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Abstract

Synchronization of relay nodes is an important and critical issue in exploiting cooperative diversity in
wireless networks. In this paper, two asynchronous cooperative diversity schemes are proposed, namely,
distributed delay diversity and asynchronous space-time coded cooperative diversity schemes. In terms
of the overall diversity-multiplexing (DM) tradeoff of a relay channel, we show that independent cod-
ing based distributed delay diversity and asynchronous space-time coded cooperative diversity schemes
achieve the same performance as the synchronous space-time coded approach which requires accurate
symbol-level timing synchronization to ensure signals arriving at the destination from different relay
nodes are perfectly synchronized. This demonstrates diversity order is maintained even at the presence
of asynchronism between relay node. Moreover, when all relay nodes succeed in decoding the source in-
formation, the asynchronous space-time coded approach is capable of achieving better DM-tradeoff than
synchronous schemes and performs equivalently to transmitting information through a parallel fading
channel as far as the DM-tradeoff is concerned. This reveals the benefits of fully exploiting the space-
time degrees of freedom in multiple antenna systems by employing asynchronous space-time codes even
in a frequency flat fading channel. In addition, it is shown an asynchronous space-time coded system
is able to achieve higher mutual information than synchronous space-time codes for any finite signal-to-
noise-ratio (SNR) when properly selected baseband waveforms are employed.

To address the bottleneck issue caused by an empty decoding set in orthogonal relay channels, we
propose a mixing strategy which exploits the DM-tradeoff improvement offered by our proposed asyn-
chronous coded approach by mixing decode-and-forward with amplify-and-forward properly. For certain
set of multiplexing gains, the DM-tradeoff performance of such simple mixing strategy is shown to out-
perform schemes proposed recently by Azarian, Gamal and Schniter, where the assumption on orthgonal
channel allocation in relay channels has been removed to improve spectral efficiency.
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1 Introduction

In wireless networks, treating intermediate nodes between the source and its destination as potential relays
and utilizing these relay nodes to improve the diversity gain has attracted considerable attention lately and
re-kindled interests in relay channels after this problem was first attacked from the perspective of Shannon
capacity in the 70’s [1, 2]. One school of works [3–5] follow the footsteps of [2], where they employ block
Markov superposition encoding, random binning and successive decoding as coding strategy. Another line
of work adopts the idea of cooperative diversity which was first proposed in [6, 7] for CDMA networks, and
then extended to wireless networks with multiple sources and relays [8–14]. We are not attempting to provide
a comprehensive review of all related works on relay channels here [3], but instead divert our attentions to
those work related with cooperative diversity.

In this paper, we mainly focus on two well received relaying strategies, namely, decode-and-forward
(DF) and amplify-and-forward (AF) schemes. Decision on which relaying strategy is adopted is subject to
constraints imposed upon relay nodes. If nodes cannot transmit and receive at the same time and thus work in
a half-duplex mode [15], the communication link in a relay channel with single level of relay nodes consists
of two phases. In the first phase, the source broadcast its information to relays and its destination. During
the second phase, relays forward either re-encoded source transmissions (decode-and-forward) or a scaled
version of received source signals (amplify-and-forward) [10]. At the destination, signals arriving over two
phases are jointly processed to improve the overall performance. Variations of these schemes include allow-
ing source nodes to continuously send packets over two phases to increase the spectral efficiency [12, 16].
As for coding strategies through which cooperative diversity is achieved, [11] proposes to encode the source
information over two independent blocks from source to destination and relays to destination, respectively.
In [13], without requiring relay nodes to provide feedback messages to the source, rate compatible punctured
convolutional codes (RCPC) and turbo codes are proposed to encode over two independent blocks. Also, an
extension is made by putting multiple antennas at relay nodes to further improve the diversity and multiplex-
ing gain. If multiple relay nodes are considered as virtual antennas, a space-time-coded cooperative diversity
approach is proposed in [9] to jointly encode the source signals across successful relay nodes during the
second phase.

As noted in [17], synchronization of relay nodes is an important and critical issue in exploiting coopera-
tive diversity in wireless ad hoc and sensor networks. However, in the existing works, e.g., [9, 18], it has been
assumed that relay nodes are perfectly synchronized such that signals arriving at the destination node from
distinct relay nodes are aligned perfectly with respect to their symbol epochs. Under this assumption, dis-
tributed space-time-coded cooperative diversity approach achieves diversity gains in the order of the number
of available transmitting nodes in a relay network [9].

Perfect synchronization is, however, hard, if not impossible, to be achieved in infra-structureless wireless
ad-hoc and sensor networks. In [19], the issue of carrier asynchronism between the source and relay node is
addressed in terms of its impact on the lower and upper bounds of the outage and ergodic capacity of a three-
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node wireless relay channel. At the presence of time delays between relay nodes, an extension of Alamouti
space-time-block-codes (STBC) [20] is proposed in [21] to exploit spatial diversity when the time delay is
only an integer number of symbol periods. And in [22, 23], macroscopic space-time codes are designed to
perform robust against uncertainties of relative delays between different basestations. Without requiring the
symbol synchronization, we propose a repetition coding based distributed delay diversity scheme in [24, 25]
which achieves the same order of diversity promised by distributed space-time codes. Unlike the extension of
other approaches to the synchronization problem in distributed space-time coding [22], the proposed system
also admits a robust and easily trainable receiver when synchronization is not present in the system.

In [26], relay nodes perform adaptive decode-and-forward or amplify-and-forward schemes allowing
them to transmit or remain silent depending on the received signal-to-noise-ratio (SNR). However, their
proposed schemes require intentionally increasing data symbol period to avoid inter-symbol-interference
(ISI) caused by the asynchronous transmission of the same source signal to different receivers, which limits
efficiency. In [27], asynchronism caused by phase error of channel fading variables is studied in terms of its
impact on relay network’s energy efficiency in low SNR region.

To the best of our knowledge, there does not exist yet too much work regarding the impact of symbol
level asynchronism on the performance of relay networks in a comprehensive manner. The system model
in [28] is closest to what we assumed in [29] and this paper in terms of the consideration of symbol level
asynchronism. However, only AF scheme is considered in [28] from the perspective of the scaling law
of ergodic capacity. In this paper, diversity-multiplexing (DM) tradeoff function is adopted as a metric to
compare the performance of our proposed asynchronous cooperative diversity schemes with the existing
synchronous space-time-coded cooperative diversity strategy. As first put forward by Zheng and Tse in the
context of multiple antenna systems [30], the diversity-multiplexing tradeoff function reveals a fundamental
relationship between the diversity gain which characterizes the asymptotic rate of decoding error approaching
zero as SNR increases, and the multiplexing gain which characterizes the asymptotic spectral efficiency in
the large SNR regime. The idea has recently been extended to relay channels [9, 16] and multiple access
channels [31].

Without loss of generality (WLOG), we consider a relay channel where a source node communicates
with its destination with the help of two potential relays. Nodes are assumed to work in a half duplex mode
[15, 27, 28], in which no one can transmit and receive simultaneously. The entire transmission period is
divided into two phases. In the first phase, source broadcasts while relays and destination listen. In the
second phase, source stops transmitting and relays which succeed in decoding in the first phase forward
source messages to the destination, where received signals over the whole period is jointly processed. Our
major contributions can be summarized as follows.

We first show the lower bound of the DM-tradeoff for space-time-coded cooperative diversity scheme
developed in [9] is actually the exact tradeoff function. In addition, it is shown the overall DM-tradeoff under
the decode-and-forward strategy is dominated by a bottleneck case when no relay node succeeds in decoding
the source information correctly.
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We then propose two asynchronous cooperative schemes under the symbol-level asynchronism. The first
one is distributed delay diversity scheme in which successful relay nodes forward source information encoded
with the same codewords. Consequently, an equivalent multipath fading channel is produced between relays
and destination. When relay codeword is independent of source codeword, we prove that the overall DM-
tradeoff function remains unchanged compared with the synchronous scheme, provided the MAC protocol
ensures the relative delay T0 between two relay-destination links satisfies T0 ≥ 2/Bw , where Bw is the
bandwidth of baseband signals. When relay codeword are identical with the source codeword, only when
BwT0 is a positive integer, can we reach the same conclusion as the independent case. Otherwise, the overall
DM-tradeoff is degraded.

The second asynchronous cooperative diversity approach we propose is more bandwidth efficient in that
asynchronous space-time codes are employed across successful relay nodes to jointly encode the decoded
source information at the presence of asynchronism. We first prove this scheme achieves the same amount of
overall diversity as the synchronous one. Moreover, we demonstrate the presence of asynchronism provides
us an opportunity to fully exploit all degrees of freedom in space-time domain, as evidenced by an improve-
ment of the DM-tradeoff when all relay nodes succeed in decoding in the first phase. Such an improvement
is due to the decoupling of the original multiple-input-single-output (MISO) channel between relay nodes
and destination into an equivalent parallel channel whose DM-tradeoff is better than that of a synchronous
MISO channel. In addition, under certain conditions on baseband waveforms, the mutual information of the
asynchronous channel is higher than the synchronous channel for any finite SNR.

It has been recently shown in [16] that the spectral efficiency and DM-tradeoff for relay channels can be
improved if source node keeps on transmitting signals over two phases and relay nodes don’t start forwarding
until they collect sufficient information and energy to perform the decoding. As a comparison, we propose a
mixing approach where the amplify-and-forward and asynchronous decode-and-forward schemes are com-
bined together. Such approach not only alleviates to some extent the bottleneck caused by the absence of
successful relay nodes, but also yields better DM-tradeoff than schemes proposed [16] for some range of
multiplexing gain even when source only broadcasts in the first phase and stops its transmission in the sec-
ond phase, which is suggested not efficient in [16]. Our results suggest the ultimate efficient relaying strategy
should be featuring both the non-orthogonal channel allocation as proposed by [16], as well as the complete
exploitation of temporal-spatial degrees of freedom using asynchronous coding approach as revealed in our
analysis.

This paper is organized as follows. The system model of a relay channel is introduced in Section 2.
We revisit the DM-tradeoff of the synchronous space-time-coded scheme proposed by [9] in Section 3.1 and
prove their lower bound is actually the exact value. An independent coding based and repetition coding based
distributed delay diversity schemes and an asynchronous space-time coded cooperative diversity scheme are
proposed in Section 3.2 and 3.3, respectively. Their DM-tradeoff are analyzed and compared against the
synchronous coded approach. A mixing relaying strategy combining DF and AF is proposed in Section 3.4
to resolve to certain extent the bottleneck issue which restricts the overall DM-tradeoff for orthogonal relay
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channels. Finally, we conclude the paper in Section 4.

2 System Model
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Figure 1: System model of an ad hoc wireless network

To simplify analysis and reveal fundamental insights, we consider a relay network where the source node
transmits messages to its destination node with the help of K = 2 relays. It is assumed relay nodes work
in a half-duplex mode, which prohibits them from transmitting and receiving at the same time [15]. As
assumed in [9], the system works in two phases. In the first phase, the source broadcasts its transmission to
its destination and potential relays. In the second phase, source remains silent and only those relays which
succeed in decoding the source information forward the packets after reprocessing. A mathematical model of
such a network is shown in Figure 1. After some processing of the received signal YRk

(t), k = 1, 2 from the
source nodeNS at the kth relay node NRk

,NRk
transmits the processed packets viaXRk

(t) to the destination
node ND, where signals from all involved paths are processed jointly to improve the overall performance.
Quasi-static narrow-band transmission is assumed where the channel between any pair of nodes is frequency
non-selective, and the associated fading coefficients remain unchanged during the transmission of a whole
packet, but are independent from node to node and packet to packet. Time delays {τk} are introduced on each
path, which incorporate the processing time at relay nodes and propagation delays of the whole route. More
specifically, τ0 is the delay from NS to ND, and τk is the cumulative delay for the transmission from NS to
NRk

, processing at NRk
and for transmission from NRk

to ND, for k = 1, 2. The noise processes WS(t),
WD(t) and Wk(t), k = 1, 2 are independent complex white Gaussian noise with two-sided power spectral
density N0. Assume signals Xi(t), i ∈ {S,R1, R2} share a common radio channel with complex baseband
equivalent bandwidth [−Bw/2, Bw/2] and each node transmits signals of duration Td, which leads to the

4



transmission of L = bBwTdc independent complex symbols over one packet. Define SNR ∆
= Ps

N0Bw
= P̂s

N0
,

where Ps and P̂s = Ps/Bw are the common continuous and discrete time transmission power of each
transmitting node, respectively [9], which are assumed fixed.

The complex channel gain αi,j captures the effects of both pathloss and the quasi-static fading on trans-
missions from node Ni to node Nj , where i ∈ {S,R1, R2}, and j ∈ {R1, R2, D}. Statistically, αi,j are
modeled as zero mean, mutually independent complex jointly Gaussian random variables with variances
σ2

i,j . The fading variances are specified using wireless path-loss models based on the network geometry [32].
Here, it is assumed that σ2

i,j ∝ 1/dµ
i,j , where di,j is the distance from node Ni to Nj , and µ is a constant

whose value, as estimated from field experiments, lies in the range 2 ≤ µ ≤ 5. Throughout this paper,
we assume αi,j is perfectly known at receiver Nj , but not available to the transmitter Ni. Consequently,
transmission schemes exploiting transmitter side channel state information (CSI), such as successive encod-
ing [33] using dirty paper coding approach [34] and power control schemes [35] , are not considered in this
paper.

The two-phase transmission and half-duplex mode of relay nodes results in orthogonality in time between
the packet arriving at ND via the direct path from Ns and the collection of packets arriving at ND through
different relay nodes. Note that the orthogonality between signals XR1

(t) andXR2
(t) transmitted from nodes

NR1
and NR2

is not assumed, which forms the crux of the problem. Time difference τk − τ0 incorporates the
processing time of a whole packet at NRk

in addition to the relative propagation delay between the kth relay
path and the direct link. Without loss of generality (WLOG), τ0 is set to zero. Under the preceding model as
described above, the received signals in Fig. 1 are specified by :

YRk
(t) = αS,Rk

XS(t) +Wk(t), k = 1, 2, YDs(t) = αS,DXS (t) +WS(t),

and
YDR

(t) =
∑

j∈D(s)

αj,DXj (t− τj) +WD(t),

where YDs(t) and YDR
(t) have no common support in time domain, and D(s) denotes the set of relay

nodes which have successfully decoded the information from Ns, whose cardinality |D(s)| satisfies |D(s)| ∈
{0, 1, 2}.

3 Diversity-Multiplexing Tradeoff

3.1 Synchronous Distributed Space-time-Coded Cooperative Diversity

The DM-tradeoff of the distributed space-time-coded cooperative relaying proposed in [9] is revisited in
this section. To study DM-tradeoff function, the source transmission rate R(bits/second/Hz) needs to be
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parameterized as a function of the transmission SNR as follows [9],

R (SNR) = r log
(
1 + SNRσ2

NS ,ND

)
, (1)

where 0 < r ≤ 1 characterizes the spectral efficiency normalized by the direct link channel capacity, which
illustrates how fast the source data rate varies with respect to SNR and is defined as the multiplexing gain in
[30], i.e.

r = lim
SNR→∞

R (SNR)

log SNR
.

A fundamental figure introduced in [30] is the diversity-multiplexing tradeoff illuminating the relationship
between the reliability of data transmissions in terms of diversity gain, and the spectral efficiency in terms of
multiplexing gain. This relationship can be characterized by mapping the diversity gain as a function of r,
i.e. d(r), where d(r) is the diversity gain and defined by

d(r) = lim
SNR→∞

− log (Pr [I < R (SNR)])

log SNR , (2)

and I is the mutual information between the source and its destination node.
Laneman and Wornell developed lower and upper bounds of this tradeoff function for space-time-coded

cooperative diversity scheme by assuming perfect symbol-level synchronization [9]. Denote dstc(r) as the
corresponding tradeoff function, which was shown bounded by

(K + 1)(1 − 2r) ≤ dstc(r) ≤ (K + 1)

(
1 − K

K + 1
· 2r
)
, (3)

where K + 1 denote the total number of potential transmitting nodes in the network. In this paper, we have
K + 1 = 3 for a four-node network. When dstc(r) is computed using the definition of (2), Pr [I < R (SNR)]

is the outage probability that the mutual information of an equivalent channel between the source and its
destination is below the parameterized spectral efficiency R when all possible outcomes of relays decoding
source signals are counted. Next, we show the lower bound 3 − 6r in (3) is actually the exact value of dstc.

Theorem 1. The lower bound of the diversity-multiplexing tradeoff for the synchronous space-time-coded

cooperative diversity developed in [9] is actually the exact value, i.e. dstc(r) = (K + 1)(1 − 2r).

Proof. For comparison purpose, similar definitions as in [9] are adopted in the sequel. It will be shown below
that a bottleneck case dominates the overall diversity order dstc(r) and thus leads to the desired result.

Suppose identically and independently distributed (i.i.d) circularly symmetric, complex Gaussian code-
books are employed by the source and all successful relay nodes. Conditioned on the decoding set D(s),
the mutual information Istc between NS and ND of the distributed space-time-coded scheme with perfect
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synchronization is [9, Eq. (18)]

Istc =
1

2
log

(
1 +

2

K + 1
SNR |αS,D|2

)
+

1

2
log


1 +

2

K + 1
SNR

∑

Rk∈D(s)

|αRk,D|2

 , (4)

where 2/(K + 1) is a normalization factor introduced to make a fair comparison with the non-cooperative
scheme and the factor 1/2 in front of log-functions is due to the encoding over two independent blocks.

The outage probability can be calculated based on the total probability law

Pr [Istc < R] =
∑

D(s)

Pr [D(s)] Pr [Istc < R|D(s)] , (5)

where the probability of the decoding set is

Pr [D(s)] =
∏

Rk∈D(s)

Pr [IS,Rk
≥ R] ×

∏

Rj 6∈D(s)

Pr
[
IS,Rj

< R
]
, (6)

and IS,Rj
is the mutual information between Ns and NRj

using i.i.d complex Gaussian codebooks, given by

IS,Rj
=

1

2
log

(
1 +

2

K + 1
SNR

∣∣αS,Rj

∣∣2
)
. (7)

In order to derive the overall tradeoff function dstc(r), we need to study the asymptotic behavior of all sum
terms in (5) where R should be replaced by (1). However in [9], the bounds of dstc(r) in (3) are developed
by first fixing R in order to obtain an asymptotic equivalence form of Pr [Istc < R] and then substituting the
rate R with R(SNR). This approach conceals the dominance of the worst situation when all relay nodes fail
in decoding source messages, which consequently drags down the overall diversity order in an overwhelming
manner. This point will be made more clearly through our asymptotic analysis.

Consider first the outage probability Pr
[
IS,Rj

< R
]

for large SNR:

Pr
[
IS,Rj

< R
]

= Pr
[
1

2
log

(
1 +

2

K + 1
SNR|αS,Rj

|2
)
< r log

(
1 + SNRσ2

S,D

)]

∼ Pr


|αS,Rj

|2 < SNR2r−1

(
σ2

S,D

)2r

2/(K + 1)




= 1 − exp
{
−λS,Rj

SNR2r−1c0
}
, (8)

where “∼" is the symbol for asymptotic equivalence at large SNR [36], i.e. as SNR → ∞, f(SNR) ∼
g(SNR) ⇒ limSNR→∞ f(SNR)/g(SNR) = 1. With c0 =

(σ2
S,D)

2r

2/(K+1) , the second equality is because |αi,j|2

is exponentially distributed with parameter λi,j = 1/σ2
i,j . It can be seen from (8) that if r ≥ 1/2, the

probability of no successful relay nodes, i.e. |D(s)| = 0, is in the order of a non-zero constant for large SNR.
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In addition, the conditional overall outage probability given |D(s)| = 0 can be determined similarly by

Pr [Istc < R||D(s)| = 0] ∼ 1 − exp
{
−λS,DSNR2r−1c0

}
, (9)

which is also in the order of a non-zero constant when r ≥ 1/2. Therefore, if r ≥ 1/2, the overall outage
probability Pr [Istc < R] is dominated by a non-zero and non-vanishing term as SNR → ∞ which is of no
interest to our investigation of the DM-tradeoff. Actually, such limitation imposed on multiplexing gain is
due to our restriction of letting source and relay work in the half duplex mode. Recently, cooperative diversity
schemes addressing this half duplex limitation are proposed in [16]. In Section 3.4, we will make compar-
isons between our proposed strategies and those in [16] to illustrate benefits of exploiting asynchronism. For
schemes proposed subsequently in this paper, we only consider multiplexing gains r ∈ [0, 1/2). Under such
condition and ex ∼ 1 + x for x→ 0, we obtain

Pr
[
IS,Rj

< R
]
∼ λS,Rj

c0SNR−(1−2r), 0 ≤ r < 1/2, j = 1, 2. (10)

Thus, the probability of the decoding set D(s) is

Pr [D(s)] ∼
[
c0SNR−(1−2r)

]K−|D(s)| ∏

j 6∈D(s)

λS,Rj
, |D(s)| ∈ {0, 1, 2} . (11)

Combining (9) and (11), we obtain

Pr [Istc < R, |D(s)| = 0] ∼ λS,D

2∏

j=1

λS,Rj
c30 · SNR−3(1−2r). (12)

Next, we show when |D(s)| > 0, the overall diversity is dominated by the term 3(1−2r), i.e. SNR−3(1−2r)

becomes the slowest vanishing term as SNR → ∞.
To simplify denotations, we define S̃NR = σ2

S,DSNR and |α̃i,j|2 = 2/(K+1)
σ2

S,D

· |αi,j|2. Random variables

|α̃i,j |2 are exponentially distributed with parameters λ̃i,j =
σ2

S,D

2/(K+1) · λi,j . In order to study the asymptotic
behavior of the conditional outage probability Pr [Istc < R | D(s)] for |D(s)| > 0, we further normalize
|α̃i,j |2 by βi,j = − log |α̃i,j |2

log gSNR
[30], which yields

(
1 + S̃NR|α̃i,j|2

)
∼ SNR(1−βi,j)

+ for large SNR, where
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(z)+ denotes max {z, 0}. Thus, the conditional outage probability given NR1
∈ D(s) is

Pr [Istc < R||D(s)| = 1, NR1
∈ D(s)] = Pr


 ∑

i∈{S,R1}

log
(
1 + S̃NR |α̃i,D|2

)
< 2r log

(
1 + S̃NR

)



∼ Pr
[

S̃NR
P

i∈{S,R1}
(1−βi,D)+

< S̃NR
2r
]

= Pr


 ∑

i∈{S,R1}

(1 − βi,D)+ < 2r




=

∫

β∈A

(
log S̃NR

)2 ∏

k∈{S,R1}

S̃NR
−βk,D

λ̃k,D

exp
{
−λ̃kS̃NR

−βk,D
}
dβS,DdβR1 ,D, (13)

where β = {βi,D} and A =
{
β :
∑

i∈{S,R1}
(1 − βi,D)+ < 2r

}
, and the last equality is yielded by integrat-

ing the joint probability density function of the vector of {βi,D} over A. As shown in [30, pp. 1079], we
only need to consider the set

Ã =



β :

∑

i∈{S,R1}

(1 − βi,D)+ < 2r, βi,D ≥ 0





for the asymptotic behavior of the right hand side (RHS) of (13) since the term exp
{
−λ̃kS̃NR

−βk,D
}

decays
exponentially fast for any βi,D < 0 whose exclusion does not affect the diversity order. Therefore,

Pr [Istc < R|D(s) = {NR1
}] ∼

∫

β∈Ã

(
log S̃NR

)2 ∏

k∈{S,R1}

S̃NR
−βk,D

λ̃k,D dβS,DdβR1,D. (14)

As we need to obtain the asymptotic relation of all sum terms in (5), studying an asymptotic equivalence
of log (Pr [Istc < R|D(s) = {NR1

}]) as log SNR → ∞ is not sufficient to give us the desired asymptotic
equivalence for Pr [Istc < R|D(s) = {NR1

}] because in general we have: [36, p. 38]

log (f(x)) ∼ log (g(x)) , x→ ∞ 6⇒ f(x) ∼ g(x), x→ ∞. (15)

Consequently, we need to delve into more precise asymptotic characterization of (14) by dividing Ã into
four non-overlapping subsets: Ã =

⋃4
i=1 Ãi, where Ã1 = {βS,D ≥ 1, βR1 ,D ≥ 1}, Ã2 = {βS,D ≥ 1,

1 − 2r < βR1,D < 1}, Ã3 = {1 − 2r < βS,D < 1, βR1 ,D ≥ 1} and Ã4 = {0 ≤ βk,D < 1,
∑

k∈{S,R1}

βk > 2 − 2r}. As a result, the RHS of (14) is divided into four terms each of which is an integral over
Ai, i = 1, . . . , 4, respectively. The asymptomatic equivalence of each term is then studied individually
which leads to Lemma 1.
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Lemma 1. The asymptotic equivalence of the RHS of (14) is

∫

β∈Ã

(
log S̃NR

)2 ∏

k∈{S,R1}

S̃NR
−βk,D

λ̃k,D dβk,D ∼
(
2r log S̃NR

)(
S̃NR

)−(2−2r) ∏

k∈{S,R1}

λ̃k,D. (16)

Proof. See Appendix A.1

If f ∼ φ and g ∼ ψ as x→ x0, we have fg ∼ φψ [36]. Thus, combining (11), (14) and (16) yields:

Lemma 2. The asymptotic equivalence of the outage probability for D(s) = {NR1
} is

Pr [Istc < R,D(s) = {NR1
}] ∼ c0λ̃S,Dλ̃R1,Dλ̃S,R2

(
S̃NR

)−(3−4r) (
2r log S̃NR

)
. (17)

It can be shown using the similar approach that

Pr [Istc < R,D(s) = {NR2
}] ∼ c0λ̃S,Dλ̃R2,Dλ̃S,R1

(
S̃NR

)−(3−4r) (
2r log S̃NR

)
, (18)

which makes the following asymptotic equivalence hold,

Pr [Istc < R, |D(s)| = 1] ∼
(
λ̃S,R1

λ̃R2,D + λ̃S,R2
λ̃R1,D

)
λ̃S,D

(
S̃NR

)−(3−4r) (
2r log S̃NR

)
. (19)

The only term left in (5) represents the case when two relay nodes both succeed in decoding the source
messages and then jointly encode using i.i.d complex Gaussian codebooks independent of the source code-
words. For this case, we obtain

Lemma 3. When both relay nodes are in the decoding set, the overall outage probability has an asymptotic

behavior characterized by

Pr [Istc < R, |D(s)| = 2] ∼ 2
∏

k∈{S,R1,R2}

λ̃k,D

(
S̃NR

)−3+4r
. (20)

Proof. See Appendix A.2.

Given the asymptotic equivalence of outage probabilities Pr [Istc < R, |D(s)| = j] for j ∈ {0, 1, 2} in
(12), (19) and (20), we can conclude the overall decaying rate of Pr [Istc < R] towards zero is subject to the
worse case when there is no relay node in the decoding set because SNR−3+6r in (12) dominates SNR−3+4r

in (19) and (20) for large SNR. Therefore, the overall outage probability has the following asymptotic
behavior,

Pr [Istc < R] ∼
∏

k∈{D,R1,R2}

λ̃S,k

(
S̃NR

)−3+6r
, 0 ≤ r ≤ 1

2
, (21)
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which implies dstc(r) = 3 (1 − 2r) , 0 ≤ r < 1/2. This is the lower-bound of (3) developed in [9] for
K + 1 = 3. It means the worst scenario in a cooperative diversity scheme using the decode-and-forward
strategy is when all relay nodes fail to decode the source packets correctly and the DM-tradeoff function
under this case becomes the dominant one in determining the overall DM-trade-off function dstc(r). This
conclusion can be extended in a straightforward manner to the case of more than 2 relay nodes yielding

dstc(r) = lim
SNR→∞

− log (Pr [I < R (SNR)])

log SNR
= (K + 1)(1 − 2r), 0 ≤ r < 1/2, (22)

which thus proves Theorem 1.

Next, without assuming perfect synchronization between relay nodes, we investigate the impact of asyn-
chronism on the overall diversity-multiplexing tradeoff for cooperative diversity schemes. This asynchro-
nism is presented in terms of non-zero relative delays between relay-destination links. As long as source
only transmits in the first phase, different cooperative diversity schemes differ only in the second phase on
how relay nodes encode over that period. No matter which scheme is employed, the overall DM-tradeoff is
always 3 − 6r provided the case of an empty set D(s) overshadows other cases when more than one relay
node succeeds in decoding. If this occurs, the overall DM-tradeoff is not affected by asynchronism.

3.2 Distributed Delay Diversity

In this section, we first consider a scheme in which successful relay nodes employ the same Gaussian code-
book independent of the source codebook. We also investigate a repetition coding based delay diversity
scheme where relay nodes in D(s) use the same codebook as adopted by source [24].

It will be shown next in Theorem 3 and Theorem 4 that as long as relative delay T0 and transmitted signal
bandwidth Bw satisfies certain conditions, both of these two schemes can achieve the same DM-tradeoff as
the synchronous distributed space-time coded scheme, which shows asynchronism does not hurt DM-tradeoff
in certain cases. In addition, we prove that repetition coding based approach is fundamentally inferior than
the independent coding based approach due to its inefficiency of exploiting degrees of freedom of the former
one, as revealed in Theorem 4.

In [37], a deliberate delay was also introduced between two transmit antennas at a basestation in order to
exploit the potential spatial diversity. Our proposed distributed delay diversity schemes are similar with that
scheme in the sense both of these two approaches create equivalent multipath link between transmitter and
receiver. They differ fundamentally, however, in the following ways: The relative delays between transmit
antennas at different relay nodes are inherent in nature in our case due to distinct locations of relay nodes, as
well as the difference in processing time at each relay node. Secondly, relative delays are required to satisfy
certain conditions in order to achieve certain amount DM-tradeoff as proved in Theorem 3 and Theorem 4.
These conditions imply higher layer protocols should be implemented across relay nodes as proposed in [25].

11



While in [37] coordination through protocols is not an issue as antennas are located at a basestation. The
last major difference is here we are concerned with the DM-tradeoff function of diversity schemes. As a
contrast, the diversity order studied by [37] is only one particular point on the DM-tradeoff curve for r = 0.
Therefore, we term our schemes as distributed delay diversity schemes in the sequel to avoid making any
further confusion.

3.2.1 Independent Coding Based Distributed Delay Diversity

In the system model described in Section 2, we assume τ1 6= τ2 and XR1
(t) = XR2

(t) = XR(t). Informa-
tion bearing baseband signals XS(t) and XR(t), t ∈ [0, T ], are finite duration replica of two independent
stationary complex Gaussian random processes having zero mean and independent real and imaginary parts.
Their power spectral densities (PSD) have double-sided bandwidth Bw/2 and are assumed to be flat since
transmitters don’t have side information about the channel state and ‘water-pouring’ arguments [38] cannot
be used [39]. Therefore, the transmission of Xj(t) equivalently leads to the transmission of L = bBwT c
independent complex Gaussian symbols over one packet [39] during each phase. If there are more than
one relay node in the decoding set D(s), an equivalent multipath fading channel is formed between these
successful relay nodes and the destination in the second phase.

When BwT � 1, given the decoding set D(s), the mutual information of the whole link is

ITDA =
1

2
log
[
1 + ρ0|αS,D|2

]
+

1

2Bw

∫ Bw/2

−Bw/2
log
[
1 + ρ0|HR,D(f)|2

]
df (bits/s/Hz) , (23)

where the second term is the mutual information of the equivalent multipath fading channel whose frequency
response is HR,D(f) =

∑
Rk∈D(s) αRk,De

j2πfτk [39] conditioned on fading gains αi,j and time delays
{τk, Rk ∈ D(s)}, and ρ0 = 2

K+1SNR is the normalized signal-to-noise-ratio.
Given delays {τk}, the conditional outage probability is

Pout|τ = Pr (ITDA < R|τ) =
∑

D(s)

Pr [D(s)|τ ] Pr [ITDA < R|D(s), τ ] , (24)

where R is defined in (1) and τ is the delay vector. The outage probability averaged over the distribution of
delays is

Pout = Pr (ITDA < R) = Eτ

[
Pout|τ

]
. (25)

Next, we show the asymptotic behavior of Pout|τ as SNR → ∞ is irrelevant of the exact values of delays,
provided {τk} satisfies certain conditions.

If the number of relay nodes forwarding in the second phase is no greater than 1, i.e. |D(s)| ≤ 1, there
does not exist an equivalent multipath channel in the second phase and thus the mutual information ITDA

in (23) is equal to Istc determined in (4) for the same decoding set D(s). Therefore, the sum terms in (24)
corresponding to |D(s)| = 0 and |D(s)| = 1 have the same asymptotic slops of SNR as characterized in (12)

12



and (19). However, when two relay nodes are both in D(s), the mutual information ITDA in (23) needs to
be studied individually. Assume τk is put in an increasing order and WLOG let τ1 = minRk∈D(s) τk = 0.
Define T0 = minRk∈D(s),τk 6=0 τk. We have

Theorem 2. As long as the relative delay between two paths NR1
→ ND and NR2

→ ND satisfies T0Bw >

2 and T0Bw /∈ Z+, the conditional outage probability given |D(s)| = 2 satisfies

1

2

∏

k∈{S,R1,R2}

λ̃k,D

(
S̃NR

)−3+4r <∼ Pr [ITDA < R, |D(s)| = 2|τ ] <∼ 2
∏

k∈{S,R1,R2}

λ̃k,D

(
S̃NR

)−3+6r
,

(26)
for r ∈ [0, 1/2]. If relative delay satisfies T0Bw ∈ Z+, Pr [ITDA < R, |D(s)| = 2|τ ] vanishes at a rate of(

S̃NR
)−3+4r

for large SNR.

Proof. Given |D(s)| = 2, ITDA in (23) can be expressed by

ITDA =
1

2
log
[
1 + ρ0|αS,D|2

]
+

1

4πBwT0

∫ πBwT0

−πBwT0

log


1 + ρ0

∣∣∣∣∣∣

∑

k∈D(s)

αRk ,De
ju

τk
T0

∣∣∣∣∣∣

2
 du. (27)

Note by Cauchy-Schwartz inequality, we have
∣∣∣
∑

k∈D(s) αRk,De
ju

τk
T0

∣∣∣
2

≤ |D(s)|∑k∈D(s) |αRk,D|2. As a

result, the mutual information ITDA in (27) can be upper-bounded by I (U)
TDA defined below:

ITDA ≤ 1

2
log
[
1 + ρ0|αS,D|2

]
+

1

2
log
[
1 + 2ρ0

(
|αR1,D|2 + |αR2,D|2

)]

∆
= I

(U)
TDA. (28)

Comparing I(U)
TDA with Istc in (4), we can see I (U)

TDA is actually the mutual information of a synchronous
space-time-coded cooperative diversity scheme with |D(s)| = 2 and power scaled in the second phase.
Therefore, the outage probability in (26) can be characterized by Lemma 3:

Pr
[
I
(U)
TDA < R, |D(s)| = 2, |τ

]
∼ 1

2

∏

k∈{S,R1,R2}

λ̃k,D

(
S̃NR

)−3+4r
, r ∈ [0, 1/2), (29)

which implies the DM-tradeoff of the independent coding based distributed delay diversity scheme given
|D(s)| = 2 cannot beat the corresponding synchronous space-time-coded approach, as expected.

Next, we seek a lower-bound of ITDA. Assume T0Bw ≥ 1 and denote ∆1 = bT0Bwc /dT0Bwe ≤ 1,
where bxc is the greatest integer less than or equal to x and dxe is the smallest integer greater than or equal
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to x. The lower bound I (L)
TDAof ITDA can be determined as

ITDA ≥ 1

2
log
[
1 + ρ0|αS,D|2

]
+

∆1

2

1

2πδ1

∫ πδ1

−πδ1

log


1 + ρ0

∣∣∣∣∣∣

∑

k∈D(s)

αRk ,De
ju

τk
T0

∣∣∣∣∣∣

2
 du

=
1

2
log
[
1 + ρ0|αS,D|2

]
+

∆1

2
log


1 + ρ0ν +

√
1 + (ρ0ω)2 + 2ρ0ν

2


 ,

≥ ∆1

2

(
log
[
1 + ρ0|αS,D|2

]
+ log

[
1 + ρ0

(
|αR1,D|2 + |αR2,D|2

)

2

])
∆
= I

(L)
TDA, (30)

where δ1 = bT0Bwc, ν = |αR1,D|2 + |αR2,D|2 and ω = |αR1,D|2 − |αR2,D|2. The first inequality is due to
the non-negative integrand in (27) and ∆1 ≤ 1. The equality is from the following integral equation [40, pp.
527 (Eq. 41)],

1

2π

∫ 2π

0
log (1 + a sinx+ b cos x) dx = log

1 +
√

1 − a2 − b2

2
, for a2 + b2 < 1. (31)

The last inequality is due to 1 + (ρ0ω)2 + 2ρ0ν ≥ 0 and ∆1 ≤ 1. Similar techniques as in proving Lemma 3
can be applied to yield

Pr
[
I
(L)
TDA < R, |D(s)| = 2|τ

]
∼ 2

∏

k∈{S,R1,R2}

λ̃k,D

(
S̃NR

)−3+4 r
∆1 . (32)

If T0Bw is a positive integer, we have ∆1 = 1 which makes the lower bound and upper bound of the
outage probability as shown in (29) and (32) have the same asymptotic behavior. If T0Bw is a non-integer
and T0Bw > 2, i.e. the relative delay between two relay-destination links satisfies T0 > 2/Bw , we have
∆1 ≥ 2/3 yielding 3 − 4r/∆1 ≥ 3 − 6r. Based upon the preceding analysis, combining (29) and (32),
therefore, yields Theorem 2.

Theorem 2 essentially illustrates when two relay nodes both succeed in decoding the source information
and then forward it using the same Gaussian codebook independent of what source sends, the overall diversity
gain is at least as good as 3 − 6r as long as the relative delay T0 between two paths is sufficiently large
satisfying the lower bound T0 > 2/Bw. This inequality reveals a fundamental relationship featuring the
dependence of performance in terms of DM-tradeoff on the equivalent channel characterizations.

If this condition on relative delay is violated, we are unable to achieve the amount of diversity promised in
Theorem 2. For example, when τ1 = τ2 i.e. T0 = 0, signals transmitted by relay 1 and 2 will be superposed
at the destination end like a one-node relay channel whose channel fading coefficient is αR1,D +αR2,D. The
resulting conditional outage probability Pr [ITDA < R, |D(s)| = 2|T0 = 0] thus has the same asymptotic
relation as the one with |D(s)| = 1 characterized by Lemma 1, which implies the overall diversity order is
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now dominated by 2−2r and therefore demonstrates the necessity and importance of satisfying the condition
of T0Bw ≥ 2. Since relative positions of nodes do not necessarily ensure T0Bw ≥ 2, a MAC layer protocol
is required to meet this requirement [25].

Another remarkable point is the condition in Theorem 2 only involves the relative delay T0 and signal
bandwidth Bw. This is because in our model we consider transmitting a bandlimited Gaussian random
process in a continuous waveform channel and assume BwT � 1 in order to invoke the asymptotic results
to obtain the closed form expression in (23) [38, 39]. When transmitted signals take the form of linearly
modulated cyclostationary random process as practical communication system does, the overall DM-tradeoff
of delay diversity will be addressed in Section 3.2.3 and sated in Theorem 5.

Given the asymptotic behavior of Pr [ITDA < R,D(s) | τ ] for different |D(s)|, we are ready to calculate
the overall DM-tradeoff.

Theorem 3. Given T0Bw ≥ 2, where T0 is the relative delay between two paths from relay nodes to node ND

and Bw is the transmitted signal bandwidth, the DM-tradeoff of the distributed independent coding based

delay diversity scheme is

dTDA(r) = lim
SNR→∞

− log (Pr [ITDA < R (SNR)])

log SNR
= 3(1 − 2r) = dstc(r), 0 ≤ r < 1/2. (33)

Proof. When |D(s)| ≤ 1, the rates of this conditional outage probability decreasing to zero for large S̃NR
are equal to those for the corresponding distributed synchronous space-time-coded scheme, i.e. diminishing
rates of Pr [ITDA < R,D(s) | τ ] are in the order of

(
S̃NR

)−3+6r
and

(
S̃NR

)−3+4r
for |D(s)| = 0 and

|D(s)| = 1, respectively. When |D(s)| = 2, as long as T0Bw ≥ 2, Pr [ITDA < R,D(s) | τ ] decreases to
zero at least in the order of

(
S̃NR

)−3+6r
from Theorem 2. Therefore, as far as the overall DM-tradeoff is

concerned, 3 − 6r is the dominant term determining the slope of the total outage probability Pout|τ in (24)
decreasing to zero given T0Bw ≥ 2.

Moreover, we can see if T0Bw ≥ 2, bounds in Theorem 2 do not depend on the exact value of T0,
which implies Eτ

[
Pout|τ

]
in (25) has the same asymptotic dominant term S̃NR

−(3−6r)
. Therefore, even

at the presence of non-zero relative delays, the same DM-tradeoff as the synchronized space-time-coded
cooperative diversity scheme can still be achieved, which proves Theorem 3.

Note we restrict ourselves to the case of having only two relay nodes. For cases having more than two
relay nodes, the analysis will be more involved and we expect there will exist a lower bound on the minimum
relative delay among multipath from each relay node to the destination in order to yield a satisfying DM-
tradeoff lower bound.
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3.2.2 Repetition Coding Based Distributed Delay Diversity

For the purpose of simplicity, relay nodes in the decoding set can also use the same codeword employed by
source instead of using an independent codebook. In this section, we look into the DM-tradeoff of such a
repetition coding based distributed delay diversity approach.

Denote IR−TDA as the mutual information of this relay channel. It can be shown [39]

IR−TDA =
1

2Bw

∫ Bw/2

−Bw/2
log
[
1 + ρ0|αS,D|2 + ρ0|HR,D(f)|2

]
df, (34)

where HR,D(f) is defined after (23). Next, we investigate the asymptotic behavior of Pr [IR−TDA < R,

|D(s)| = j | τ ], j = 0, 1, 2.
For |D(s)| = 0, we have IR−TDA = Istc = 1

2 log(1 + ρ0|αS,D|2) whose outage probability has the
same asymptotic characteristic as in (12). When |D(s)| = 1, we have IR−TDA = 1

2 log
[
1 + ρ0

(
|αS,D|2

+|αRj ,D|2
)]

, where NRj
∈ D(s). The sum of two independently distributed exponential random variables

(
|αS,D|2 + |αRj ,D|2

)
has the similar asymptotic pdf as specified in (88). The outage probability in this case

is characterized by Lemma 4.

Lemma 4. When there is only one relay node in D(s), the asymptotic equivalence of the outage probability

for repetition coding based distributed delay diversity is

Pr [IR−TDA < R, |D(s)| = 1 | τ ] ∼
(
λ̃S,R1

λ̃R2,D + λ̃S,R2
λ̃R1,D

)
λ̃S,DS̃NR

−3(1−2r)
. (35)

Proof. by combining the asymptotic result on the decoding set probability in (11) for |D(s)| = 1 and slight
modifying the proof of Lemma 3, we obtain the RHS of (35).

If both relay nodes are in D(s), the repetition coding based mutual information IR−TDA is [39],

IR−TDA =
1

4πBwT0

∫ πBwT0

−πBwT0

log


1 + ρ0|αS,D|2 + ρ0

∣∣∣∣∣∣

∑

k∈D(s)

αRk,De
ju

τk
T0

∣∣∣∣∣∣

2
 du. (36)

Applying the bounding techniques developed for ITDA when |D(s)| = 2 leads us to

Q0

(
λ̃
)(

S̃NR
)−3+6r <∼ Pr [IR−TDA < R, |D(s)| = 2|τ ] <∼ Q1

(
λ̃
)(

S̃NR
)−3+6r/∆1

, (37)

whereQ0

(
λ̃
)

= 1
4

2λ̃S,D−λ̃R1,D

2λ̃S,D−λ̃R2,D

∏
k∈{S,R1,R2}

λ̃k,D,Q1

(
λ̃
)

=
λ̃S,D−λ̃R1,D

λ̃S,D−λ̃R2,D

∏
k∈{S,R1,R2}

λ̃k,D given λ̃S,D >

λ̃R1,D > λ̃S,D. For other situations regarding
{
λ̃j,D

}
, we have the similar lower- and upper-bounds as in

(37) except functions Q0

(
λ̃
)

and Q1

(
λ̃
)

need to be modified accordingly without affecting slopes.
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Based on the asymptotic equivalence of conditional outage probability for cases |D(s)| = j, j = 0, 1, 2,
as shown in (12), (35) and (37), respectively, we can conclude about the overall diversity gain for the repeti-
tion coding based distributed delay diversity:

Theorem 4. The upper-bound and lower-bound of the overall DM-tradeoff of the repetition coding based

distributed delay diversity are determined by

3 − 6r/∆1 ≤ dR−TDA(r) ≤ 3 − 6r = dTDA(r), 0 ≤ r <
1

2
, (38)

where ∆1 = bT0Bwc /dT0Bwe ≤ 1, provided the relative delay T0 and transmitted signal bandwidth Bw

satisfies T0Bw ≥ 1. The equality in (38) is achieved when T0Bw ∈ Z+, i.e. when ∆1 = 1.

Proof. First, the lower bound in (37) demonstrates Pr [IR−TDA < R, |D(s)| = 2|τ ] decreases to zero no
faster than

(
S̃NR

)−3+6r
, which is the vanishing rate for cases of |D(s)| ≤ 1, as reflected in (12) and

(35). We can thus infer that the dominant factor affecting the overall DM-tradeoff is subject to the case of
|D(s)| = 2, which consequently yields the inequality in (38).

If the relative delay and transmitted signal bandwidth satisfies T0Bw ≥ 1, we have 1 ≥ ∆1 ≥ 1/2;
otherwise ∆1 = 0 making the lower bound in (38) trivial. Meanwhile, when T0Bw is a positive integer,
the asymptotic rates reflected in the lower and upper bounds in (37) agree with each other, which yields
dR−TDA(r) = 3 − 6r.

We can therefore conclude based upon the preceding analysis that the diversity of repetition coding based
distributed delay diversity scheme is always no greater than the independent coding based distributed delay
diversity scheme, and thus complete proof of Theorem 4.

In terms of DM-tradeoff, Theorem 4 reveals a fundamental limitation imposed by employing the rep-

etition coding based relaying strategy as compared with the independent coding based one in Theorem 3.
An additional observation we can make from Theorem 4 and Theorem 3 is that distributed delay diversity
schemes achieve the same DM-tradeoff 3 − 6r as that under synchronous distributed space-time-coded co-
operative diversity approach studied in[9], if the relative delay T0 and bandwidth Bw satisfies T0Bw ∈ Z+.
Moreover, if T0Bw ≥ 2, both of these two cooperative diversity schemes achieve a diversity of order 3,
the number of potential transmit nodes, when the spectral efficiency R remains fixed with respect to SNR,
i.e. r = 0, which further demonstrates asynchronism does not hurt diversity as long as relative delay is
sufficiently big to allow us to exploit spatial diversity.

3.2.3 Distributed Delay Diversity with Linearly Modulated Waveforms

For the distributed delay diversity schemes analyzed in Section 3.2.1 and 3.2.2, the transmitted information
carrying signal Xj(t) is assumed to be a finite duration replica of a complex stationary Gaussian random
process with a flat power spectral density, which is widely adopted in studying the capacity of frequency
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selective fading channel [39]. In this section, we study the diversity gain of an independent coding based
distributed delay diversity scheme employing linearly modulation waveforms Xj(t) =

∑n
k=1 bj(k)sj(t −

kTs) for j ∈ {S,R1, R2}, where sj(t) is a strictly time limited and Root Mean Squared (RMS) bandlimited
waveform [41] of duration Ts, with unit energy

∫ Ts

0 |sj(t)|2 dt = 1 ( Ts is the symbol period), and bj(k) is
the kth symbol transmitted by the jth user satisfying the following power constraint: 1

n

∑n
k=1 b

2
j (k) ≤ pj ,

with pj = 2
K+1 P̂s. This linearly modulated waveform model is often employed to study the capacity of

asynchronous multiuser systems [41–43] and will be adopted as well when we investigate the DM-tradeoff
of our proposed asynchronous space-time coded cooperative diversity scheme in Section 3.3.

Assume relay nodes employ the decode-and-forward strategy under which {bR1
(k) = bR2

(k)} is a
sequence of i.i.d complex Gaussian random variables with zero mean and unit variance, and independent
of {bS(k)}. Let IL−TDA denote the mutual information of entire link, which can be computed as in (23):

IL−TDA =
1

2
log
(
1 + ρ0|αS,D|2

)
+

1

2
I2−TDA (39)

where I2−TDA is defined as the mutual information of the equivalent channel between two relays and desti-
nation node.

When there is no more than one relay node involved in forwarding, the outage probability P{IL−TDA <

R,D(s)} for |D(s)| ≤ 1 has the same asymptotic behavior as P{ITDA < R,D(s)} obtained in Section 3.2.1
in same cases. We thus focus only on the case of |D(s)| = 2.

Theorem 5. For the independent coding based distributed delay diversity scheme under a relative delay

τ ∈ (0, Ts], if Xj(t) is linearly modulated using a time-limited waveform s(t) of duration Ts , the outage

probability Pr [IL−TDA < R, |D(s)| = 2, ] has the following asymptotic equivalence,

Pr [IL−TDA < R, |D(s)| = 2] ∼ 2√
1 − |ρ12|2

∏

k∈{S,R1,R2}

λ̃k,D

(
S̃NR

)−3+4r
, 0 ≤ r ≤ 1/2, (40)

where |ρ12| = |
∫ Ts

0 s(t)s(t− τ) dt| < 1 and λ̃k,D are defined in Section 3.1.

Proof. The proof is given in Appendix A.3.

Theorem 5 demonstrates when Xj(t) is linearly modulated using s(t) of duration Ts and two relay
nodes are both in D(s), the independent coding based distributed delay diversity scheme achieves a diver-
sity of order 3 − 4r. This result shows under certain conditions asynchronism does not affect the DM-
tradeoff when compared with the synchronous space-time coded approach as revealed in Lemma 3. When
we count all possible outcomes of the relay decoding to calculate the overall DM-tradeoff function, we obtain
dL−TDA(r) = 3 − 6r = dstc(r), r ∈ [0, 1/2] due to the same dominating factor caused by no relay nodes
forwarding source information as observed in previous sections.
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3.3 Asynchronous Space-time-coded Cooperative Diversity

In this section, assuming no synchronization among relay nodes, we propose a more spectral efficient ap-
proach termed as asynchronous space-time-coded diversity scheme to exploit the spatial diversity in relay
channels. This approach has a better DM-tradeoff than both the distributed delay diversity and synchronous
space-time-coded schemes when two relay nodes are both in the decoding set D(s). Actually, we will show
under certain conditions on the baseband waveform used by both relay nodes, the link between source and its
destination across two relay nodes is equivalent to a parallel channel consisting of three independent channels
in terms of the overall DM-tradeoff function. As a result, employing asynchronous space-time codes enables
us to fully exploit all degrees of freedom available in the space-time domain in relay channels.

We divide the major proof into 3 steps to streamline our presentation. First, we set up an equivalent dis-
crete time channel model from which we obtain the sufficient statistics for decoding under symbol level asyn-
chronism. Next, we prove a convergence result for the achievable mutual information rate as the codeword
block length goes to infinity by applying some techniques in asymptotic spectrum distribution of Toeplitz
forms. Finally, we prove a sufficient condition for the existence of a strictly positive minimum eigenvalue of
the Toeplitz form involved in the former asymptotic mutual information rate. The existence of such positive
minimum eigenvalue proves to be crucial in showing an equivalence of the relay-destination link to a parallel
channel consisting of two independent users, and thus leads us to the desired result on DM-tradeoff function.
At the end of this section, we will make remarks on some cases where not only does asynchronous coded
approach perform better than synchronous one in terms of DM-tradeoff, but also it results in strictly greater
capacity than synchronous one when both relay nodes succeed in decoding.

3.3.1 Discrete Time System Model for Asynchronous Space-time Coded Approach

To address the impact of asynchronism, we follow the footsteps of [42] by assuming a time-limited baseband
waveform. What distinguishes us from [42] is our approaches and results are valid for time constrained
waveforms of an arbitrary finite duration, while [42] requires a waveform lasting for one symbol period. To
gain insights and WLOG, we first tackle a problem where the baseband waveforms employed are time-limited
within 2 symbol periods, and then extend the results to the case with arbitrary time-limited waveforms. The
transmitted baseband signals are Xj(t) =

∑n
k=1 bj(k)sj(t − kTs), j ∈ {S,R1, R2} where sj(t) is a time-

limited waveform of duration 2Ts with unit energy, i.e.
∫ 2Ts

0 |sj(t)|2 dt = 1, and bj(k) is the kth symbol
transmitted by the jth user satisfying the same power constraint described in Section 3.2.3. We assume Xj(t)

lasts over a duration of length T and the number of symbols transmitted n = T/Ts is sufficiently large, i.e.
n� 1, such that the later mutual information has a convergent closed form.

When two relay nodes both succeed in decoding the source messages, asynchronous space-time-codes
are encoded across them to forward the source messages to the destination. Without any channel state infor-
mation of the link between NRj

and ND, independent i.i.d complex Gaussian codebooks are assumed which
are independent of the source codebook. The main difference from the traditional space-time codes is the
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asynchronous one encodes without requiring signals arriving at the destination from virtual antennas (i.e.
relay nodes) to be perfectly synchronized

Let IA−stc denote the mutual information of the source-destination channel under the proposed asyn-
chronous space-time-coded scheme. The outage probability of the whole link is

Pr [IA−stc < R] =
2∑

j=0

Pr [IA−stc < R, |D(s)| = j] . (41)

As only when |D(s)| = 2 will we consider the issue of encoding across relay nodes and cases of |D(s)| ≤ 1

are identical as the corresponding cases for synchronous space-time coded approach, we first focus on the
case of |D(s)| = 2. Given |D(s)| = 2, we obtain

IA−stc =
1

2
IE−SD +

1

2
IE−MacA, (42)

where IE−SD is the mutual information of the direct link channel when the baseband waveform has finite
duration, and IE−MacA is the mutual information of a 2× 1 MISO system featuring the communication link
between two successful relay nodes and the destination at the presence of symbol level asynchronism caused
by the relative delay τ2 − τ1, which is assumed to satisfy Ts > τ2 − τ1 > 0. If the relative delay is greater
than Ts, this does not affect IE−MacA for asymptotically long codeword [44]. Our objective is to study the
asymptotic behavior of IE−MacA for large n since this is closely related to the asymptotic analysis of outage
provability conditioned on |D(s)| = 2.

Next, we develop an equivalent discrete time system model. Assuming τj are known to the destination
perfectly, we obtain sufficient statistics for making decisions on transmitted data vector {b1(k), b2(k)}, k =

1, · · · , n by passing the received signals through two matched filters for signals sj(t− τj), respectively [42].
The sampled matched filter outputs are

yDRj
(k) =

∫ (k+2)Ts+τj

kTs+τj

yDR
(t)α∗

Rj ,Dsj (t− kTs − τj) dt, j = 1, 2, k = 1, · · · , n. (43)

Given Ts > τ2 − τ1 > 0, the equivalent discrete-time system model is characterized by

[
yDR1

(k)

yDR2
(k)

]
=

[
0 c2α

∗
R1
αR2

0 0

][
bR1

(k − 2)

bR2
(k − 2)

]
+

[
a1|αR1

|2 c1α
∗
R1
αR2

f1α
∗
R2
αR1

|αR2
|2d1

][
bR1

(k − 1)

bR2
(k − 1)

]

+

[
|αR1

|2 c0α
∗
R1
αR2

c0α
∗
R2
αR1

|αR2
|2

][
bR1

(k)

bR2
(k)

]
+

[
a1|αR1

|2 f1α
∗
R1
αR2

c1α
∗
R2
αR1

|αR2
|2d1

] [
bR1

(k + 1)

bR2
(k + 1)

]

+

[
0 0

c2α
∗
R2
αR1

0

][
bR1

(k + 2)

bR2
(k + 2)

]
+

[
zR1

(k)

zR2
(k)

]
, k = 1, · · · , n, (44)

with bRj
(0) = bRj

(−1) = bRj
(n+ 1) = bRj

(n+ 2) = 0, j = 1, 2. The coefficients of c1, a1, f1 and d1 are
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defined as
a1 =

∫ Ts

0
s1(t)s1(t+ Ts), d1 =

∫ Ts

0
s2(t)s2(t+ Ts), (45)

c0 =

∫ 2Ts

0
s1(t)s2 (t− τ2 + τ1) , c1 =

∫ 2Ts

0
s1(t)s2 (t+ Ts + τ1 − τ2) , (46)

f1 =

∫ Ts

0
s2(t)s1 (t+ Ts + τ2 − τ1) , c2 =

∫ Ts

0
s1(t)s2 (t+ 2Ts − τ2 + τ1) . (47)

Thus, the original 2 × 1 MISO channel is now transformed into a 2 × 2 MIMO channel in the discrete time
domain with vector inter-symbol-interferences (ISI). The additive noise vector [zR1

(k), zR2
(k)]T in (44) is

a discrete time Gaussian random process with zero mean and covariance matrix

E

[[
zR1

(k)

zR2
(k)

]
[
z∗R1

(l), z∗R2
(l)
]
]

= N0HE(k − l), (48)

where HE(i) for |i| > 2 are all zero matrices, and matrices HE(j), −2 ≤ j ≤ 2 are

HE(0) =

[
|αR1

|2 c0α
∗
R1
αR2

c0α
∗
R2
αR1

|αR2
|2

]
, HE(1) = HE

†(−1) =

[
a1|αR1

|2 c1α
∗
R1
αR2

f1α
∗
R2
αR1

|αR2
|2d1

]
(49)

and

HE(2) = HE
†(−2) =

[
0 c2α

∗
R1
αR2

0 0

]
, (50)

where A† is the conjugate transpose of a matrix A.
Denote y

DR
(k) =

[
yDR1

(k), yDR2
(k)
]
, bR(k) = [bR1

(k), bR2
(k)] and zR(k) = [zR1

(k), zR2
(k)] for

k = 1, · · · , n. The discrete time system model of (44) can be expressed in a more compact form by

yn = HEbn + zn, (51)

where
yn =

[
y

DR
(1), y

DR
(2), · · · , y

DR
(n)
]T
, (52)

bn = [bR(1), bR(2), · · · , bR(n)]T , (53)

zn = [zR(1), zR(2), · · · , zR(n)]T , (54)
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and HE is a Hermitian block Toeplitz matrix defined by

HE =




HE(0) HE(−1) HE(−2)

HE(1) HE(0) HE(−1) HE(−2)

HE(2) HE(1) HE(0) HE(−1) HE(−2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HE(2) HE(1) HE(0) HE(−1)

HE(2) HE(1) HE(0)




, (55)

which is also the covariance matrix of the Gaussian vector zn .
Suppose HE

n is available only at the destination end and transmitters employ independent complex
Gaussian codebooks, i.e. vectors bR1

= [bR1
(1), · · · , bR2

(n)]T and bR2
= [bR1

(1), · · · , bR2
(n)]T are

independently distributed proper complex white Gaussian vectors, the mutual information of this equivalent
2 × 2 MIMO system at the presence of memory introduced by ISI is [38]

I
(n)
E−MacA =

1

n
I
(
yn;bn

)
=

1

n
log det

[
I2n +

1

N0
E
[
bn (bn)†

]
HE

]
. (56)

3.3.2 Convergence of I (n)
E−MacA as n→ ∞

To obtain the asymptotic result of I (n)
E−MacA as n approaches infinity, we can rewrite the matrix HE as

HE = PnT (2n) (Pn)T , where T (2n) is a Hermitian block matrix [45] defined by

T (2n) =

[
|αR1,D|2TE

n(1, 1) αR1,Dα
∗
R2,DTE

n(1, 2)

α∗
R1,DαR2,DTE

n(2, 1) |αR2,D|2TE
n(2, 2)

]

and Pn is a permutation matrix such that Pnbn is a column vector of dimension 2n whose first and second
half entries are bR1

and bR2
, respectively. The block matrices TE

n(i, j), i, j ∈ {1, 2} are n × n Toeplitz
matrices specified as

TE
n(1, 1) =




1 a1 0

a1 1 a1 0

0 a1 1 a1 0

. . . . . . . . . . . . . . . . . . . . . .
a1 1




, TE
n(2, 2) =




1 d1 0

d1 1 d1 0

0 d1 1 d1 0

. . . . . . . . . . . . . . . . . . . . . .
d1 1




(57)
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and

TE
n(1, 2) = (TE

n)† (2, 1) =




c0 f1 0

c1 c0 f1 0

c2 c1 c0 f1 0

0 c2 c1 c0 f1 0

. . . . . . . . . . . . . . . . . . . . . .
c2 c1 c0




. (58)

Permutation matrix Pn is an orthonormal matrix satisfying Pn (Pn)T = I2n which enables us to rewrite the
mutual information I (n)

E−MacA as

I
(n)
E−MacA =

1

n
log det

[
I2n +

1

N0

[
Σ1 0n

0n Σ2

]
T (2n)

]

=
1

n
log det

[
I2n + SNR 2

K + 1
T (2n)

]

=
1

n

2n∑

k=1

log

[
1 + SNR 2

K + 1
· νk

(
T (2n)

)]
, (59)

where 0n is a n × n zero matrix, Σj = E
[
bRj

b
†
Rj

]
= 2

K+1 P̂sIn, j = 1, 2 and SNR = P̂s

N0
, νk

(
T (2n)

)
is

the kth eigenvalue of the 2 × 2 block matrix T (2n). To obtain the limit of I (n)
E−MacA as n goes to infinity,

Theorem 3 in [45] regarding the eigenvalue distribution of Hermitian block Toeplitz matrices can be directly
applied here yielding the following theorem:

Theorem 6. As n→ ∞, we have

lim
n→∞

I
(n)
E−MacA =

1

2π

∫ π

−π

2∑

j=1

log

[
1 +

2

m
SNR · νj (TE(ω))

]
dω, (60)

where νj (TE(ω)) is the jth largest eigenvalue of a Hermitian matrix

TE(ω) =

[
|αR1 ,D|2t(1,1)

E (ω) αR1,Dα
∗
R2,Dt

(1,2)
E (ω)

α∗
R1,DαR2,Dt

(2,1)
E (ω) |αR2,D|2t(2,2)

E (ω)

]
, (61)

whose entries t(j,l)E (ω) are the discrete-time Fourier transforms of the elements of Toeplitz matrices in T (2n),

i.e. t(j,l)E (ω)
4
=
∑

k tE,k (j, l) e−ikω, j, l = 1, 2, and are determined as

t
(1,1)
E (ω) =

[
1 + a1e

−iω + a1e
iω
]
,

t
(1,2)
E (ω) =

[
c1e

−iω + c2e
−i2ω + c0 + f1e

iω
]

=
(
t
(2,1)
E (ω)

)∗
,

t
(2,2)
E (ω) =

[
1 + d1e

−iω + d1e
iω
]
. (62)
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Proof. Theorem 3 in [45] regarding the eigenvalue distribution of Hermitian block Toeplitz matrices yields
the desired results.

Corollary 1. For the relay channel model described in Section 2, suppose nodes NR1
and NR2

employ the

same waveform s(t) such that a1 = d1 as defined in (45). The limit of mutual information in Theorem 6 can

thus be further simplified as

IE−MacA = lim
n→∞

I
(n)
E−MacA

=
1

2π

∫ π

−π
log

[
1 + ρ0

1

2

(
|αR1,D|2 + |αR2,D|2

) 2∑

k=1

ν̃k(ω)

+ρ2
0|αR1,D|2|αR2,D|2

2∏

k=1

ν̃k(ω)

]
. (63)

where
∑2

k=1 ν̃k(ω) = 2 (1 + 2a1 cosω) and
∏2

k=1 ν̃k(ω) =
[
(1 + 2a1 cosω)2 − |ρ̂(ω)|2

]
, with ρ̂(ω) =

c1e
−iω + c2e

−i2ω + c0 + f1e
iω .

Proof. Eigenvalues of the 2 × 2 matrix TE(ω) satisfy the following relationship

2∑

j=1

νj (TE(ω)) =
1

2

(
|αR1,D|2 + |αR2,D|2

) 2∑

k=1

ν̃k(ω)

2∏

j=1

νj (TE(ω)) = |αR1,D|2|αR2,D|2
2∏

k=1

ν̃k(ω), (64)

where ν̃k(ω), k = 1, 2 are eigenvalues of a Hermitian matrix

T̃E(ω) =

[
t
(1,1)
E (ω) t

(1,2)
E (ω)

t
(2,1)
E (ω) t

(2,2)
E (ω)

]
, (65)

and they satisfy
∑2

k=1 ν̃k(ω) = 2 (1 + 2a1 cosω) and
∏2

k=1 ν̃k(ω) =
[
(1 + 2a1 cosω)2 − |ρ̂(ω)|2

]
, with

ρ̂(ω) = c1e
−iω + c2e

−i2ω + c0 + f1e
iω . Under these relationships and Theorem 6, we obtain (63).

3.3.3 Positive Definiteness of Matrix T̃E(ω) and DM-tradeoff of Asynchronous Coded Scheme

In this section, we show under certain conditions the Hermitian matrix T̃E(ω) defined in (65) is positive
definite for all ω ∈ [−π, π] and consequently there exists a positive lower bound λ

(2)

min for eigenvalues
ν̃k(ω). As a result, the DM-tradeoff of this 2 × 1 MISO system employing asynchronous space-time codes
is equal to that of a parallel frequency flat fading channel with two independent users.
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Theorem 7. When a time-limited waveform s(t) = 0, t /∈ [0, 2Ts] is chosen such that complex signals

F1(t, ω) =
∑2

k=0 s(t + kTs)e
jkω and F2(t, ω) =

∑2
k=0 s(t − τ + kTs)e

jkω are linearly independent with

respect to t ∈ [0, Ts] for any ω ∈ [−π, π], the matrix T̃E(ω) is always positive definite for ∀ω ∈ [−π, π] and

there exists positive numbers λ(2)

min > 0 and 0 < λ
(2)
max ≤ 10 such that λmin(ω) ≥ λ

(2)

min and λmax(ω) ≤
λ

(2)
max, where λmin(ω) and λmax(ω) are the minimum and maximum eigenvalues of the matrix T̃E(ω),

respectively.

Proof. See Appendix A.4. As shown in the Appendix A.4, a similar conclusion can be reached when s(t)
spans over an arbitrary number of finite symbol periods, i.e. s(t) = 0, t /∈ [0,MTs], M ≥ 1.

If s(t) satisfies the condition in Theorem 7, we can upper- and lower-bound the mutual information
IE−MacA in (63) through bounding eigenvalues ν̃k(ω), k = 1, 2 of T̃E(ω). The lower bound of IE−MacA is

IE−MacA ≥ 1

2π

∫ π

−π
log

[
1 + ρ0

(
|αR1,D|2 + |αR2 ,D|2

)
λ

(2)

min + ρ2
0|αR1,D|2|αR2,D|2

(
λ

(2)

min
)2
]

=
2∑

k=1

log
[
1 + ρ0|αRk ,D|2λ(2)

min
]

4
= I

(L)
E−MacA. (66)

Similarly, we can upper bound IE−MacA by

IE−MacA ≤
2∑

k=1

log
[
1 + ρ0|αRk ,D|2λ(2)

max
]

4
= I

(U)
E−MacA. (67)

The upper-bound is not surprising since it means the performance of a 2 × 1 MISO system is bounded from
above by that of a MIMO system with two completely separated channels.

The fundamental reason behind the lower bound is because the matrix T̃E(ω) is positive definite for
arbitrary ω ∈ [−π, π]. This enables the channel of large block length as characterized by (44) has mutual
information at least as large as that of a two-user parallel Rayleigh fading channel, which takes a form of
∑2

k=1 log
(
1 + ρ0κ|αRk ,D|2

)
, where κ is a positive constant. Different finite values taken by κ, e.g. either

λ
(2)
max or λ(2)

min, have no effect on the diversity-multiplexing tradeoff function. Therefore, the channel between
two relay nodes and the destination when asynchronous space-time coding is employed is equivalent to a
two-user parallel fading channel in terms of the diversity-multiplexing tradeoff. This result is summarized
by Lemma 5.

Lemma 5. When both relay nodes succeed in decoding the source information and employ asynchronous

space-time codes across them, the outage probability Pr [IE−MacA < R, |D(s)| = 2] behaves asymptotically

as

Pr [IE−MacA < R, |D(s)| = 2] ∼ Pr

[
2∑

k=1

log
(
1 + ρ0κ|αRk ,D|2

)
< R

]
,

where κ is a positive constant.
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Proof. The proof is straightforward using lower bound and upper bound of IE−MacA in (66 ) and (67),
respectively.

The overall outage probability counting the direct link between source and its destination, as well as the
relay-destination link when |D(s)| = 2, can also be determined in a similar manner.

Theorem 8. Given asynchronous space-time codes are deployed by relay nodes when |D(s)| = 2, the

conditional outage probability of Pr [IA−stc < R||D(s)| = 2] has an asymptotic equivalence the same as

that of a parallel channel with 3 independent paths, i.e.

Pr [IA−stc < R||D(s)| = 2] ∼ S̃NR
−(3−2r) · 2

(
r log S̃NR

)2 ∏

k∈{S,R1,R2}

λ̃k,D, (68)

if a time limited waveform s(t) = 0, t /∈ [0, 2Ts] satisfying the condition outlined in Theorem 6 is employed.

Proof. To study the overall DM-tradeoff given |D(s)| = 2, we also need to bound IE−SD in (42). By making
αR2,D = 0 in (63), we obtain

IE−SD =
1

2π

∫ π

−π
log
[
1 + ρ0|αS,D|2 (1 + 2a1 cosω)

]
dω

= log
[
1 + ρ0|αS,D|2

]
+

1

2π

∫ π

−π
log

[
1 +

2ρ0|αS,D|2a1

1 + ρ0|αS,D|2 cosω

]
dω

= log
(
1 + ρ0|αS,D|2

)
+ log


1 +

√

1 −
(

2ρ0|αS,D|2a1

1 + ρ0|αS,D|2
)2

− 1 (69)

where the last equality is based on the integral equation (31). Since
∑2

k=1 ν̃k(ω) = 2 (1 + 2a1 cosω) > 0, it
always holds for a to satisfy |a| < 1/2, which justifies the second equation above. Therefore, the bounds of
IE−SD are

I
(L)
E−SD

4
= log

(
1 + ρ0|αS,D|2

)
− 1 < IE−SD ≤ log

(
1 + ρ0|αS,D|2

) 4
= I

(U)
E−SD. (70)

Bounds on IE−MacA and IE−SD as shown in (66), (67) and (70), respectively, can thus yield bounds
on the whole link outage probability Pr

[
1
2 (IE−SD + IE−MacA) < r log SNR

]
when relays are all in D(s).

Comparing these bounds, we can conclude the lower and upper bounds of the overall outage probability has
the same order of diversity-multiplexing tradeoff as a system with 3 parallel independent Rayleigh fading
channels whose mutual information takes the form of 1

2

∑
j=∈{S,R1,R2}

log
[
1 + ρ0|αj,D|2

]
. Hence, when

the decoding set includes both relay nodes, the overall outage probability has the following asymptotic equiv-
alence,
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Pr [IA−stc < R||D(s)| = 2] ∼ Pr


1

2

∑

j=∈{S,R1,R2}

log
[
1 + ρ0|αj,D|2

]
< R(SNR)


 . (71)

Following the same approach as in Section 3.1, we obtain

Pr


 ∑

j=∈{S,R1,R2}

1

2
log
[
1 + ρ0|αj,D|2

]
< R


 ∼ Pr

[
S̃NR

P
i∈{S,R1,R2}

(1−βi,D)+

< S̃NR
2r
]

=

∫

βk,D∈Â

(
log S̃NR

)3 ∏

k∈{S,R1,R2}

S̃NR
−βk,D

λ̃k,D

exp
{
−λ̃kS̃NR

−βk,D
}
dβk,D

∼
∫

βk,D∈Â

(
log S̃NR

)3 ∏

k∈{S,R1,R2}

S̃NR
−βk,D

λ̃k,D dβk,D

∼ S̃NR
−(3−2r) · 2

(
r log S̃NR

)2 ∏

k∈{S,R1,R2}

λ̃k,D, (72)

where

Â =





∑

k∈{S,R1,R2}

(1 − βk,D)+ < 2r, βk,D ≥ 0



 , (73)

and the last asymptotic relationship is obtained similarly as (13). Combining (71) and (72) thus completes
the proof of Theorem 8.

Therefore, if s(t) lasting for two symbol periods satisfies the condition in Theorem 7, and two relay
nodes both successfully decode the source codewords, the rate of the outage probability approaching zero
as SNR goes to infinity is SNR−3+2r, r ∈ [0, 1/2] which is better than SNR−3+4r in Lemma 3. This result
explicitly demonstrates the benefit of employing asynchronous space-time codes under the presence of relay
asynchronism in terms of DM-tradeoff.

Having obtained the asymptotic behavior of outage probability when two relay nodes are both in the
decoding set D(s), we now shift our focus towards the overall DM-tradeoff averaged over all possible out-
comes of D(s). We prove next that the overall DM-tradeoff is dA−stc(r) = 3 − 6r which is equal to that
for both independent coding based distributed delay diversity and synchronous space-time coded cooperative
diversity schemes.

Theorem 9. When the time-limited waveform s(t) = 0, t /∈ [0, 2Ts] satisfies conditions specified in Theo-

rem 7, the DM-tradeoff of asynchronous space-time-time coded approach is

dA−stc(r) = lim
SNR→∞

− log (Pr [IA−stc < R (SNR)])

log SNR
= 3(1 − 2r) = dstc(r), 0 ≤ r < 1/2. (74)
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Proof. When no relay succeeds in decoding or only one of two relay nodes has decoded correctly, the overall
capacity takes the form of either IA−stc = IE−SD/2 or IA−stc = [IE−SD + IE−RD] /2, where IE−SD was
obtained in (69) and IE−RD has a similar expression as IE−SD except fading variable αS,D is substituted by
αR,D in (69).

We can therefore infer based on lower and upper bounds in (70) that the conditional outage probability
Pr [IA−stc < r log SNR, |D(s)| = j] has the asymptotic term determined by SNR−(3−6r) and SNR−(3−4r) for
j = 0 and j = 1, respectively, which are the same as both synchronous space-time coded and independent
coding based distributed delay diversity schemes.

Meanwhile, the vanishing rate of Pr [IA−stc < r log SNR, |D(s)| = 2] towards zero is subject to SNR−(3−2r),
as demonstrated by Theorem 8. However, the performance improvements using asynchronous space-time
codes across two relays is not going to be reflected in the overall DM-tradeoff function because the dominant
term among SNR−(3−6r), SNR−(3−4r) and SNR−(3−2r) for r ∈ [0, 1/2] is SNR−(3−6r). Consequently, we
conclude the overall DM-tradeoff is dA−stc(r) = 3 − 6r and thus complete the proof of Theorem 9.

3.3.4 Comparison with Synchronous Approach Under Arbitrary SNR

In order to further demonstrate the benefits of completely exploiting spatial and temporal degrees of freedom
by using asynchronous space-time codes, we investigate the performance improvements in terms of achiev-
able rate for the channel between two relay nodes and destination under an arbitrary finite SNR. We restrict
our attentions to a particular case when the baseband waveform s(t) is limited within one symbol period, i.e.
s(t) = 0 for t /∈ [0, Ts].

Theorem 10. If s(t) is time-limited within one symbol period and selected to make T̃E(ω) a positive definite

matrix for all ω ∈ [−π, π] in (63), the mutual information rate between two relay nodes and destination is

strictly greater than that with synchronous space-time coded approach for any SNR, i.e.

IE−MacA > log
[
1 + ρ0

(
|αR1,D|2 + |αR2,D|2

)]
= ISTC , (75)

for any SNR.

Proof. Consider the term
∑2

k=1 ν̃k(ω) in (63) which is the sum of eigenvalues of the matrix T̃E(ω) satisfying
∑2

k=1 ν̃k(ω) = Trace
(
T̃E(ω)

)
. If s(t) is time-limited within one symbol period and selected to make

T̃E(ω) a positive definite matrix for all ω ∈ [−π, π], we have Trace
(
T̃E(ω)

)
= 2 and ν̃k(ω) > 0, as shown

in Appendix A.4. Under these conditions, we obtain

IE−MacA >
1

2π

∫ π

−π
log

[
1 +

ρ0

2

(
|αR1,D|2 + |αR2,D|2

) 2∑

k=1

ν̃k(ω)

]

= log
[
1 + ρ0

(
|αR1,D|2 + |αR2,D|2

)]
= ISTC , (76)
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which demonstrates IE−MacA is strictly larger than the capacity of a 2 × 1 MISO system employing syn-
chronous space-time codes in a frequency flat fading channel, i.e. asynchronous space-time codes increases
the capacity of the MISO system.

If s(t) is a truncated squared-root-raise-cosine waveform spanning over M > 1 symbol periods with
M ∈ Z+, it has been shown in Appendix A.4 that if Trace

(
T̃E(ω)

)
≈ 2 and ν̃k(ω) > 0 for some M and

s(t), a similar result as (76) can be obtained as well,

IE−MacA >
1

2π

∫ π

−π
log

[
1 +

ρ0

2

(
|αR1,D|2 + |αR2,D|2

) 2∑

k=1

ν̃k(ω)

]

≈ log
[
1 + ρ0

(
|αR1,D|2 + |αR2,D|2

)]
. (77)

Of course, when M increases, the memory length of the equivalent vector ISI channel increases as well,
as shown by Eq. (44), which naturally increases the decoding complexity. This manifests the cost incurred for
having a better diversity-multiplexing tradeoff and higher mutual information than the synchronous space-
time-coded scheme. Therefore, a time-limited root-mean-squared (RMS) waveform lasting for only one
symbol period is preferred under the bandwidth constraint [41].

3.3.5 Extensions to N-Relay Network

Although the channel model we have focused on in this paper concerns only with two relay nodes, the
methodologies and major ideas behind our approaches to attaining DM-tradeoff can be applied to cases of
relay network with N > 2 relay nodes.

For example, when asynchronous space-time code is employed across N ≥ M > 2 relay nodes, the
mutual information between these M active relay nodes and destination can be obtained using the similar
technique in proving Theorem 6. In addition, similar conditions as in Theorem 7 under which we have strictly
positive definite matrix can be developed as in [43] such that we can also bound the mutual information as
we did in (66) and (67). Consequently, we can foresee the relay-destination link is equivalent to a parallel
channel withM independent links in terms of DM-tradeoff function. As for the overall DM-tradeoff function
after averaging out all possible outcomes of decoding set of relay nodes, we will arrive at the same conclusion
as two-relay network due to the same bottleneck caused by an empty decoding set.

3.4 Bottleneck Alleviation with Mixing Approach

As demonstrated in Section 3.2 and Section 3.3, there exists a bottleneck case dominating the overall DM-
tradeoff function. This is mainly caused by the slowly vanishing rate of the outage probability when no relay
node succeeds in decoding the source packets, and consequently the destination node only has access to the
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packets sent by source directly. For all schemes we have proposed, we assume an orthogonal channel allo-
cation strategy in which source transmits only in the first phase and relays forward packets after they decode
the source messages correctly in the second phase. This orthogonal channel allocation is the fundamental
reason of why the valid range of multiplexing gain r is confined over an interval [0, 1/2].

To address the aforementioned issue of restricted multiplexing gain, Dynamic Decode and Forward
(DDF) and Non-orthogonal Amplify and Forward (NAF) schemes are proposed in [16], through which the
overall DM-tradeoff is improved . Both of these two schemes allow source to continuously transmit during
an entire frame. In the DDF scheme, relays do not forward until they collect sufficient energy to decode the
source signals. In the NAF scheme, relays forward the scaled received source signals in alternative intervals.
The resulting overall DM-tradeoff of these schemes are

dNAF (r) = (1 − r) +K (1 − 2r)+ , 0 ≤ r ≤ 1, (78)

and

dDDF (r) =





(K + 1)(1 − r) 0 ≤ r ≤ 1
K+1

1 + K(1−2r)
1−r

1
K+1 ≤ r ≤ 1

2
1−r

r
1
2 ≤ r ≤ 1

, (79)

where K is the number of relay nodes in the system and x+ = max(x, 0).
In this section, without requiring to lengthen the transmission time of source node as [16] puts forward,

we propose a mixing strategy which outperforms both DDF and NAF schemes for some multiplexing gain
r ∈ [0, 1/2] by exploiting the superior DM-tradeoff of the asynchronous space-time coded approach as
demonstrated in Section 3.3.

3.4.1 One-Relay Case

First suppose there is only one relay node between NS and ND and there are two phases in transmission as
assumed in Section 2. The proposed mixing strategy works as follows. Assume the channel fading parameter
αS,R can be measured perfectly at a relay node such that it can determine whether there will be an outage
given current channel realizations. If there is no outage, the relay node works similarly as described in previ-
ous sections by performing decode-and-forward; otherwise, instead of dropping the received source packets,
relay amplify-and-forwards the incoming source signals with an amplifying coefficient β =

√
P

P |αS,R|2+N0

to maintain its constant transmission power. It turned out the overall diversity-multiplexing tradeoff can be
improved by this mixing scheme as shown next.

It has been proved in [8] that the AF and selection decode-and-forward schemes for a single relay network
have the same DM-tradeoff function: dAF (r) = dDF = 2(1 − 2r), for r ∈ [0, 1/2]. Applying the similar
analytical approach as in Section 3.1, the outage probability for a relay channel with only one relay node
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performing the decode-and-forward has an asymptotic equivalence consisting of two terms:

Pout ∼ A · SNR−(2−2r) +B · SNR−2(1−2r), (80)

where the first term is contributed by relay’s successful decoding and then independent encoding over suc-
cessive two phases, the second term is due to relay’s dropping of the received signals because of its failure in
decoding phase, A and B are some finite constants. Therefore, the overall DM-tradeoff is dDF (r) = 2 − 4r

due to the dominance of the slope 2 − 4r for r ∈ [0, 1/2].
Under the proposed mixing strategy, the slope in the first term of (80) is not affected when relay succeeds

in decoding. The second term is, however, changed to SNR−(1−2r)−(2−4r) , where (1 − 2r) is the slope
characterizing the vanishing rate of the probability of |D(s)| = 1 as derived in (11) in Section 3.1, and
(2 − 4r) is the slope for the AF scheme. Therefore, the mixing scheme has an overall DM-tradeoff

dM−AF,K=1(r) =

{
2 − 2r, 0 ≤ r ≤ 1/4

3 − 6r, 1/4 < r ≤ 1/2
(81)

which is strictly greater than dDF (r) = 2− 4r for any r ∈ (0, 1/2), and thus shows the advantage of mixing
the amplify-and-forward scheme with the decode-and-forward scheme.

When K = 1, the DM-tradeoff of NAF is dNAF (r) = 2 − 3r, 0 ≤ r ≤ 1/2 from (78). It shows
NAF is dominated by M-AF for 0 ≤ r ≤ 1/3. As for the DDF scheme, the diversity gain is dDDF (r) =

2(1 − r) ≥ dM−AF (r). The preceding comparison is illustrated by Figure 2, which further features the
benefits of applying the proposed mixing strategy.

3.4.2 Two-Relay Case

In this section, we generalize the idea of mixing strategy to a two-relay case, where we show mixing approach
can even outperforms the DDF scheme for some subset of multiplexing gain r. The result is stated in the
following Theorem:

Theorem 11. The overall DM-tradeoff dM−AF,K=2(r) of a two-relay channel under our proposed mixing

strategy is

dM−AF,K=2(r) =

{
3 − 2r, 0 ≤ r ≤ 1

6

4 − 8r, 1
6 ≤ r ≤ 1

2 .
(82)

Proof. The proof relies on the mixing protocol which exploits the DM-tradeoff for asynchronous cooperative
diversity schemes studied in Section 3.2 and Section 3.3. The mechanism of the proposed protocol for this
2-relay node M-AF scheme is subject to the outcome of decoding at two relay nodes.

When both relay nodes fail in decoding i.e. |D(s)| = 0, only one of them employs AF and an-
other one drops the received signals. In this case, the conditional outage probability has Pout||D(s)|=0 ∼
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SNR−2(1−2r)−(2−4r), where 2(1 − 2r) is the absolute slope of the probability of {|D(s)| = 0} and (2 − 4r)

is the slope of the outage probability under AF.
If |D(s)| = 1, WLOG, suppose NR2

fails and NR1
succeeds in decoding. Thereafter, NR1

performs
decode-and-forward employing a complex Gaussian codebook independent of the source codebook, while
node 2 applies AF forwarding a scaled copy of the received signal. The outage probability given one node
is in the decoding set has an asymptotic equivalence Pout||D(s)|=1(M − AF,K = 2) ∼ SNR−(1−2r)−l0(r),
where (1 − 2r) is the slope for the probability of {|D(s)| = 1} and l0(r) represents the vanishing rate of the
outage probability in an equivalent channel between NS and ND across two relay nodes. Next, we look into
the bounds on l0(r) under different assumptions on the relative delay τ and show 3 − 6r ≤ l0(r) ≤ 3 − 4r.

If the relative delay τ between two relays is in the order of an integer number of symbol periods, since
NR2

employs the same codewords as the source which is independent of what NR1
transmits, the slope l0(r)

is expected to lie between that of the repetition coding based distributed delay diversity and independent
coding based delay diversity schemes, which are 3 − 6r and 3 − 4r, respectively, as derived in Section 3.2.
Therefore,we have 3 − 6r ≤ l0(r) ≤ 3 − 4r in this case.

If |τ |/Ts is a non-integer and s(t) satisfies the condition specified in Theorem 7, the relay-destination link
is equivalent to a two-user parallel flat fading channel in terms of DM-tradeoff. Consequently, the mutual in-
formation of the entire link in this case has an asymptotic equivalence the same as 1

2

[
IAF + log

(
1 + ρ0|αR2,D|2

)]
,

where IAF is the mutual information for an AF scheme taking the form of log
[
1 + ρ0(|α1|2 + |α2|2)

]
as

shown in [8], where α1 and α2 are independent complex Gaussian random variables. Therefore, we obtain
l0(r) = 3 − 4r, the asymptotic term characterizing the vanishing rate of the synchronous space-time-coded
diversity scheme when two relay nodes are both in the decoding set, as determined by Lemma 3.

The preceding analysis thus yields 3 − 6r ≤ l0(r) ≤ 3 − 4r and leads us to

SNR−(4−8r) <∼ Pout||D(s)|=1(M −AF,N = 3)
<∼ SNR−(4−6r), r ∈ [0, 1/2]. (83)

If two relay nodes both succeed in decoding i.e. |D(s)| = 2, the overall DM-tradeoff is equal to the
asynchronous space-time-coded cooperative diversity approach yielding Pout||D(s)|=2 ∼ SNR−(3−2r) under
τ ∈ (0, Ts) and s(t) satisfying the condition in Theorem 7.

Putting all cases together, we can determine the overall DM-tradeoff averaged over all possible out-
comes of the decoding set D(s), which is subject to the dominant term among {SNR−(4−8r),SNR−(4−6r),

SNR−(3−2r)} subject to r. For r ∈ [0, 1/6], SNR−(3−2r) is the slowest one, hence, dM−AF,N=3(r) = 3−2r;
for r ∈ (1/6, 1/2], SNR−(4−8r) is the dominant one, we have dM−AF,N=3(r) = 4 − 8r. We thus complete
the proof of Theorem 11.

From this case study, we can conclude the mixing strategy does improve the DM-tradeoff over the pure
decode-and-forward approach having dA−stc = 3 − 6r. Moreover, comparing (82) with (79) and (78) for
K = 2, we find the proposed mixing strategy outperforms DDF and NAF for r ∈ [0, 1/5], and r ∈ [0, 1/3],
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respectively, as shown in Figure 3. This observation demonstrates in order to improve the overall DM-
tradeoff for cooperative diversity schemes in relay channels, we need to consider approaches which not only
relax the restriction on the source to transmit only half of the total degrees of freedom as DDF and NAF in
[16], but also exploit advantages of employing asynchronous coded schemes as demonstrated above using
the proposed mixing strategy.

4 Conclusions

In this paper, we first show the lower-bound of the diversity-multiplexing tradeoff developed by [9] is actually
the exact value for a synchronous space-time coded cooperative diversity scheme. We then propose two asyn-
chronous cooperative diversity schemes, namely, independent coding based distributed delay diversity and
asynchronous space-time coded relaying schemes. In terms of the overall DM-tradeoff, both of them achieve
the same performance as the synchronous one, which demonstrates even at the presence of unavoidable asyn-
chronism between relay nodes, we don’t loose diversity. Moreover, when all relay nodes succeed in decoding
the source information, the asynchronous space-time coded approach achieves better DM-tradeoff than the
synchronous scheme does and performs equivalently to transmitting information through a parallel fading
channel as far as the diversity order is concerned. Table 1 summarizes the results regarding the slope of con-
ditional outage probability with respect to high SNR given 0 ≤ |D(s)| ≤ 2 number of relay nodes available to
forward. The acronyms are defined as: S-STC, Synchronous Space-Time Coded scheme (Section 3.1); ICB-
DD, Independent Coding Based Distributed Delay diversity (Section 3.2.1); RCB-DD, Repetition Coding
Based Distributed Delay diversity (Section 3.2.2); ICB-DD-L, Independent Coding Based Distributed De-
lay diversity with Linearly modulated waveforms(Section 3.2.3); A-STC, Asynchronous Space-Time Coded
scheme (Section 3.3). Figure 4 provides a comparison of slope functions listed in Table 1.

In analyzing the asymptotic performance of various approaches, a bottleneck on the overall DM-tradeoff
in relay channels is identified. It is caused by restricting source to transmitting only in the first phase and
relay nodes to employing decode-and-forward strategy. A simple mixing strategy is proposed to address this
issue. By comparing it with the NAF and DDF proposed by [16], we show the mixing strategy achieves
higher diversity gain than both DDF and NAF over certain range of the multiplexing gain r even though we
still let source transmit only half of an entire frame.

As observed in Section 3.3, employing properly designed s(t) of a finite duration Ts can even lead to
higher mutual information than synchronous space-time codes for any SNR. This reveals the advantage of
fully exploiting both spatial and temporal degrees of freedom in MIMO systems by employing asynchronous
space-time codes even in a frequency non-selective fading channel. The design of s(t) and asynchronous
space-time codes, as well as the corresponding performance analysis is beyond the scope of this paper and
will be addressed in our future work.
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A Appendix

A.1 Proof of Lemma 1

Proof. For each subsetAi of Ã =
⋃4

i=1 Ãi as defined in Section 3.1, we calculate the corresponding integrals
in (14) individually.
Over Ã1 = {βS,D ≥ 1, βR1 ,D ≥ 1}, we have

∫

βi,D∈Ã1

(
log S̃NR

)2 ∏

k∈{S,R1}

S̃NR
−βk,D

λ̃k,D dβk,D =
∏

k∈{S,R1}

λ̃k,D

[∫ ∞

1
S̃NR

−α
(
log S̃NR

)
dα

]2

=
∏

k∈{S,R1}

λ̃k,D
1

S̃NR
2 . (84)

Over Ã2 = {βS,D ≥ 1, 1 − 2r < βR1,D < 1} or Ã3 = {1 − 2r < βS,D < 1, βR1 ,D ≥ 1} the integral is

∫

βi,D∈Ãi

(
log S̃NR

)2 ∏

k∈{S,R1}

S̃NR
−βk,D

λ̃k,D dβk,D =
∏

k∈{S,R1}

λ̃k,D

∫ ∞

1

∫ 1

1−2r
S̃NR

−(α1+α2)

·
(
log S̃NR

)2
dα2 dα1

=
∏

k∈{S,R1}

λ̃k,D

(
S̃NR

)2r
− 1

S̃NR
2 , i = 2, 3. (85)

Over Ã4 = {0 ≤ βk,D < 1,
∑

k∈{S,R1}
βk > 2 − 2r}, we obtain

∫

βi,D∈Ã4

(
log S̃NR

)2 ∏

k∈{S,R1}

S̃NR
−βk,D

λ̃k,D dβk,D =
∏

k∈{S,R1}

λ̃k,D

∫ 1

1−2r

∫ 1

2−2r−α1

S̃NR
−(α1+α2)

·
(
log S̃NR

)2
dα2 dα1

=
∏

k∈{S,R1}

λ̃k,D

[(
2r log S̃NR − 1

)
·

(
S̃NR

)−(2−2r)
− S̃NR

−2
]
. (86)

Combining (84)-(86), we obtain the RHS of (16)
∫

βi,D∈Ã

(
log S̃NR

)2 ∏

k∈{S,R1}

S̃NR
−βk,D

λ̃k,D dβk,D =
∏

k∈{S,R1}

λ̃k,D

(
1 + 2r log S̃NR

)(
S̃NR

)−(2−2r)

∼
(
2r log S̃NR

)(
S̃NR

)−(2−2r) ∏

k∈{S,R1}

λ̃k,D, (87)

which completes the proof of Lemma 1.
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A.2 Proof of Lemma 3

Proof. To derive the asymptotic equivalence of Pr [Istc < R, |D(s)| = 2], WLOG, assume λ̃R1,D > λ̃R2,D

and denote y =
∑

k∈D(s) |α̃k,D|2. The probability density function (pdf) of y is

p(y) =
λ̃R1,Dλ̃R2,D

λ̃R1,D − λ̃R2,D

(
e−λ̃R2,Dy − e−λ̃R1,Dy

)
, y ≥ 0.

Define a normalized random variable βR,D = − log y

log gSNR
whose pdf is

p(βR,D) =
λ̃R1,Dλ̃R2,D

λ̃R1,D − λ̃R2,D

exp
{
−λR2,DS̃NR

−βR,D
}
·

[
1 − exp

{
−
(
λ̃R1,D − λ̃R2,D

)
S̃NR

−βR,D
}]

·
(
log S̃NR

)
S̃NR

−βR,D

∼ λ̃R1,Dλ̃R2,D

(
log S̃NR

)
S̃NR

−2βR,D
, (88)

for large S̃NR and βR,D ≥ 0. The conditional outage probability given two relay nodes are both in the
decoding set D(s) is

Pr [Istc < R||D(s)| = 2] ∼
∫

βi,D∈Â

(
log S̃NR

)2
S̃NR

−βS,D−2βR,D
∏

k∈{S,R1,R2}

λ̃k,D dβS,DdβR,D, (89)

where

Â =



β :

∑

i∈{S,R}

(1 − βi,D)+ < 2r, βi,D ≥ 0



 .

By employing the same method as the one through which (16) is obtained, it can be shown that

Pr [Istc < R||D(s)| = 2] ∼ 2
∏

k∈{S,R1,R2}

λ̃k,D

(
S̃NR

)−3+4r
[
1 − 1

2

(
S̃NR

)−2r
]

∼ 2
∏

k∈{S,R1,R2}

λ̃k,D

(
S̃NR

)−3+4r
. (90)

As for the probability of |D(s)| = 2, we have Pr [|D(s)| = 2] ∼ 1 resulting from (11). Thus, the overall
conditional outage probability is

Pr [Istc < R, |D(s)| = 2] ∼ 2
∏

k∈{S,R1,R2}

λ̃k,D

(
S̃NR

)−3+4r
,

which completes the proof of Lemma 3.
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A.3 Proof of Theorem 5

Proof. Given |D(s)| = 2, the canonical receiver for the resulting equivalent 2-path fading channel consists
of a whitened matched filter (WMF) and a symbol rate sampler [46]. The Fourier transform of the impulse
response of this equivalent channel is F (f) = H(f)S(f), where H(f) =

∑
k αRk,De

−j2πfτk and S(f) is
the Fourier transform of s(t). The mutual information of this 2-path fading channel given {αRk ,D = rke

jθk}
is [46, pp. 2597]

I2−TDA =
1

2π

∫ π

−π
log
[
1 + ρ0|Shh(ω)|2

]
dω, (91)

where |Shh(ω)|2 =
∑

k h(k)e
jkω is the discrete Fourier transform of h(k), which is the sampling output of

the matched filter for F (t) = s(t)αR1,D + s(t− τ)αR2 ,D, i.e.

h(k) =

∫ ∞

−∞
F (t)F ∗(t− kTs) dt,

with τ = τ2 − τ1 denoted as the relative delay. WLOG, we assume τ ∈ (0, Ts] [41]. Due to the time-limited
constraint on s(t), we obtain hk = 0 for |k| ≥ 2, and

h(0) = |αR1,D|2 + |αR2,D|2 + ρ12

(
αR1,Dα

∗
R2,D + αR2,Dα

∗
R1,D

)
(92)

and
h(1) = αR2,Dα

∗
R1,Dρ21, h(−1) = αR1,Dα

∗
R2,Dρ21, (93)

where ρ12 and ρ21 are correlation coefficients of s(t) determined by ρ12 =
∫ Ts

0 s(t)s(t − τ) dt and ρ21 =
∫ Ts

0 s(t)s(t + Ts − τ) dt. From Cauchy Schwartz inequality and
∫ Ts

0 |s(t)|2 dt = 1, we have |ρ12| < 1 and
|ρ21| ≤ 1 for τ ∈ (0, Ts], and

|ρ12| + |ρ21| =

∣∣∣∣
∫ Ts

0
s(t)s(t− τ) dt

∣∣∣∣+
∣∣∣∣
∫ Ts

0
s(t)s(t+ Ts − τ) dt

∣∣∣∣

≤
∫ Ts

0
|s(t)| (|s(t− τ)| + |s(t+ Ts − τ)|) dt

≤
[∫ Ts

0
|s(t)|2 dt

]1/2 [∫ Ts

0
(|s(t− τ)| + |s(t+ Ts − τ)|)2 dt

]1/2

= 1. (94)
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Substituting h(k) into |Shh(ω)|2 yields

I2−TDA =
1

2π

∫ π

−π
log
[
1 + ρ0

(
|αR1,D|2 + |αR2,D|2 + αR1,Dα

∗
R2,D(ρ12 + ρ21e

jω)

+ α∗
R1,DαR2,D(ρ12 + ρ21e

−jω)
)]
dω

=
1

2π

∫ π

−π
log
[
1 + ρ0

(∣∣αR1,D + αR2,D(ρ12 + ρ21e
−jω)

∣∣2

+|αR2,D|2
(
1 −

∣∣ρ12 + ρ21e
−jω
∣∣2
))]

dω

=
1

2π

∫ π

−π
log [1 + a+ b cos(θ1 − θ2 + ω)] dω

= log
[
1 + a+

√
(1 + a)2 − b2

]
− 1 (95)

where the last equality is from Eq. (31) with a and b defined as:

a = ρ0

(
|r1|2 + |r2|2 + 2ρ12r1r2 cos(θ1 − θ2)

)

= ρ0

(
|αR1,D + αR2,Dρ12|2 + |αR2,D|2(1 − |ρ12|2)

)

b = 2ρ21r1r2ρ0. (96)

Given |ρ12| + |ρ21| ≤ 1, it can be shown a ≥ b and a ≥ 0 which enables us to bound I2−TDA in (95) by

I
(L)
2−TDA

4
= log [1 + a] − 1 ≤ I2−TDA ≤ I

(U)
2−TDA

4
= log [1 + a] . (97)

Define random variables X1 = αR1,D + αR2,Dρ12 and X2 = αR2,D

√
1 − |ρ12|2. We can then rewrite

I
(U)
2−TDA = log

[
1 + ρ0(|X1|2 + |X2|2)

]
and I

(L)
2−TDA = log

[
1 + ρ0(|X1|2 + |X2|2)

]
− 1. Clearly, the

vector [X1, X2]
′ is a linear transformation of the random vector [αR1 ,D, αR2,D]′, i.e.

[
X1

X2

]
=

[
1 ρ12

0
√

1 − |ρ12|2

][
αR1,D

αR2,D

]
= B

[
αR1,D

αR2,D

]
= B

[
σR1,D 0

0 σR2,D

][
α̂R1,D

α̂R2,D

]
, (98)

where

B =

[
1 ρ12

0
√

1 − |ρ12|2

]
,

and the entries of [α̂R1,D, α̂R2,D]
′

are i.i.d. complex Gaussian random variables with zero mean and unit
variance. Define a upper-triangle matrix

A = B

[
σR1,D 0

0 σR2,D

]
.

The matrix A can therefore be decomposed as A = UDAU† using singular value decomposition, where
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U is a unitary matrix and DA = diag
[
σR1,D, σR2,D ·

√
1 − |ρ12|2

]
is a diagonal matrix whose diagonal

entries are the eigenvalues of the upper-triangular matrix A. Decomposing A as such, we obtain |X1|2 +

|X2|2 = |α̃R1
|2 + |α̃R2

|2
√

1 − |ρ12|2, where [α̃R1
, α̃R2

]′ is a vector having the same joint distribution as
[αR1,D, αR2,D]. Given the bounds on I2−TDA, the overall mutual information IL−TDA can be bounded
accordingly as IL−TDA ∈ [I

(L)
L−TDA, I

(U)
L−TDA], where I(L)

L−TDA and I(U)
L−TDA are

I
(L)
L−TDA =

1

2
log
(
1 + ρ0|αS,D|2

)
+

1

2
log
[
1 + ρ0|α̃R1

|2 + ρ0|α̃R2
|2
√

1 − |ρ12|2
]
− 1 (99)

and
I
(U)
L−TDA =

1

2
log
(
1 + ρ0|αS,D|2

)
+

1

2
log
[
1 + ρ0|α̃R1

|2 + ρ0|α̃R2
|2
√

1 − |ρ12|2
]
. (100)

As shown previously, given
∫ Ts

0 |s(t)|2 dt = 1, for any τ ∈ (0, Ts], we have |ρ12| < 1 and thus 1 −
|ρ12|2 > 0 which implies the asymptotic behavior of outage probabilities Pr

[
I
(U)
L−TDA < R, |D(s)| = 2

]
and

Pr
[
I
(L)
L−TDA < R, |D(s)| = 2

]
is similar as the one characterized by Lemma 3 for synchronous space-time

coded cooperative diversity scheme. Therefore, applying the same techniques in proving Lemma 3 yields
(40) and thus Theorem 5 is proved.

A.4 Proof of Theorem 7

Proof. Denote S(t) = [s(t), s(t− τ)]T and Sw(t) =
∑2

k=−2 S(t− kTs)e
jkω, where s(t) = 0, t /∈ [0, 2Ts].

The matrix T̃E(ω) defined in (65) is :

T̃E(ω) =

2∑

k=−2

HE(k)e−jkω =

∫ ∞

−∞
S(t)S†

w(t) dt

=

∫ 3Ts

0
S(t)S†(t) dt+ e−j2ω

∫ Ts

0
S(t)S†(t+ 2Ts) dt

+ej2ω

∫ 3Ts

2Ts

S(t)S†(t− 2Ts) dt+ ejω
∫ 3Ts

Ts

S(t)S†(t− Ts) dt

+e−jω

∫ 2Ts

0
S(t)S†(t+ Ts) dt

=

∫ Ts

0

[
2∑

k=0

S(t+ kTs)e
jkω

][
2∑

k=0

S(t+ kTs)e
jkω

]†
dt, (101)

where the above equations are derived by exploiting the finite duration of s(t), as well as the definition of
parameters in (45)-(47). As implied by the last equation in (101), T̃E(ω) is a non-negative definite matrix.
This result can be extended in a similar manner to the case when s(t) spans over any arbitrary finite MTs

periods where M ≥ 1 is an integer, i.e. s(t) = 0, t /∈ [0,MTs]. Define S(M)
w (t) =

∑M
k=−M S(t− kTs)e

jkω.
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We obtain

T̃
(M)
E

(ω) =

∫ ∞

−∞
S(t)

(
S(M)

w (t)
)†

dt

=

∫ Ts

0

[
M∑

k=0

S(t+ kTs)e
jkω

][
M∑

k=0

S(t+ kTs)e
jkω

]†
dt, (102)

which is a non-negative definite matrix for M ≥ 1. Define F1(t, ω) =
∑M

k=0 s(t+ kTs)e
jkω and F2(t, ω) =

∑M
k=0 s(t− τ +kTs)e

jkω for all t ∈ [0, Ts] and ω ∈ [−π, π]. For a given t, F1(t, ω) and F2(t, ω) are the dis-
crete time Fourier transforms of sampled signals of s(t) and s(t−τ) at time instants {t+ kTs, k = 0, 1, · · · ,M},
respectively. If there exists a non-zero complex vector b = [b0, b1] such that bT̃(M)

E
(ω)b† = 0 for some ω,

it indicates T̃
(M)
E

(ω) has a zero eigenvalue for the specified ω, and thus we must have the following linear
relationship associated with Fj(t, ω): b0F1(t, ω) + b1F2(t, ω) = 0 for any t ∈ [0, Ts]. Therefore, if s(t)
is chosen to make F1(t, ω) and F2(t, ω) linearly independent with respect to t for any given ω, T̃

(M)
E

(ω) is
always positive definite satisfying bT̃(M)

E
(ω)b† > 0 for any non-zero b and ∀ω ∈ [−π, π]. Let

G(b, ω) = bT̃
(M)
E

(ω)b†

=

∫ Ts

0
|b0F1(t, ω) + b1F2(t, ω)|2 dt, ||b|| = 1, (103)

denote a continuous function of b and ω defined over a closed and bounded region, where ||b|| is the Euclidean
norm of b. Define

λ
(M)

min = inf
ω∈[0,2π],||b||=1

G(b, ω), λ
(M)
max = sup

ω∈[0,2π],||b||=1
G(b, ω)

By Weierstrass’ Theorem [47, pp. 654], the greatest lower bound λ
(M)

min and least upper bound λ
(M)
max of

G(b, ω) is attainable. Therefore, if s(t) is properly selected as specified above which results in positive
definite matrices T̃

(M)
E

(ω), λ(M)

min and λ(M)
max are achievable and both of them are positive. In addition, λ(M)

max
can be further upper-bounded by some finite constant as shown below:

λ
(M)
max(ω) = sup

||b||=1
bT̃

(M)
E

(ω)b†

≤ Tr
(
T̃

(M)
E

(ω)
)

= 2

M∑

k=−M

∫ ∞

−∞
s(t)s(t− kTs)e

−jkω dt

≤ 2
M∑

k=−M

∣∣∣∣
∫ ∞

−∞
s(t)s(t− kTs) dt

∣∣∣∣

≤ 2

M∑

k=−M

[∫ ∞

−∞
|s(t)|2 dt

]1/2 [∫ ∞

−∞
|s(t− kTs)|2 dt

]1/2

= 2(2M + 1), ω ∈ [0, 2π], (104)
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where the first and second inequalities are due to the positive definiteness of T̃
(M)
E

(ω), and Cauchy-Schwartz
inequality yields the third inequality. The last equality is because s(t) has unit energy.

When M = 2, this proves Theorem 7. When M = 1, i.e. the waveform s(t) is confined within
one symbol interval, the condition stated in [43, pp. 4] is a special case of our result which reduces to
the following condition for M = 1: s(t) and s(t − τ) + s(t − τ + Ts)e

jω are linearly independent with
respect to t ∈ [0, Ts] which is equivalent to s(t) and s(t + Ts − τ)ejω , as well as s(t) and s(t − τ) are
linearly independent over t ∈ [0, τ ] and t ∈ (τ, Ts], respectively. Also, we can observe from the second
equality in (104) that Tr

(
T̃

(M)
E

(ω)
)

= 2
∫ Ts

0 |s(t)|2 dt = 2 in this case. This fact will be exploited when
we compare the mutual information of a MISO channel using asynchronous space-time codes with that
employing synchronous space-time codes.

Actually, the condition under which T̃
(1)
E

(ω) is positive definite can be further exposed by looking more
closely at the parameters defined in (45)-(47) for s(t) = 0, t /∈ [0, Ts]. In this case, it is straightforward to
show that a1 = d1 = c2 = f1 = 0 for τ2 ≥ τ1. Therefore, the product of eigenvalues of the Hermitian
matrix T̃

(1)
E

(ω) is

(1 + 2a1 cosω)2 −
∣∣c1e−jω + c2e

−j2ω + c0 + f1e
jω
∣∣2 = 1 −

∣∣c0 + c1e
−jω
∣∣2 ≥ 0

where the inequality can be shown as follows. As defined in (45)-(47), c0 and c1 are correlation coefficients
of s(t) determined by c0 =

∫ Ts

0 s(t)s(t− τ) dt and c1 =
∫ Ts

0 s(t)s(t+ Ts − τ) dt. From Cauchy Schwartz
inequality and

∫ Ts

0 |s(t)|2 dt = 1,

|c0 + c1e
−jω| = |c0 + c1e

jω| =

∣∣∣∣
∫ Ts

0
s(t)

[
s(t− τ) + s(t+ Ts − τ)ejω

]
dt

∣∣∣∣

≤
[∫ Ts

0
|s(t)|2 dt

]1/2 [∫ Ts

0

∣∣s(t− τ) + s(t+ Ts − τ)ejω
∣∣2
]1/2

= 1 (105)

where the last equality is because s(t − τ) and s(t + Ts − τ) have no overlap over t ∈ [0, Ts], and the
inequality becomes equality when s(t) = C

[
s(t− τ) + s(t+ Ts − τ)ejω

]
where |C| = 1 is a constant.

This demonstrates only when s(t) and s(t− τ) + s(t− τ + Ts)e
jω are linearly independent with respect to

t ∈ [0, Ts] for any ω ∈ [−π, π], can we have a strict inequality in (105) which agrees with the condition on
s(t) in Theorem 7 and thus verifies it from another perspective for M = 1.

Note when the waveform s(t) is a truncated version of a squared-root-raised-cosine waveform [48] span-
ning over M symbol intervals such that

∫ (M+|k|)Ts

0 s(t)s(t − kTs) dt ≈ δk, where δ0 = 1 and δk = 0 for
k 6= 0, the sum of eigenvalues of the matrix can be approximated as Tr

(
T̃

(M)
E

(ω)
)
≈ 2. Again, this property

will be exploited when we compare the mutual information of two MIMO systems employing synchronous
and asynchronous space-time codes, respectively.
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Figure 2: Diversity-multiplexing tradeoff of cooperative diversity schemes. There is one relay node between
the source and its destination. Diversity gains dM−AF,N=2(r), dDDF (r) and dNAF (r) are obtained based on
(81), (79) and (78) for N = 2, respectively, and dA−stc(r) = 2 − 4r.
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Figure 3: Diversity-multiplexing tradeoff of cooperative diversity schemes. There are two relay nodes be-
tween the source and its destination. Diversity gains dM−AF,N=3(r), dDDF (r) and dNAF (r) are obtained
based on (82), (79) and (78) for N = 3, respectively, and dA−stc(r) = 3 − 6r is obtained in Section 3.3.
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|D(s)| S-STC ICB-DD RCB-DD ICB-DD-L A-STC
0, 0 ≤ r ≤ 1/2 3 − 6r 3 − 6r 3 − 6r 3 − 6r 3 − 6r

1 3 − 4r 3 − 4r 3 − 4r 3 − 4r 3 − 4r

2 3 − 4r ∈ [3 − 6r, 3 − 4r] ∈ [3 − 6r/∆1, 3 − 6r] 3 − 4r 3 − 2r

Overall DM-tradeoff 3 − 6r 3 − 6r ∈ [3 − 6r/∆1, 3 − 6r] 3 − 6r 3 − 6r

Table 1: Table of absolute values of the slope of conditional outage probability with respect to high SNR
under a given number of relay nodes available to forward, denoted by |D(s)|, where multiplexing gain is de-
noted by 0 ≤ r ≤ 1/2. The acronyms are defined as: S-STC, Synchronous Space-Time Coded scheme (Sec-
tion 3.1); ICB-DD, Independent Coding Based Distributed Delay diversity (Section 3.2.1); RCB-DD, Repe-
tition Coding Based Distributed Delay diversity (Section 3.2.2); ICB-DD-L, Independent Coding Based Dis-
tributed Delay diversity with Linearly modulated waveforms(Section 3.2.3); A-STC, Asynchronous Space-
Time Coded scheme (Section 3.3).
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Figure 4: Numerical Comparison of DM-tradeoff functions listed in Table 1 for 0 ≤ r ≤ 1/2 and ∆1 = 3/4.
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