorem 9 in Appendix I, tsubstitutingz = Pas, y = Jur, 9(y) = 2 u(y),
g Hz) = _#',,(x),a="P andb=J. Itis also interesting to note that the conditigi(ﬁg(y)dy < fgo(‘;)) g 1(x)dx is satisfied
because?’ ;(y) is unbounded. [ |
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Py Vs Jy for crﬁ:lo‘ R=2, h distributed exponentially with parameter A=1/6
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Fig. 8. Pps vs. Jps curve with and without CSI feedback whéed = 2, a?\, =10 and h is distributed exponentially, with parametér= 1/6.

Pom vs. P for R=2, J=10, cﬁ:lo, h distributed exponentially with parameter A=1/6
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Fig. 9. Outage probability vs. transmitter power constraih with and without CSI feedback whelr = 10, R = 2, 012\, = 10 and h is distributed
exponentially, with parametex = 1/6. (Mixed strategies.)

C. Numerical results

In this subsection we provide the numerical evaluation af system’s performance when no channel state information is
fed back by the receiver. The parameters are identical teethused in the numerical evaluation of the previous sections
The new 22y, (Jy) curve is given in Figure 8. It can be seen that for a given jangrpower allocated to a frame, the
transmitter power required to ensure asymptotically efree transmission over that frame is only slightly largeno CSI is
fed back than when full CSl is available to all parties.
This observation explains the very small difference in a¢lble outage probabilities that can be observed in Figisd
10.

VI. CONCLUSIONS

We have shown that for a high transmission rétehe jammer could have enough power to keep the ergodic dgpaci
below R. In this scenario, if the transmitter imposes average pavesstraints rather than peak power constraints, reliable
communication is possible at the cost of a non-zero prolaloif outage.

If both transmitter and jammer use average power conssiatheir optimal strategies result as solutions of a twesper
zero-sum game. This game is played on two levels of powerabrithe second level (power control within a frame) extsbit
similar strategies for the pure (maximin and minimax casex) mixed strategies scenarios. However in the pure stesteg
scenario, maximin and minimax first level power control (ee¢n frames) is generally done differently, implying thenno
existence of a Nash equilibrium. A Nash equilibrium was el for the mixed strategies scenario, placing the valuéhef t
objective function between those of the minimax and maximire strategies solutions.
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Pyt V- R for P=30, J=10, cilzlo. h distributed exponentially with parameter A=1/6
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Fig. 10. Outage probability vs. rate with and without CSldieack forP? = 30, J = 10, a?v = 10 and h is distributed exponentially, with parameter
A = 1/6.(Mixed strategies.)

Although it may seem that the mixed strategies game makes s@rse from a practical point of view, the pure strategies
minimax scenario may be a more appropriate model for the whsm the jammer does not attempt to jam unless it senses that
the transmitter is on. In any circumstances, the minimaxaige with pure strategies serves as a lower bound (the mpesi
approach) to the system’s performance.

The feedback of CSI by the legitimate receiver is known tadpiibenefits (in terms of achievable transmission rate) when
nobody attempts to jam the transmission. However, for a faading AWGN channel, these improvements are shown to be
marginal [15]. We have shown that a similar conclusion hd@tts time in terms of outage probability) for the case whiea t
parties that communicate over the fast fading AWGN chanreluader attack from a jammer. The CSI fed back can easily
be intercepted by the jammer, which can then use this infoomdo the transmitter's disadvantage. If one should atdeet
into account the loss of bandwidth and the complexity regfufior CSI feedback and processing, keeping the transniétet
jammer) ignorant of the channel coefficients may seem atbeltigice.

The same remark cannot be made for a parallel slow fading AWsBahnel. It was shown in [12] that when CSI is fed
back and no jamming is present, the improvements in termsadgbility of outage are significant. In Part Il of this paper
[16] we show that this conclusion also holds if we consider jgamming scenario. In doing this we exploit the similastie
that the parallel slow fading channel bears to the fast fadimannel, and develop new and even more interesting tesésiq
to make up for the additional complexity incurred by this newdel.

APPENDIX |
PEAK POWER CONSTRAINTS- PROOF OFTHEOREM 1

This proof follows the one described in the Appendix B of [12he probability of outage can be written as:
Pr(C(P(h), J(h)) < R) = Elx{cpn),1(h)<r}]: (64)

wherey,, denotes the indicator function of the set Replacing the power allocations by the solutions of thegdescribed
by (3) and (4), we define
X" = X{C(P*(h),J* (h))<R}- (65)

We next use the fact that the pdiP*(h), J*(h)) determines an equilibrium of the game (3), (4). Thus, for samydom
power allocationP(h) satisfying the power constraint, we can write:

X* < X{C(P(h),]*(h))<R}aWith probablllty 1 (66)
Similarly, for any randomJ(h), we have
X* > X{C(P*(h),](h))<R}aWith probablllty 1 (67)
Now pick some arbitrary power allocation functio®s (k) and J,(h), which satisfy the peak power constraints, and set

P(h) = (1= x*)P*(h) + X" Pa(h), (68)
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and
T(h) = (1= x")Ja(h) + X" (h), (69)
It is easy to see thd]hﬁ(h) < P with probability 1 , Ehf(h) < J with probability 1, and moreover that

X" = X(c(Pm). Tm)<ry: (70)
Note that transmitter and jammer could pi¢k (k) = 0 and J,(h) = 0 respectively, but this strategy would not improve

their performances (power cannot be saved), since the awepconstraints are set over frames.
Now, using (64), (66) and (67), we get:

Pr(C(P(h),J(h)) < R) >
> Pr(C(P(h), J(h)) < R) >
> Pr(C(P(h), J(h)) < R), (71)

which proves the existence of a Nash equilibrium of the oagjigame.

APPENDIXII
AVERAGE POWER CONSTRAINTS PURE STRATEGIES

A. Proof of Proposition 2

In proving the proposition, we take a contradictory applodtsuffices to show that the situatiof{#) > 0 and\ < z(h)/h
cannot be part of the solution &roblem 1

Assume that/(h) > 0 and A < z(h)/h for h in some set” C R,. If the jammer decreases the value ff:) on ., two
situations are possible. In the first ong&h) is reduced to zero o, and the transmitter is still "absent”. This happens if
o3 > Ah. In this case, modifying the value of(k) has no impact upon the value af and hence neither upon the outcome.

In the second casé(h) is reduced to some positive valué(h), such that the transmitter decides to be "non-absent” over
. This happens if/’(k) + o3, = Xh. Note that the value ok might be changed to som¥. However, as we shall see
briefly, if we considerJ’(h) that satisfies/’(h) + 0% = X'k, then we have\’ = .

To prove this, let\ be given by (16), and assume that- z(h)/h > 0 for h € .#’, and\ — x(h)/h < 0 for h € .. Now
modify z(h) by decreasing/(h) as above. We have

1
1 h O ZAVER)
)\/ = Cm(v/ﬂ’lUy) {exp |:Eh€.//lluy <10g x(h )):| }

:@, for h € .. (72)
Note that forh € . we have@ =)\, so
Enerlog “0) 1o V(). (73)

h
Taking logarithm of (72):

1
m(A") + m()

loge+ Epe g <1og @) +

+Encs (log x(hh)ﬂ = log (h) for h e .7, (74)

and noting that the left hand side of (II-A) is independenthef actual realizations df, we can compute the expectation over

h €., and get:
jﬂ [R +Encn <1og (h))] =
)

w( ")+ m(S) h

</z'>(+m<
o | )]-

Using (73), this leads to
x(h

log A =

R+ Epc u (log
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Therefore the outcome is maintained because, although-ahsent”, the transmitter still invests zero power.gh

Hence if such a situation where the jammer transmits on afsebhannel coefficient values over which the transmitter is
“absent” occurs, the jammer can save power and maintain ahee soutcome. Meanwhile the new set over which jammer
transmits becomes a subset of the new set over which thamnitt@sis “non-absent”.

B. Proof of Proposition 3

We already know that the optimal(k) is a continuous function ot € .#" if .#" and.#" are fixed.
The following lemma shows that under this scenario the ogitinih) is also unique.

Lemma 1:For fixed.#’ and.#", the KKT conditions (20)—(22) admit a unique solution.

Proof: Consider.#’ and.#" to be fixed. The constant resulting from (20)—(22) can be computed as in (29). This
implies thatJy, (1) is a strictly decreasing function, hence an injection.
Thus, for a givenJ,, there exists a unique corresponding valueupfand sincex(h) is a deterministic function of:, a
unique solutionx(h). [ |

Suppose the jammer’s optimal power distributiei(/) is not continuous over the whole, .

Note that an optimal power distributior (/) obtained for fixed#’ and.#" can only be a globally optimal solution (i.e.
over all possible choices oi#’ and.#"), if by keeping the same#’ and extending#" to a set.#", that contains a
discontinuity point , the new optimal strategy is either #aene as:*(h), or violates the constraint(h) > o3;. But an optimal
strategy has to be continuous ovef”,,, and hence the constrainth) > o3 has to be violated on the left-most side.af”,,
(according to (28)).

Also note that if under the optimal strategy the jammer a@tes some powef, over a set# C R, then the distribution
of J, over.# should be done optimally, according to (28), (29). This ii@plthat by extending the se# by a set.4" disjoint
from .#", and re-allocating/,, over.Z, | J.#, the constraint:(h) > o will be violated on the left-most side o#, | ./ .

The arguments above imply the following:

1) The optimal jamming power allocation should be such tHaf) = o3, on the left-most point of#”: otherwise extend
/" by an arbitrarily small set to the left and increasg until z(h) = 0%, on the left-most point of the new sex” ,,;
by continuity ofz(h), the left-most point of #” should be arbitrarily close te?.

2) The optimal jamming power allocation should be such thét = [h*, c0): otherwise take a subse#, C .#", such
that there exists a set” situated to the right of#,., and denote by/, the jamming power originally allocated te7,,.
By re-allocating.J,, over.#, |J./, the constraintz(h) > 0% will be violated on the left-most side of7,. If ./ is
picked of arbitrarily smallm-measure, by the previous arguments we should hdwe arbitrarily close too3; at the
left-most point of.#,. But since.#, is arbitrary, this yields the contradiction thath) = o3, for any h to the left of
N

This proves Proposition 3.

Note that if x = 0, then P(h) = 0 over.#", and sincex(h)/h is decreasing over the whole,, and.#" = [h*, c0), this
implies that the transmitter does not transmit at all. Hosvethis strategy does not achieve an ergodic capacity ddbrgm
the rateR, and hence it results in a contradiction.

C. Proof of Proposition 5

Recall Proposition 5Under the optimal maximin second level power control sg&s®, the “required” transmitter power
P, over a frame is a strictly increasing, unbounded and condawetion of the powet/,,; that the jammer invests in that
frame.

The fact that?,,(Jas) is strictly increasing follows from Proposition 4 and Prepimn 6. If Jy1 < Jar2 existed such
that Pas(Jar,1) = Pum(Jar2), then when the jammer’s power constraintjis; », Problem 1would either have two different
solutions, or the solution would satisfy the constrainthwstrict inequality.

If Jyr — oo then (28) implies that/(h) — oo for any h. If Py, was finite, this would implyC'(P(h), J(h)) — 0, which
violates the constraints dfroblem 1 Hence _¢#,;(Ps) has to be unbounded.

In proving concavity of the?,,(Jas) function for the case when the channel coefficiertelongs to a continuous alphabet,
we first show that the solution of the discretized problere. (iwhenk belongs to a discrete alphabet, obtained by some
discretization of the original continuous alphabet) isqu@ and converges point-wise to the solution of the contisymoblem
as the discrete alphabet converges to the original contimatphabet.

This approach also serves the purpose of legitimizing nicaleevaluations.

Next, we prove that for the discretized proble#,, (Jys) is concave. Finally, we show that point-wise convergence of
sequence of concave functions is enough for the concavitis diimit function.

Consider the uniformly spaced discretizatighi, of the interval[0, c0), and a p.m.f. of the channel coefficielte ¢Z
that converges to the original p.d.f. agoes to zero.
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The maximin second level power allocation problem can Bgllwritten as in (11), even though the integrals represgittia
expectations can now be written as sums. Moreover, Praposi?2—3 and relations (15)—(29) hold with the only modifizat
that the term “continuous” should be crossed out.

The second level power allocation solution for the diseesti maximin problem is completely determined by the triple
(AM', A", i), or equivalently by(r®, h*, 11). Instead of (30)—(32) we can now write

IN c N« IN_ (77)

(78)

—ilog (1+1uh) p(h), (79)

or equivalently
h* —q

Qv {m

}<h0<QD{ i q]7 (80)

p(h), (81)

oo h
14+ph
< Z [ h*—q -1

h=h* L 14+u(h*—q)

h*—q "
> o (W) o) -

h=Qp [ {15 +d]

= 1
— 1 h) <R<
> v () pm < 7
h*—q

< > log (h%h_*q—q» p(h) —

h=Qu [ it |

— 1
—;log <1+uh>p(h)’ (82)

where @ p[h]| denotes the largest element ¢, that is less thark and Qy[h] denotes the smallest elementgdt . that is
larger thanh.

Lemma 2:For a givenJ,, the solution of the discretized maximin second level powkrcation problem is unique.

Proof: It is straightforward to show that for fixedd* the left-most and the right-most terms of inequality (81hieh
upper-bound and lower-boungh, /o%;) are strictly decreasing functions of and similarly the left-most and the right-most
terms of inequality (82) are strictly increasing functicofs.

Note that

o [ _h_ oo [ _h_
> [ﬁ’fh —1] p(h)= Y llz‘:h —1] p(h), (83)

h=h* L 14+ph* h=h*+q L 1+pnh*
h* —q h* —q
_ 09 gl =qu | —L =1 |, 84
QD[lw(h*—q)”] Q”[lw(h*—qJ (64)
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and

p(h

h:QD[%ﬂ]

)t
_Zlg<1+ h>p
)

_ i ( 1+uh*

h=Qp [ f5=+d]

-3 g (1 ) o (@5)

h*+q

These arguments imply that by keepipgconstant and replacing® by h* — ¢ in both first terms of (81) and (82), we get
exactly the last terms of (81) and (82), respectively. Thfug,*,.) satisfy both (81) and (82), then decreashig(by more than
one step) and maintaining the sameiolates both (81) and (82). In order for (81) to still hojd,should be increased, while
in order for (82) to still hold,: should be decreased. But onte and i are given,\ and henceé:’ are uniquely determined.
Therefore there cannot exist more than one solution to tkerelized problem. [ |

The following lemma deals with the convergence of this sotusq — 0.

Lemma 3:For a givenJ,,, the solution of the discretized maximin second level poalkrcation problem converges to the
solution of the continuous problem as— 0.

Proof: This follows by noticing that ag — 0 (77)—(79) become arbitrarily close to (30)—(32), and thesunvolved in
the expectations converge to integrals (by the definitiothefRiemann integral). [ |
Next we prove that for the discretized problem, the resglti#f,,(Jy,) function is concave. We first show in Lemma 4
that the optimal jammer stratedy:*(h)}7°, is a continuous function of the given jamming powky;. Lemma 5 proves that
Py ({x(h)}) is continuous and has continuous first order derivativess hplies that2?,(J) is in fact continuous and has
a continuous first order derivative. Finally, Lemma 6 shohat for any fixed)M’ and M the function2?,,(Js) is concave.

Lemma 4:The optimal jammer power allocatiofw* (h)} ez, Within a frame is a continuous increasing function of the
given jamming powet/,,; invested over that frame.

Proof: It is clear thatz(h) is continuous and increasing as a function/gf if h* andh® are fixed. At any point where
eitherh* or h® change as a result of a change.gy, the optimal jamming strategfr*(h) }neqz, Maintains continuity as a
result of the uniqueness of the solution (Lemma 2). ]

Lemma 5:Both Py ({z(h)}) and the derivative%(%f, for h € ¢qZ are continuous functions dfz(h)}reqz. -

Proof: Consider any two point§zi(h)}reqz, and{z2(h)}nreqsz, and any trajectong that connects them.
Without loss of generality, assume that the channel coefftsiare always indexed in decreasing order of the quanﬁ%@.
For a given vecto{z(h)}neqz, , the required transmitter power is

Pu=x Y - Y Wy, (86)

he.a' hea'
while the derivatives are given by

APy [ A1
Ty = s~ i) (87)
for h € .#’, with X given by
p(h) m
No) = [ I (@) ] . (88)
hea'

Note that.#’ depends upon the choice ¢f(h)}. For fixed.#’, the continuity and differentiability oy, ({z(h)}) are
obvious. Thus, it suffices to show that these properties latdd in a point of¥ where.#’ changes.

If we can show continuity and differentiability whew” is increased by including one channel coefficiggf then larger
variations of.#’ can be treated as multiple changes by one channel coeffieirdtcontinuity still holds.

Let {xx(h)}reqz, be a point ofT where the transmitter increases the number of frames ovahwhtransmits as above,
and denote byg, the part of the trajector that is betweer{z;(h)} and{xx(h)}, andT, = T\ T,.
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SinceP(hy) =0 (i.e. A = %};0)) we have\(.#') = XN(.#'|J{ho}), because they both satisfy

> [A - @] p(h) = Pur. (89)

het'
Define the “left” and “right” limits Py; ({zx(h)}—) and Py ({zx(h)}+) as:

Py({zk(h)}—) = {m(h)}liﬂ{lwk(h)}PM({JJ(h)}% (90)
{z(h)}eT,

Par({z(h)}+) | Pul{z(n)) (91)

= lim
{z(h)}—{zx(h
{z(h)}eT,

We can now write:
Py ({z(h)}+) =
SPND DI (D DR O

he '\ J{ho} he#’' \U{ho}

=AY o) - 3 Ay 4

he#’ he#’
z(ho)

+ Ap(ho) — p(ho) = Py ({z(h)}-) (92)

where the last equality follows since= %hoo) This proves continuity.
Similar arguments can be used to show the continuity of thivateses in (87). |
Lemma 6:In the discretized case, for fixdd andh*, the function2?,,(.J,,) is concave.

Proof:
Write (29) explicitly for the discretized problem:

00 o 1 p(h)
My +oy Y p(h) = [C 11 (1+uh> '

h=h* h=h*
h*—q 5 \ p(h) z"iflg p(h) 0o
UN> h=h Z h
T (& p(h), (93)
iy ( h ] s 14+ ph
and denote
o p(h) 00
1 ST d b h
_ h=h . h 94
o= 11 (v577) > (04)

Note that for fixedh” andh*, Jy, is a linear function ofj.
From (15), (16) and (28) a similar relation can be found fa thquired transmitter powe?,,:

h*—q o2, 00 1 p(h)
MPa+ 3, pop(h) = e ] (1+uh> '

m

h=h0 h=h*
1
h*—q 0% p(h) | =p_ 8 e
T (T) .
h=ho
h*—q [ 1
: p(h) — p(h)| . (95)
Denote
o 1 h*p(h)
_ =0 )
f(w) h]l* <1+uh>

-[Z TOEDY 1+1Mhp<h>], (96)

h=h0 h=h*
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Z}OLO=}L* (1+Zh)2 p(h)

1 o0 N 1
¢ £ Tow (SR plh) = i () — S

dg ~ g~ S e rh)
dp 1 o] h h=h* (14uh)2
' S gt 2n=he TP T S T

h=h0

(98)

and note that for fixed® andh*, Py, is a linear function off.

It suffices to show thaf(g) is concave. For this purpose, the derivat%e: %(%)_1 should be a decreasing function of
g, and hence an increasing function jof

Computing the derivatives from (94) and (96) we obtain (98).

Looking at the right hand side of (98) (the “large fractionye notice that the first term in the numerator increases with
1. For the second term in the numerator, it is clear thaj.dacreases, its numerator decreases faster than its deatumin
This implies that the whole numerator of the “large fractié® an increasing function ofi. Similarly, the first term in the
denominator is clearly a decreasing functionuofThe only thing left is the second term of the denominatds #traightforward
to show that its derivative with respect tocan be written as

0o 2
d Eh:h* (1+huh)2p(h) B 1
M 00 h - 2
R D )

{ [Z mp“”] - 2

h=h* h=h*
> h
> —p(/w} (98)
=, (14 ph)
If we consider the fact that for any two real numberandb we have
(a® + %)% — (a+b)(a® + b%) = —ab(a — b)* (99)
and the summations in (98) are positive, it is easy to seettigasecond term of the denominator of the “large fraction” is
decreasing withu. Hence overall the derivative in (98) increases with |

Lemma 7:The limit of a point-wise convergent sequence of concavetfans is concave.
Proof: Denote the sequence kY, (x))$2, and its limit by f(z). Point-wise convergence implies that for amyand

n=1
Ve > 0, IN(z) such that| f(z) — fn()] <€, Vn > N(z).
Take two arbitrary points: andy, and pick some arbitrary € [0, 1]. DenoteN = max{N(z), N(y), N(az + (1 — a)y)}.

Then forn > N and anye > 0 we have
flaz+ (1 —a)y) > falaz+ (1 —a)y) —e >
>afn(x)+ (1 —a)fu(y) —e>
> af(x) + (1 —a)f(y) — 2, (100)

where the second inequality follows from the concavityfQf This implies thatf is also concave. |

D. On a special kind of duality

Takez,y € L?[R] and define the order relation > y if and only if z(t) > y(¢t) Vt € R. Consider the continuous real
functionsf(x), g(y) andh(x,y) over L2[R], such thatf is a strictly increasing function of, g is a strictly increasing function
of y, andh is a strictly increasing function of for fixed y and a strictly decreasing function gffor fixed .

Define the following minimax and maximin problems:

i .t > . <
max {gl;g () st.h(z,y) = H_ s.ty(y) < G, (101)
max [min g(y) st.h(z,y) < H|s.tf(x) <F, (102)
>0 |y>0 |
min [max h(z,y) s.t. f(z) < F|s.tg(y) < G. (103)
y>0 | 220 |
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The following result is important in the proof of Theorem 8ldve.
Proposition 6: For any of the three problems above, the optimal solutioisfead both constraints with equality.

Proof: Take problem (101). Lefx1,y;) be a solution such thaf(x,) = F, and assume thadt(xy,y;) > H. Since

h is a continuous, strictly increasing function offor a fixed y, we can findz,, < x; such thath(z,,y:) = H. But then
f(x,) < f(x1), which means that there exists a better value: df y = y;, and hence thatr,y1) is not a solution.

Therefore, the first constraint has to be satisfied with etyual

Now assume thag(y:) < G. Then we can findyy > vy, such thatg(yo) = G. However, sincei(z1,y1) = H, we have
h(z1,y0) < H. In order for the first constraint to be satisfied, we need taeex; by some other value,. We prove next
that the valuer, resulting from this modification will be such thg{xo) > f(x1), which makes the paifz;, y1) suboptimal,
thus contradicting the hypothesis that it is a solution, praling that the second constraint should hold with equalit

Assume that the value afy is such that

Then, replacingy, by y1, we have thatzy,y1) is either a second solution of Problem 1 (if the inequality(104) holds
with equality), or a better choice (if the inequality in ()0Odolds with strict inequality). We can readily dismiss tlatér
case, sincérq,y;) was assumed to be an optimal solution. For the former dasea strictly decreasing function of, thus
h(zo,y1) > R, which contradicts the first part of this proof. The same arguots work for the problem in (102).

Take problem (103), and denote ks, y3) one of its optimal solutions. I§(ys) < G, we can increasg up to a valuey,,
such thaty(y,,,) = G. But in turn, this yieldsh(zs, y.,) < h(zs,ys), makingys suboptimal. Therefore, the first constraint has
to hold with equality.

Similarly, if f(z3) < F, we can increase up to a valuer,, such thatf(f,,) = F, yielding h(z,,ys) > h(zs,ys), and
thus resulting in a contradiction. Thus the second comdtedso holds with equality. |

The main result of this section is the following theorem, evhintroduces a special kind of duality between the three
problems in (101), (102) and (103).

Theorem 8:(I) Choose any real values f@r and H. Take problem (101) under these constraints and let the(pairny; )
denote one of its optimal solutions, yielding a value of thgeotive function f(z;) = Fi. If we set the value of the
corresponding constraints in problems (102) and (103)'te F7i, then the values of the objective functions of problems §102
and (103) under their optimal solutions ajéy) = G and h(x,y) = H, respectively. Moreover1,y;) is also an optimal
solution of all problems.

(II) Choose any real values fdr and H. Take problem (102) under these constraints and let the(pair,) denote one of
its optimal solutions, yielding a value of the objective ¢tion g(y2) = G». If we set the value of the corresponding constraints
in problems (101) and (103) t& = G+, then the values of the objective functions of problems J1&id (103) under their
optimal solutions aref(z) = F andh(z,y) = H, respectively. Moreovel(zs, y2) is an optimal solution of all problems.

(Il1) Choose any real values far and G. Take problem (103) under these constraints and let the(paitys) denote one
of its optimal solutions, yielding a value of the objectiuen€tion h(x3,y3) = Hs. If we set the value of the corresponding
constraints in problems (101) and (102) kb= H3, then the values of the objective functions of problems J1&id (102)
under their optimal solutions aré(z) = F andg(y) = G, respectively. Moreoverzs,ys) is an optimal solution of all
problems.

Proof: (l) Take problem (101) and letx1,y;) be an optimal solution, such thgtz;) = F. We need to show that
(z1,11) is also an optimal solution of problems (102) and (103).

Sincex; andy; form a solution of problem (101), by Proposition 6, they Sfgtithe first constraint in problem (101) with
equality, and so they also satisfy the first constraint inbpgm (102). Furthermore, since the second constraint olblpro
(102) readsf(x) < F, we note that:; andy; are in the feasible set. If we evaluate the cost function ist int, we get
9(y1) = G. Thus, keeping: = x1, in problem (102), we can only obtaif{y) < G, by minimizing the cost function ovey.

Now take any different value, # x1, satisfying f(z¢) = F. If the pair (x,y1) satisfies the first constraint in problem
(101), then it is a solution of problem (101), and hence thestaints should hold with equality. This implies that, y1)
also satisfies the first constraint of problem (102)(4f,y;) does not satisfy the first constraint in problem (101), then i
certainly satisfies the first constraint of problem (102}hEi way, the paifz, y1) makes a feasible solution of problem (102)
(although possibly not optimal) and, by evaluating the doattion at this point, we gej(y;) = G.

Thus, for any valuer, we pick, we should always obtain an optimal solution of peal(102) for whichg(y) < G. But
any such optimal solution has to satisfy the first constraiith equality, hence is also a solution of problem (101).dmt
this impliesg(y) = G. But then the original paifz,y;) is a solution of problem (102), since it is feasible and yselde
same cost/reward function.

Take problem (103), and denote bys, y3) one of its optimal solutions. By Proposition 6 we hal(e;) = F andg(ys) = G.
Then eitherh(z3,y3) < H, which implies that(xs, y3) is an optimal solution of problem (102), éfx3,y3) > H and then
(z3,ys) is an optimal solution of problem (101). Either way, the inality should hold with equality, and hences, ys3) is
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an optimal solution of both problem (101) and problem (10@}h h(xs3,ys) = H. But this also implies thatzi,y;) is an
optimal solution of problem (103).

(1) A similar argument can be made if we consider an optin@ligon (x2,y>) of problem (102), such thaf(y2) = G.

(II1) Consider an optimal solutiofizs, y3) of problem (103), such that(xs,y3) = H, and suppose there exists an optimal
solution(x2, y2) of problem (102) is such that(y2) # G. By Proposition 6(x2, y2) satisfiesf(z2) = F andh(xs,y2) = H.
If g(y2) < G, then(z2,y2) is an optimal solution of problem (103) which does not swgtisfe constraints with equality, and
thus Proposition 6 is contradicted. ¢fy>) = G2 > G, then if we construct a modified version of problem (103), rehihe
constraintg(y) < G is replaced by (y) < G2, we know by the first part of this proof thét,, y2) is an optimal solution of
this new problem, yieldind:(x2, y2) = H. But the same objective is attained by, y3), and moreove(zs, y3) satisfies the
new problem’s constraints singgys) = G' < Gs, and thus is an optimal solution. However, one of the comgas satisfied
with strict inequality, thus contradicting Proposition Bherefore,(z3,y3) has to be a solution of problem (102). A similar

argument can be made to prove it is also a solution of problEdd ) [ |
APPENDIX I
AVERAGE POWER CONSTRAINTS MIXED STRATEGIES- A SPECIAL TWO-PLAYER, ZERO-SUM GAME WITH MIXED
STRATEGIES

In this section, we present a general form of a special tvayqr, zero-sum game with mixed strategies. Particular $orm
of this game have been investigated by other authors ovdasiiehree decades. The first simplified version was preddnte
Bell and Cover [1], and a slightly more general form was laelved by Hughes and Narayan [7].

Problem Statement

Let g(y) : Ry — Ry, be a monotone increasing, almost everywhere (a.e.) caniéunction such tha$(0) = 0. For
any point of discontinuityy, such thatg(y, ) = 1 andg(yj) = =2 > 1, we defineg(yo) = =1 (g is left-continuous) and
g Y(x) = y1 for all z € [z1,x2]. For any interval of non-zero measufg;, y2) Whereg is constant, i.eg(y) = z, for all
y € (y1,y2), we defineg=(z¢) = 11 (¢~ is also left-continuous). On the rest Bf,, whereg is continuous and strictly
increasingg ! is defined as the usual inverse functiongoiNote thatg~' is a monotone increasing, a.e. continuous function.

Consider the two-player, zero-sum game with mixed stratedefined as follows. The allowable strategies for Playee hth
non-negative, real-valued random variabléssatisfyingE[X] < a. The allowable strategies for Player 2 are all non-negative
real-valued random variablés satisfyingE[Y'] < b. The payoff function isPr{X > ¢(Y)}, which Player 1 seeks to maximize,
while Player 2 seeks to minimize, by properly picking thelgability distributions ofX andY respectively. Throughout the
sequel, these probability distributions will be represenby their corresponding cumulative distribution funo8o(CDFs)
F§ () and F(y).

Problem Solution

Theorem 9:(1) If there exists a solution wittk,, &k, € [0,1] andv € [max{b/2,¢97'(a)/2},c) of the following three

equations:
ks (1-%):1—1@ (1-@), (105)
Ky = 2021}@ ’ (106)
o 9(y)dy
ky = g2vb (107)

= fog(Qv) g_l(l‘)dl‘
then this solution is unique and the unique Nash equilibrofrthe two-player, zero-sum game described above is attdige
the pair of strategie$F % (), F{ (y)) satisfying:

FX(9(y) ~ k2U([0,20]) (y) + (1 — k) Ao (), (108)

Fy (g7 (@) ~ kyU([0, g(20)]) () + (1 = ky) Ao (), (109)
whereU([r,t])(-) denotes the CDF of a uniform distribution over the interjrak], and Ay(-) denotes the CDF of a Dirac
distribution (i.e. a step function).

(Il) If g is strictly increasing and continuous @nax{b/2, g~'(a)/2}, cc), andfob g(y)dy < f;(j’f g~ (x)dx, then the system

in (105), (106) and (107) has a unique solution such thak, < [0,1] andv € [max{b/2,g9~"'(a)/2},c0). Moreover, the
parameters:,, k; andv are uniquely determined from the following steps:
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1) Find the unique valuey, which satisfies:
ab = [g(2vo) — a](2vy — b). (110)

2) ComputeS(vg) fo “ g(y)dy — 2voa.
3) If S(vy) <0, thenwv is the unique solution of

2v
[ sty —2ea =0, (111)
0
kp =1 (112)
and
B bg(2v)
kj = 721}[9(2@) —d (113)

4) If S('UO) =0 thenv = V0, kp = kj =1.
5) If S(vo) > 0, thenw is the unique solution of

2v
| swiy—szoeo - <o, (114)
2va
and
kj =1. (116)
Proof:

Before starting the actual proof, several remarks are ireorirst, F () can be computed fron#9 (g(y)) by writing
zr = g(g~(x)), and thus by evaluating'%(g(y)) in y = g~'(x). A similar algorithm works for computing™Y (y) from
F (g~ (2)).

Second, note that by following this algorithm, for any poaftdiscontinuityy, of g such thatg(y, ) = =1 andg(yd) =
x9 > w1, We have:

F3(z1) = Fx(9(97 ' (x1))) = FR (9(v0)) =
= Fx(9(9~" (22))) = Fx(x2), (117)
i.e. Player 1 does not alloX to take values iz, z2), and
Fy(yo) = Fy(yg) = Fy (97 (9(yd))) =
= FY( (332)) (118)
while by the same rational (yo ) = F2 (9~ (z1)), meaning that Player 2 uses a probability mass poinfin
Third, for an interval of non-zero measufg, , y») whereg is constant, i.eg(y) = zo for all y € (y1,y2), we have:
Fy(y1) = Fy (9 (9(11))) = (9 (z0)) =
= Fy (9 " (9(12))) = Fy(y2), (119)
i.e. Player 2 does not allow to take values in(y;,y2), and

Fx(w0) = FX(25) = Fx (9(97"(23))) =
= Fx(9(y2)), (120)

while by the same rationdl} (z; ) = F%(g(y1)), meaning that Player 1 uses a probability mass poingirWe now proceed
with the proof of the first part of the theorem.

(1) Since this is a two-player, zero-sum game with mixedtegis, it has a unique Nash equilibrium. L€t ~ F{ and
Yy ~ FY denote the random variables with the CDFs in (108) and (18%),X ~ Fy andY ~ Fy be any arbitrary random
variables.
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Note thatPr{X > g(Y)} = [;°[1 — Fx(g)]dFy (y) = [;° Fy (9~ (x))dFx (). We can write
Pr{Xo > g(¥)} = / (1~ F(9(u))ldFy (o) =
—1—k/ (10, 20)) (y)dFy (y) —

— (1 k) / Ao(y)dFy (y) >

1 [ b
> kg (1 - %/0 deY(y)) > kz (1 - %) ; (121)

Pr{X > g(¥o)} = /OOO FO(g~ (2))dFx () =
~t, | T 00, 9(20)) (@) dFx (x) +
+ (1 - / Ag(z)dFx(x) <

g1—ky(1 )/O xdFx (z ))S

9(2
a
<1l—ky(l———]). 122
<1 (1- 755) (22

Note that equality holds in the first inequality of (121)A} (2v) = 1, and in the second inequality of (121)H[Y] = b
Similarly, equality holds in the first inequality of (122) Kx(g(2v)) = 1, and in the second inequality of (122)H{X| =

Since FY(2v) = F2(g7'(g(2v))) = 1 and F%(g(2v)) = 1 (see (108), (109)), equalities hold in (121) and (122) when
Fx = FY% and Fy = F if and only if

and

a= /OO rdFY () (123)
0
and
b= /0 ydFL (y). (124)

Although the two CDFE"Y (z) and F (y) may not be continuous as functions.#, they admit derivatives in the distribution

space?’ [17], and thus we can write
° * dFY(x)
jay = Xy =
/0 Tl () /0 ! dx -

[ (dFR(9(y)) dg(y)
_/ 9(v) c)i(g(y) ay

:/mg@)LO( W) g, -

(1-— / 00(y)g(y)dy + —/ y)dy, (125)

which along with (123) results in (106), and similarly

- < AR
| varbw) - / g (x)wa—

].— / (50 dif—f'

ky / 1
g " (x)dz, (126)
ey ¢
which together (124) yields (107). The conditions {df$ (z), Fy (y)) to achieve a saddle-point is that equality holds between
the bounds in (121) and (122), which translates to (105) thatthere always exists a solution of the system given bg)10
(106) and (107).
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(1) This part of the theorem provides a general (althoughmexessary) condition for such a solution to exist and stétat
under this condition no more than one such a solution cart &dihough the uniqueness already follows as a consequance
the unigueness of a Nash equilibrium). By substituting §1&&d (107) in (105) we get

a(2v—b) 1 b(g(2v) — a)
2 g(y)dy 9B g1 (2)de
Denote the left hand side of (127) Hy(v) and the right hand side bi(v) for simplicity. Note that for any functiory that
satisfies the conditions set in the problem formulation weeha

(127)

2v g(2v)
/ 9(y)dy = 2vg(2v) — / g9~ (z)da. (128)
0 0

This relation is best observed graphically in Figure 11.

X A
gv) [

j = 9(y)
)] SO NN /7

afp---------

- >
g(a@d b 2v y
Fig. 11. The relationship between the integralsg¢§) and g~ (x).

Computing the derivatives df(v) and R(v) with respect tov (these derivatives always exist for> max{b/2, g~ '(a)/2})
we get

dL(w) 2
v [fo% g(y)dy} i
1/ " o)y — g20)(20 ). (129)
and
dR(v)  2()b

dv Uog(zy) gil(x)dx}Q'

9(2v)
- [wg(zv) o/ gl<x>dw] -

’ v 2v
- Uog(zjgg(l)(i)dxr [/0 9u)dy = ZW} ’ (190)

whereg’(v) > 0 denotes the first derivatiwédy(y)/dy, evaluated iny = v, and the second equality in (130) follows from (128).
Note thatZ(v) and R(v) are both probabilities, hence belong [tb 1]. Therefore, any possible solution of the system in
(105), (106) and (107) should satisty > b andg(2v) > a, or equivalently:

v > max{b/2,g9 (a)/2}. (131)

Therefore, in the sequel of this proof we shall implicitlysame that (131) holds true.
DenoteSy, (v) = fOQU g(y)dy — g(2v)(2v — b) and Sg(v) = fo% g(y)dy — 2va. Since

d 2v
o | oty =29020), (132
v Jo
we observe that
iSL(v) =—-2¢'(v)(2v —b) <0 (133)
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and
%SR(U) =2(g(2v) —a) > 0, (134)

which imply thatSy, (v) is a strictly decreasing function ef while Si(v) is a strictly increasing function af, for the domain
of interestv € [max{b/2, g~ (a)/2}, c0).

Note that—SR( ) is strictly positive even in the limit a8 — oo, and thuslim,_.., Sr(v) = oco. By writing S.(v) =
f(f 9(2”) x)dz, we also havéim, ., S (v) = —oc.

A flrst possMe solutlon

An extremum ofL(v) is obtained by settinél% =0, or equivalently

2v;
/0 g(y)dy = g(2u) (20, — b). (135)

In our previously introduced notation, this writég (v;) = 0. But sinceSy,(v) is strictly decreasing on the domain of interest,
the extremum is unique and is a maximum.
The values ofZ(v) and R(v) at this point are given by
a

L =R = . 136
(u) (v) o) (136)

Moreover, substituting (135) and (128) back in (106) and7j0e get

2uia
ky) = ————— 137
o g(2v;)(2v; — b) (137)
and

ky:=1. (138)

Therefore(v;, k; 1, ky ;) are a solution of the system given by (105), (106) and (10&nd only if k,; € [0,1]. From (131)
it is implied that2v; > b, and hence that, ; > 0. The conditionk,; < 1 yields

2via < g(2v)(2v; — b). (139)

A second possible solution:
An extremum ofR(v) is obtained by settméli =0, or equivalently

2v,.
[ sty =200 (140)
0

In our previously introduced notation, this writés;(v,) = 0. When this extremum oR(v) exists, it is also unique and is a
minimum, sinceSx(v) is strictly increasing on the domain of interest.
The values ofZ(v) and R(v) at this point are given by

b

L(v;) = R(v,) = 1 — B0 (141)

Moreover, substituting (140) back in (106) and (107) we get
kpr=1 (142)

and
bg(2v,.)
T L A 14

Ry, 2v,(g(2v,) — a) (143)

Therefore(v,, ks, kyy,-) are a solution of the system given by (105), (106) and (10@nd only ifk, , € [0,1]. From (131)
it is implied thatg(2v,) > a, and hence that, , > 0. The conditionk, , < 1 yields the same inequality as before:

2vra < g(20,) (20, — b). (144)

Recall thatZ(v) has a unique maximum, whilB(v) has a unique minimum. The immediate implication of this istttne
equationL(v) = R(v) can have a maximum of two solutions. These are the possibiéiats discussed above.
To summarize, have two sets of relations:

2v;
| stwdn = gtzu)(zu ),
2uia < g(2v;)(2v; — b) (145)
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and

2v,.
/O 9(y)dy = 2v,a,
2u.a < g(20,) (20, — b) (146)

that could each yield a solution of the system in (105), (1&&) (107).

In the remainder of this proof, we show that at least one ofsiis (145) and (146) has a solution and the sets (145) and
(146) cannot both have different solutions.

Let vy denote the value of in [max{b/2, g '(a)/2},00) for which

2upa = g(2v9)(2vg — b), asinFigurel2. (147)

9(2v)
g(b)
a

gi(@ b 2, y

Fig. 12. Findinguvo.

Such a value exists and is unique since (147) is equivalenbte (g(2vy) — a)(2vo — b), where the term on the right
hand side is a strictly increasing function @f on [max{b/2,g~1(a)/2}, c0), with a minimum invy = max{b/2, g~ *(a)/2}
which is 0 andlim,_.(g(2v) — a)(2v — b) = co. Note that this also implies th&wva < g(2v)(2v — b) can only be satisfied
if v > vg.

DenoteS = S (vg) = Sr(vg) the common value o, and Sk in vg. If S =0, thenv, = v, =vg. If S <0orS >0,
since Sy, (v) is decreasing withy and Sy (v) is increasing withv for the domain of interest, it is not possible to obtain solus
larger thanv, to both equations$'; (v) = 0 and Sg(v) = 0.

However, a solution always exists. $f < 0, the solution is guaranteed by the continuity%f(v) on the domain of interest,
and by the fact thalim, .., Sg(v) = co. If S > 0, the solution is guaranteed by the continuity.$f(v) on the domain of
interest, and by the fact thaitm, .., S7.(v) < 0, which follows from the conditionfé’g(y)dy < f;‘;) g~ Y(x)dz. Note that
this condition is only necessary # > 0 and is illustrated in Figure 13.

A
| R e 55
\ I X=0gly
o) )} HE R R
g(a) __________ L DI
g'@ b y

Fig. 13. The necessary condition for the existence of a issluwhenS > 0.

A similar condition can be written for the case whén< 0, that islim,_, Sg(v) > 0 if and only if fo"'g—l(x)dx <
j:fl(a) g(y)dy. However, sincgy is a function and is defined ov&.,, this latter condition can only be violateddfis constant
on [a, 00). But this is impossible under the former condition.

We have thus shown that under the condition th strictly increasing and continuous dmax{b/2,g1(a)/2}, ), and
fé’ g(y)dy < f;(‘;)) g~ (z)dz, the system given by (105), (106) and (107) always has aisolund that this solution is unique.

[ |
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Several additional remarks

Bell and Cover [1] found the solution of our game for the parar case whem = b = 1 andg(y) = y. In the context
of Gaussian arbitrarily varying channels, Hughes and Nandy] extended the previous result to the case wheaadb are

any positive constants, andy) = y + ¢, with ¢ > 0. In the remainder of this section we show that our results marasily
particularized to obtain the same results as in [7].

A

3(y)] X

9(v)

1-F ()

v

»

1-F, (a())

% Values of Pr{X = g(Y)} that are
achievable by Player 2 (by picking a
distribution consisting of one or two mass

* points), under certain probability
distributions of Player 1.

The only achievable value &r{X = g(Y)}

% (for any distribution of Player2), under
the optimal probability distributions of
Player 1.

Y ¢

Fig. 14. Intuitive explanation for the optimality of the ategy in (108).

If we force g(0) = g(0~) = 0, the functiong(y) = y + ¢, Yy > 0 is unbounded, linear, strictly increasing, and has only
one discontinuity iny = 0. Hence, it satisfies all the conditions set in the problermidation, as well as those of part (II) of
our Theorem 9.

Substitutingg(y) = y + ¢ in (145), we get (Case 1):

207 — 2ub —be =0 (148)
and
a<uv +ec, (149)
resulting in
b 2¢
=—-11 14+ — 150
(Y B + + b ( )
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3 y

v

"\ F (97 (%)
% Values of Pr{X = g(Y)} that are .
achievable by Player 1 (by picking a

distribution consisting of one or two mass
*  points), under certain probability
distributions of Player 2.

a(v)
The only achievable value &r{X = g(Y)}

% (for any distribution of Player1), under
the optimal probability distributions of
Player 2. X

Fig. 15. Intuitive explanation for the optimality of the ategy in (109).

under the condition that

b 2
a<cto [144/14]. (151)
2 b
The cost function for this case results from (136) as
a
Pr{X >g(Y)} = =
et b1+ 1+ %]
b 2
1+—<1— 1+—c> (152)
c b

and is also consistent with [7]. Note that although= 1 for this case, this does not mean that Player 2 is always ocalRe
that a discontinuity ofy is translated into a mass point for the probability disttibo of Y. In this case, the discontinuity in
y = 0 means thaly” = 0 with probability 21} T = 1 - -, which is the same as in [7].

Similarly, substitutingg(y) =y + ¢ in (146) we get (Case 2):

b 2c
~ 11 14 = 153
U] =3 + + b ( )
under the condition that
b 2
a>ctg |1+ 1+{ (154)
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Note that the two conditions (151) and (154) are mutuallylesige. The cost function for this case is

b

PT{XZQ(Y)}:l—ma

(155)
and is consistent with [7].

In Figure 14 we offer an intuitive explanation of why{. (¢(y)) should be uniform ovefo0, 2v], from a maximin point of
view. The functiong(y) is taken to be linear, with a discontinuity i similar to [7]. Assuming that Player 1 plays first
(maximin), we note that if"%(¢g(y)) is not uniform, the second player can pick a strategy thatedeses the value of the
objective Pr{X > ¢g(Y)}. Therefore, in order to provide the second player with arifiecent choice space (the strategy of
Player 2 can be any probability distribution ovir 2v]), Player 1 should pickrY (z) such thatF'%(g(y)) is uniform over
[0, 2v].

1A 11.
FX(¥) Fy ()
C
Q-k,)+ <29 K,
=k,
0 > 0 >
0 c g2v) x 0 vy

Fig. 16. The resulting strategieS% (x) and F(y) for a linearg(y) with a discontinuity in0.

Similarly, in Figure 15 we offer an intuitive explanation why F{(¢~'(z)) should be uniform ovef0, g(2v)], from a
minimax point of view. Assuming that Player 2 plays first (imiax), note that ifF>(¢~*(z)) is not uniform, the first player
can pick a strategy that increases the value of the objeétieX > ¢(Y)}.

The optimal distributions resulting from Figures 14 and 1& shown in Figure 16. They are consistent with our theoaétic
results (and the results of [7]) far(y) = y + c.
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