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Abstract

Orthogonal frequency division multiplexing (OFDM) systeimave been used extensively
in wireless communications applications in recent yedrsstthere is significant interest in
analyzing the properties of the transmitted signal in syslesns. In particular, a large amount
of recent work has focused on analyzing the variation of ttragex envelope of the transmit-
ted signal and on designing methods to minimize this vaatin this paper, it is established
that the complex envelope of a bandlimited uncoded OFDMasigonverges weakly to a
Gaussian random process as the number of subcarriers gogsity. This establishes that
the properties of the OFDM signal will asymptotically apgech those of a Gaussian random
process over any finite time interval. The symbol length iraadlimited OFDM system will
eventually exceed any finite time interval as the number btatriers approaches infinity;
however, practical interest is in how asymptotic approxiores apply for a finite number of
carriers, and, hence, the convergence proof is reasonattigation for considering how the
extremal value theory of Gaussian random processes mighitder accurate approximations
for the distribution of the peak-to-mean envelope poweaoréPMEPR) of practical OFDM
systems. Indeed, numerical results are presented thabiedhat the resulting simple expres-
sions are accurate for a wide range of the distribution fodemate numbers of subcarriers.
The important extensions of the analytical and numericallte to coded OFDM systems are
also presented.
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sian random process, extreme value theory.
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1 Introduction

A major goal of modern communication systems is to allow ksgleed communication, regardless
of the location or mobility of the system users. Howeverstpoal is difficult to achieve due to
the multipath fading that affects wireless communicatimmals. One alternative for achieving
high-speed wireless communication in the presence of pattifading is to employ a multicarrier
system, generally implemented as an orthogonal frequertsiah multiplexing (OFDM) system
[1], in conjunction with error control coding. Such coded@W systems have emerged recently as
a strong competitor to single-carrier systems and have begioyed or are being considered for
a number of applications, including digital audio broad@a=l digital video broadcast in Europe
[2], wireless local area networks [3], broadband fixed vasslaccess [4], and cellular data [5].
One of the challenges to be overcome when employing an OFB#t&syin low-power peer-
to-peer wireless communication systems is that the comgrerlope of the transmitted OFDM
signal can demonstrate significant variation; in other 8piis$ peak-to-mean envelope power ratio
(PMEPR) can be much larger than that of an analogous siragteec system [1, 6]. This large
PMEPR can require significant backoff of the average opmygpower of the power amplifier
in the transmitter if it is to be operated in the linear regiarhich results in significant power
inefficiency [7, 8]. Thus, there has been a large body of warthe analysis of the variation of
the complex envelope of the OFDM signal and in methods toaedhis variation. Here, the
focus is on the analysis problem. Although not universatlg@zed (see [9] and [10, 12, 13, 14]
as examples of approaches that do not rely on such), mangtrpapers that have analyzed the
PMPER of the transmitted OFDM signal [15, 16, 17, 18] or ifees [19] often assume that the

complex envelope of the transmitted OFDM signal converges®me sense to a Gaussian random
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process as the number of subcarriers becomes large. Fopéxamthe work of [17] and [18], the
assumption of such convergence is used when studying thePRMlstribution to justify the use
of Rice’s level-crossing results for the envelope of a ca@rgbaussian random process [21].
However, there exists no rigorous investigation into tha@ting form of the complex envelope
of the transmitted OFDM signal, despite the theoretical prattical importance of such an en-
deavor. Thus, in this paper, a formal proof that a bandlich@®#DM signal converges weakly to
a Gaussian random process is established, and its impisafincluding what it doesot imply)
are considered. The main result of this paper is Theorem 2:
Theorem 2

Consider the complex signal

1 N-1 ]
sn(t) = —= D Ape?, @)
k=0

2

wherew,, = % T. € (0,00), and{ Ay, k = 0,---, N — 1} is an independent and identically

distributed (1ID) sequence of complex random variablesgnghthe real part4?) and imaginary
part (4) are bounded|@f| < A and|Al| < A), with E [Af] = E [Af] = 0, E[AFA]] = 0, and

£ |(4f)

=F [(Aé)Q] = ¢%. Then, asV — oo, for any closed and finite intervdl C R,
{sn(t), t € T} = {s(t), t € T}

where—Z- impliesconvergencein distribution ands(t) is a zero-mean stationary Gaussian random

process defined over the inten#@) with real partz(¢) and imaginary parg(¢) such that

Bllt)o(0)] = Ely(e)uiey)] = o*sine( 2010,

and

sin? ({410T)
2 T
Elx(t)yt;)] = 0" —=57—

Te

for all ¢; andt; in T'. The implied weak convergence of the underlying measures tise met-

ric space(Cr x Cr,p), whereCy is the space of continuous functions on the intefffaland
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7 ((x1,22), (Y1,¥2)) = max{p(x1,11), p(x2,y2)}, Wherexy, xs, y1, yo are inCr andp(z,y) =
supep |2(t) — y(t)]. O

Theorem 2 can then be used to prove the following analogaustri®r the complex baseband
representation of the transmitted signal in multicarnetems that are symmetric about the carrier
[17].
Theorem 3

Consider the complex signal:

1 =

VN(t) = \/—_ Z Akejwkt,

=0

[y

=

wherew, = 5 (k — %) and{A, k =0,---, N — 1} is as defined above. Then, as— oo,

for any closed and finite intervdl C R,
{Vu(t), t € Ty = {V(t), t € T}

whereV/ () is a zero-mean stationary complex Gaussian random proeéised over the interval

T with independent real and imaginary parts, each with autetagion function
. ti —t;
UQSII‘IC<(]T7)> . Vi, t;eT.

The implied weak convergence of the underlying measures te@metric spacéC'r x Cr,p) as
defined above in Theorem 2. O

Remarks: Note that we only assume uncorrelation betweghand AL in the theorems, not
the independence between the real and imaginary parts bfsaunbol [12]. This assumption
holds not only for quadrature amplitude modulation (QAMipstellations, but also for phase-shift
keying (PSK) constellations.

Using the assumption that the envelope of the transmitteBNDBignal is asymptotically
Gaussian, previous work [17, 18] has relied largely on thekwad Rice [21] to develop results
for the PMEPR distribution of the OFDM signal. The work of [Employs [21] in conjunction

with a number of approximations and a parameter obtainedigir simulation to arrive at a final
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expression for the PMEPR. The work of [18] finds lower and uggmeinds for the PMEPR distri-
bution through the use of extensive manipulation on top efésults found in [21]. However, even
Theorem 2 and Theorem 3 cannot be used to rigorously jusiifia exercises. In particular, since
the proof of weak convergence consists of demonstratingezgence over any finite interval and
the symbol period for a bandlimited OFDM signal approachésity as the number of subcarriers
goes to infinity, Theorem 2 and Theorem 3 cannot be appliedjasous justification for the work
in [17, 18]. And, unfortunately, the extension of Theorerm2 dheorem 3 to an infinite interval
has proved elusive.

However, since our true interest in practice is how resuiteimed from asymptotic behavior
apply for a finite number of subcarriers, Theorem 2 and Thaddanotivate the consideration of
the asymptotic properties of a Gaussian random processarsimulation results will firmly sup-
port such an endeavor. Given the Gaussianity of the sigater than following the complicated
approaches of [17] and [18], the modern theory of extremeesbf chi-squared random processes
(i.e. those corresponding to the envelope process of th@lesnGaussian process) is employed to
arrive in a straightforward manner at simple and accurapg@pmations to the PMEPR distribu-
tions for the envelope of the transmitted OFDM signal. Itésmbnstrated through simulation that
these simple and well-justified expressions are extrenmdyrate for a large part of the distribu-
tion, and, like the results in [17] and [18], apply surprgynwell for OFDM systems with only a
modest number of subcarriers.

After the presentation of the numerical results for unco@&®M systems, attention is turned
to coded systems. Because an OFDM system effectively forfasga number of frequency-
nonselective subchannels, it is well-known that uncode®KaFsystems will perform poorly on
wireless communication channels due to a lack of diverSitys, wireless OFDM systems almost
always employ some form of error control coding. This intiods statistical dependence among
the symbols placed on the subcarriers, and thus Theoremridbthe applied directly. However,
by invoking results from modern central limit theory for ssiof dependent random variables, it

is possible to prove Theorem 4, which generalizes the esfilTheorem 2 to most block coded



and convolutionally coded systems. The corresponding PRI@Rtribution approximation, which
relies only on correlation statistics and is identical te tincoded case for most codes, then follows
directly. Numerical results confirm the accuracy of the dedliexpressions for moderate numbers
of subcarriers.

This paper is organized as follows. Section 2 provides tlwfgsrof the main results of the
paper. First, Theorem 1, which establishes the appropeiateergence of the real part ef (),
is proven. Theorem 2 and Theorem 3 then easily follow, as ag&llTheorem 4, which extends
the results to coded OFDM systems. Section 4 performs thensixin of the results of previous
sections to uncoded OFDM systems with an unequal powerllistin across subcarriers, a situ-
ation studied extensively in [18]. Finally, Section 5 pmsea discussion of critical issues and the

conclusions of this work.

2 Proofsof theMain Theorems
2.1 Proofsof Theorems2 and 3

The following result can be used in a straightforward martagrove all of the theorems in this
paper. In particular, Lemma 2.3 contains the crux of the fsréar Theorems 2 and 3.
Theorem 1

Consider

X k k
TN Z(ARCOS< NTt) Aksm< NT. )) teT (2)

for any closed and finite interval C R, where the complex sequen¢d, = AZ + jAL k =
0,---,N — 1} is an independent and identically distributed (IID) seqeenf complex random
variables, where the real partf) and imaginary part4l) are bounded @f| < A and|AL| < A),
with £ [AF] = E[4]] = 0, E[ARAL] = 0, andE [(AkR)Q} —E {(Aﬁﬂ — o2 Then,

{an@), t €T} 2 {z(t), t € T}



wherez(t) is a zero-mean stationary random process definedBweith autocorrelation function

Ez(t;)x(t;)] = a%inc(@) , Vi, t; €.

The implied weak convergence of the underlying measures tiseé metric spacéC'r, p), where
C'r is the space of continuous functions on the inteVgndp(z, y) = sup,ep |2(t) —y(t)]. O

In this paper, all probabilities are defined on the probab#pace(Q2, 7, P), where} is the
outcome space¥ is theo-field on(2, andP is the probability measure defined &n Measurability
of the appropriate quantities is then easily establishéil [2

To prove convergence in distribution of a sequence of ranimiections{z y } to some{x(t),t €
T} in C, it is sufficient to show that the sequeney} is tight and that each of the finite-
dimensional distribution®y;, .., of xy converges weakly to the measuyrg ..., induced byx
on (Rk,R¥), for each(t, - - -, tx) [22, pg. 47].

The sequencézy } of random functions of’ is tight if and only it satisfies the following two
conditions [22, pg. 55]:

Condition 1.For each positive, there exists aa such that
P{len(0)| >a} <n, N>1 (3)
Condition 2.For each positive andn, there exists @, with 0 < ¢ < 1, and an integefV, such

that

Pq sup |zn(s) —an(t)|>ep <n, N > No. 4
s‘ftét[‘tff}
Condition 1 is easily established via the following lemmar Emmas in Section 2, proofs that
are omitted can be found in [20].
LemmaZ2.1

Let {xx} be defined as in (2). Then, for each positiveéhere exists aa such that

P{lzn(0)| >a} <n, N=>1 (5)
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O
Establishing Condition 2 is the crux of the entire proof sgia preliminary lemma is presented
and then Condition 2 is established. Note that only Lemmaés#icts the class of signals to
which the convergence results applies, and the OFDM sigifafgerest are shown to be part of
this class.
Lemma 2.2
uyea

4 2
Elo(t+h) oy <60, =5 (), ¥V 21

O
Proof: The proof can be found in [20]; however, the interested readéhave no problem adapt-
ing the proof of Lemma 4.1 below to this case.
Lemma 2.3 Let {zy} be defined as in (2). Then, for each positivandn, there exists a, with

0 < § < 1, and an integelN, such that

Pq sup |zn(s) —an(t)|>ep <n, N > No. (6)
thgt[‘(fﬁ

Proof:
Based on the proposition in [23, pg. 55-56], sidas;(t),t € T} € C, then every countable

setS dense inl" is a separating set, which means, with probability 1:

sup |zn(t) —zn(s)] = sup |zn(t) —zn(s)], 0<d<1 (7)
t,s€S t,se€T
|tfs€\<6 |tfs€\<6

Define the seb to be the set of dyadic rationals:

k
S:{2_n7k:0717"'72n_1;n:071727"'}7 (8)

k1) k
IN | W, o N w,QU

Define the random variables

ZM(w) = sup
0<k<2v—1

, w €, (9)




then [23, pg. 56],

sup oy (w, ) —an(w,8)[ <2 Y ZM (W), we (10)
t—s]<2-M v

where) is a positive integer. By employing (7) and (10),

Pl sup low(s)—an(®)]>cb = PY sup |en(s) —an(t)] > e
|t72’\t<€2T—M \tfiifi—M

P{ 3 Z§N>z%

v=M+1

< {0, frr= )

S 73{ng>2”(6>} (11)

v
v=M+1 q

IN

UH/—’

where D(¢) andq are constants. The constanwill be specified later, and the constante) can

be determined by the following equation ipr> 1:

o Dl _ e 1
T 2
From (9),
D(e)| 1 k+1Y k D(e)
P{ZiN)Z - } = P{Ogggzg_l xzv( 5 ) TN <2> > }
2= kE+1 k D(e)
< 2 (F) )T @

By Lemma 2.2 and Chebyshev’s inequality [24],

() o ()] 2 22) < ZerlE)on

G (D(e)/qv)?
B%)? B (&)
< T heE(T) 9
Then, from (13)
D(e) B ()
73{ 70 > 28 } < <5> (15)



Given (11) and (15), it < ¢ < V2,

s D
P osup an(s) —an(@)| >ep <Y P{Zém > (Ue)}
Tsan v=M+1 q
[t—s|<2-M
2\ M+1

s (%)

< N >1 1

S Bz V= (16)

By substituting inD(¢) from (12),

7
17
D(e) 1-£ oM (A7)
whereG(q) = [(1— 1/q)*- (1 - ¢*/2)] .
Thus, for any positive andr, selectl < ¢ < /2 and positive integeh/ to satisfy
8202
M > log, [EG( )| = log, [?)TCT%]G(Q)] ; (18)
and letd = 2= Then, the condition of (4) is satisfied:
Pq sup |zn(s) —an(t)| >ep <n, N>No=1
stel0]
Sinces andn were arbitrary, this establishes Condition 2. O

Hence, for the sequende y } in (2) of random functions of’, both Condition 1 and Condition
2 are satisfied, and thuscy} is tight [22, pg. 55]. Given Lemma 3, establishing Theorem 1
only requires a demonstration that the finite-dimensiofgttiution Py, ", of zx, which is
determined by the random vectory (t1), - - -, zn(tx)), converges weakly to the measurg ... ;,
induced byz on (R*, R¥), for each(t,, - - -, t;) [22, pg. 54]. First, a technical lemma is presented,
and then the Cramér-Wold Device [22, pg. 49] is employedstraightforward manner to establish
the result.

Lemmaz24

1 Nl ok /27
lim — = SINC| —
NS N ,;)COS<NTCT> (T)
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Lemma 2.5
Let zn(¢) be defined as in (2), and pick any integer> 1 and collection of sample times

{ti,t2,...,tL}. Then
Ly = (zn(t1),zn(te), ... an(te))” SN r,

wherel’ = (I';, T, ..., ') is anL-dimensional vector with jointly Gaussian components, mea

vector(, and covariance matriX, where the(i, ) element ot is given by

. 2(t; — t;

zi,j — E[FZF]] - JQSII‘]C<7( T j)> (19)
O

Proof:

Pick any integef. > 1 and collection of sample tim€$,, ¢,, . .., ¢, }. The Cramér-Wold Theorem

[22, pg. 49] will be employed below; thus, consider any Ineambination:

L
Zn => axn(ty)

=1

wherea,, as, . . ., ar, are real constants. Then,
1 N—-1 R k 1 N—-1 k L k
N = Z Al Zal cos (27r ) - AkZal sin (27?—151)
\/_ k=0 NT. \/N k=0 =1 NT.
1 N-1 R 1 N-1
= —ZAkrkJV ZAkaN
VN o VN o
N-—1
= Z Vk,N
k=0
where

k
= 2 15
Tk,N Zamos( ’/TNTC l>>
1 = Za sin k t
kN — — l NTCl )
1
NN
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Noting |ry x| < SE L a and|ig n| < SE and‘AkR‘ < A, ‘Aﬁ‘ < A, Lindeberg’s condition

for triangular arrays [24, pg. 116] is satisfied as followscg

Afren — Alien| < |AR| Irixl + [ AL lir.]
_N—l
S 2A Z ‘&l| = Co,

=0

and, for anye > 0, there existsV,, such that whev > Ny, v/ Ne > C,. Therefore, ifN > N,

N-1

N—
> E{|’Yk,N|2;|’Yk,N\ > 6} = Z E{\”yk NI

k=0

k;Tk:N iik,N‘>VN€}

= O

The limiting value of the variance df y will determine two separate cases. Thus, nofilg y| =

0, the variance o¥ y is computed as follows. First, note

— Z Z aam Elxy (t) ey (tn)]
I=1 m=1

Next, note

N—-1N-1
E[ZL’N(tl)ZL’N(tm)] = % E [(AR COS <27T]€ ) Ai sin (]2\;;]_? tl>>

which implies
L L
. 2, —t
P2 B2 =3 ) 02alamsmc<u> .
Noo I=1 m=1 T,

12



If 42 > 0, Lindeberg’s conditions for triangular arrays [24, pg. laée thus satisfied; there-
fore, Zy =+ Z, whereZ is normal,E[Z] = 0, and E[Z2] = 2.
If 42 = 0: Chebyshev’s inequality [24] yields
E1Z}]
772

P(|Zn| > 1) <

_>0’

for anyn > 0, which impliesZ 2, 0. Thus,Zy converges in distribution to a Gaussian random
variable with mean 0 and variance 0.

The two cases together imply thaty —— Z ~ N(0,4?) for any ¢%. Now, for the same
constants, ao, ..., ar, definelU = Zle a;I';, wherel'; denotes theé'" element ofl. U is normal
with meanE[U] = 0 and varianceE[U%] = 2. Thus,U 2 Z for any L and collection of
{ai,aq,...,ar}. By the Cramér-Wold Theorem,

Ly = (zn(ty), on(ts), ... xn(ty))” =T

O
Thus, Theorem 1 is established. Establishing Theorems 23asdthen a straightforward

extension. The reader interested in the detailed prootféesned to [20].

2.2 Extension to Coded Systems

Per Section 1, one of the guiding tenets of wireless OFDMesystis that the bandwidth of each
subcarrier should be less than the coherence bandwidtreokitleless channel, which results in
no intersymbol interference (ISI) on a given subcarrier #8mas obviates the need for complex
equalization at the receiver. However, by definition, thigkes the effective channel on each
subcarrier a frequency non-selective fading channel, whiplies that uncoded OFDM systems
will perform very poorly. Thus, it has been widely recogrdzinat some form of error control

coding is necessary in wireless OFDM systems. However, velnem control coding is applied,

the independence assumptions required for the central thmbrem results of Theorem 2 and
Theorem 3 are violated. Thus, in this section, the resulth®frevious sections are extended to

systems employing error control coding.
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It is clear from the work of other researchers that error cantoding can have a significant
impact on the distribution of the PMEPR of OFDM systems; it fa recent line of research has
exploited such a fact to develop error control codes for OFBydtems that greatly reduce the
PMEPR (see [8] and references therein). In this sectios,shown that, despite the dependence
of the symbols at the output of the error control coder on oralzger, analogous results to those of
Theorem 2 and Theorem 3 hold under very broad conditionsattiqular, the results hold well for
any system with enough “mixing” of codewords or, perhapgssingly, for many standard codes
for a number of subcarriers on the order for which the resudis in the uncoded case.

To establish an analog to Theorem 2, first consider the typywibol sequence that is em-
ployed in a coded system in place of the 1ID symbol sequendbeiincoded OFDM system.
Clearly, the sequence output from the coded modulation yses employing some form of error
control coding contains dependent symbols, for the intetidu of such dependencgthe role of
the error control coder. However, most good codes for randoors do not introduce correlation
into the symbol stream [25, pg. 527][26], and thus, althomgkrtainly contains dependence, the
coded symbol stream can be modeled as uncorrelated. Alssthred such a symbol stream is only
locally dependent for traditional codes (i.e. codes thanaintroduce the long-term dependence
exemplified by, for example, turbo codes [27]). For block e®dsymbols separated in index by
more than a block length are independent; for convoluti@oales, symbols separated in index
by more than the constraint length are independent. Thesrahdom process at the output of
the coded modulation is a form of random process known asépeddent” [22], which will be
important to establish the mixing results required in thegbrof Theorem 4. Finally, note that
most coded OFDM systems employ some form of interleaving/&en the coded modulator and
the IFFT in order to obtain some form of diversity; thus, itngportant to allow for the possibility
of such, although it should be noted that i@ required for the results. These assumptions lead
to the statement of Theorem 4, which is a generalization @ofém 2. The proof of Theorem 4
follows from the work of Section 2.1 and [28]; for detailseg@0].

Theorem 4
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Consider the complex signal

1N1

\/N Z By nelH, (20)

wherew, = 22&, T, € (0,00), and{ By, k = 0,---, N — 1} is defined by

SN(t)

By = (Bon, Bin,-..,By_1n)" = PyAy, WherePy is an arbitraryN x N permutation matrix,

LN - 1)

be drawn from a stationary sequence of identically distedubut not necessarily independent)

which permutes the entries ofy = (Ag, Ay,..., Av_1)T, and let{A, k = 0,1, ..

random variables where, for alland!:
1. E[AkR] = E[Aﬁ] = 0.

2. E[(ARY?] = E[(AL)?] = ¢? < .

w

: ’AkR’ < Zand’Ai’ < A

4. A; and A, are uncorrelated; # |.

5. Al and A are uncorrelated.

6. There exists an integep such thatd, and A4, are independent it — | > ny.
Then, asV — oo, for any closed and finite intervdl C R

{sny(t), te T} 2 {s(t), t € T}

where—Z- impliesconvergencein distribution ands(t) is a zero-mean stationary Gaussian random

process defined over the inten#@) with real partz(¢) and imaginary parg(¢) such that

Bllt)o(0)] = Ely(e)uiey)] = o'sine( 2911,

and
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for all ¢; andt; in T'. The implied weak convergence of the underlying measures ifie metric
spacg Cr x Cr,p) as defined above in Theorem 2. O
Thus, a convergence result analogous to that demonstrat®ection 2 for uncoded systems

has been established for coded systems.

3 PMEPR Distribution of OFDM Signals by Extremal Theory

As noted in Section 1, the establishment of Theorems 2 ance8 dot rigorously establish the
work of [17] and [18]. This is because weak convergence of@f®M process requires only
demonstrating convergence on every finite interval of tia Iree, and, since the symbol interval
of a bandlimited OFDM system will become infinite 8 — oo, the result cannot be strictly
applied. However, per above, the convergence result pesvidasonable motivation for such an
endeavor. Rather than following the work of [17] and [18],ex@loit modern extreme value theory
for the envelope of a complex Gaussian random process teaather quickly at approximations
for the PMEPR distribution of OFDM systems with a finite numbgsubcarriers.

Consider an OFDM system whose passband is symmetric asazdritier; then, the complex

baseband representation of the OFDM signal can be exprassed

Sw(t) = —= 3 Ay () (21)
VN 5
and the PMEPR of v (t) can be defined as [17]
~ 2
Py maXOStSIJETC sn(t)| 7 (22)

whereP,,, = 202. Note thatPy is a random variable, and it is the distribution/{; that is studied

in this section.

3.1 Preiminaries

Extreme value theory [29, 30] can be employed to obtain tlerek result. The required ele-

ments of extreme value theory are briefly summarized here(({z¢, n(t), t > 0 be independent
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stationary Gaussian processes, each with zero mean, ui@hea, and autocovariance function
r(t) = Cov(((s),((s+t)) = Cov(n(s),n(s+t)), where CoVz, y) denotes the covariance of the

random variables andy. Suppose:(t) admits the expansion
t2
r(t)=1-— )\5 + o(t?), (23)

ast — 0, and that{(¢) andn(t) have continuously differentiable sample paths, with (¢4tt)) =

Var (n'(t)) = A = —r"(0), where Vafz) denotes the variance of the random variahl&hen

XA (1) = ¢H(t) + 1 (t)

is said to be a stationary?(2)-process with continuously differentiable sample pathspf®se

further that
r(t)log(t) — 0, ast — oo,. (24)
Then
P{ sup (1) < u2} — e 7 (25)
0<t<T

if Ty(u) — 7asT, u — oo, wherep(u) is termed the upcrossing intensity of levél [30, 31],

i.e. the mean number of exits By(¢), n(t)) ,0 < t < T', acrossS,,, where
Sy = {(xl,xg) € R* 2+ a5 = u2} :
The upcrossing intensity is relatedioby
u? = 2log T + loglog T + log (A/7) — 2log Tu(u) + o(1) (26)

Combining (25) and (26) yields

P{aT <Oglta%}§‘ 2(t) — bT> < x} — exp (—e_w) , asT — oo, (27)
for
ar =1/2, by =2logT + loglog T + log (A/7) . (28)
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3.2 Application tothe PMEPR Distribution of Uncoded OFDM

Per Section 2, a® — oo, the complex baseband OFDM signal (21) is converging wettkly

complex Gaussian random process) = X (¢) + jY (¢) in any finite closed interval’, with
(1) = EIX()X(t+7)] = EY ()Y (¢ + 7)) = o*sinc( ) (29)

and

E[X(tl)Y(tQ)] = O,th andtg, t € T, toelT. (30)

Itis clear thaty?(t) = % (X2(t) + Y2(t)) is ax?(2)-process.

From the definition ofcy(¢) in (2), it can be seen that, for each, xx(t) has continuously
differentiable sample paths. Léf(¢) be the first derivative function ok (¢), which is well de-
fined due to the continuity of the second derivative-of), #*(7), atT = 0 [23, pg. 79]. Then,
E [X(t + T)X(t)} — —i*(7). With 7(7) determined as in (29), it can be shown that

. . 4
B|X(t+h) - X(0)[ < 0.207 (%) 2,V e T h < 1. (31)

[

Therefore, almost every sample functionft) is uniformly continuous ofi” by the Kolmogorov
condition [23, pg. 57]. HenceX (¢) has continuously differentiable sample paths almost gLasl
doesY (7).

The conditions stated in (23) and (24) are satisfied (y in (29), with A\ = % (TL)Z Hence,

asN — oo, the probability density function (PDF) of the PMEPR of tresseband OFDM signal

has the following asymptotic characteristic,

1 2 2 _ 2
Py s [0+ V0] <y} = Plmax () < 2]
— exp (—e’x) , asT — oo, (32)

wherex = (2y — br) ar. The variablesiy and b are defined the same as in (27), with=

2
1 s
5 (F)
Whereas (32) gives the strict convergence result from edtealue theory, the normalization

required for such is not that which is typically employed Ine tstudy of the PMEPR of OFDM
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systems. In particular, practical interest is in the dmttion of the PMEPR of a codeword, whose
average grows witlv and thus whose distribution does not demonstrate stristexgence. Before
moving to the latter, the accuracy of the strict convergesfd@2) is demonstrated. Figures 1 and
2 demonstrate that (32) is quite accurate, particularlyferN = 256 case.

Next, consider scaling (32) to obtain the distribution af PMEPR of an OFDM symbol. Let
T = NT,.. When the time-scale is normalized BBy, A = %2 and the PDF of the PMEPRy can
be approximated as

P{Py <y} =exp {—eyN glog N} , (33)

whenN is large enough.
Remarks: In [13, pp. 2840] under Remark about our work [11], the authors argue that the
above result in (33) implies that the number of codewords hlaae a constant PMEPR = )\

(independent of the number of subcarri@di$is given by

e~ T 1o
0 PPy < g} o TV (34)
where a codeword is defined &g 2 [Ao, A1, -+, Ay_1] with A, selected from a finite alphabet

setQ with ¢ elements. It can be inferred from (34) that - P{Py < y} goes to zero ad/ ap-
proaches infinity, which contradicts Corollatyn [13], and consequently, as put in [13], indicates
the CDF of PMEPR in (33) is not correct. However, this argutaeres not hold as it is based on a
misinterpretation of (33). The main reason is that the axpration of CDF for PMEPR obtained

in (33) is only valid for largeN and largey, wherey is determined from (26):
) 1 1
y=u’/2=1logT + 5 loglog T + 5 log (\/7) —log T'pu(u) 4 o(1). (35)

Therefore, this approximation cannot hold for a fixed conisyja= A\ while letting7 = N7, grow

to infinity, which explains why we cannot assume= A < oo and use (33) to approximately
compute the average number of codewords whose PMEPR is Bellmaddition, it can be easily
seen that the PMEPR is in the orderlo§ N + O(loglog N), which was shown in [13] using

different approaches.
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In [17], the following approximations for larg®' is derived by employing the method of level-

crossing rates [21]:

PPy <y}~ exp {—e "N\ [Zy ., forP{y>yly>7} =0, (36)

where~ is an arbitrary peak in one OFDM symbol (withjey N7.]) andr is a proper threshold
selection such that each positive crossing of the levels a single positive peak that is above the
level 7 [17].

The upper bound of the complementary cumulative distrdsutunction (CDF) of the PMEPR

was derived as shown in (40) of [18] fof large as

P{Pn >y} < eyN\/?. (37)

By comparing (36) with (37), it can be seen that the upper donr{37) is exactly the first order
approximation obtained through a Taylor series expandidr-@xp {—e—yN@} in (36), which
is expected to be accurategabecomes large.

The comparison of (33), (36) and (37), in terms of the comgletary CDF (i.e. RPy > y})
with simulation results is shown in Figure 3 and Figure 4. Tbetinuous signal was approximated
by a “32-time oversampling” of the complex baseband signal, whielans a sampling 82 times
the Nyquist rate. It can be observed that, although the asytmafporm of (36) and (37) differ from
the rigorously justified expression of (33), all three exgsiens provide good characterizations of
the PMEPR of the uncoded OFDM system for a moderate numbarbwasriers in the OFDM

system.

3.3 Extension to Coded Systems

To consider the distribution of the PMEPR for coded systams$e that the expressions for such
in the case of uncoded systems depend only on the secondstatistics of the limiting process.
Thus, since the second order statistics of the limiting essof the coded system are identical to

that for the uncoded system, the result of 3.2 can be apmliedded systems without modification.
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Numerical results for coded systems are shown in Figuresdugin 8. Figure 5 and 6 are
for the case where a binary convolutional code with figte and constraint length is employed
without interleaving. Figure 7 and 8 are for the same corimhal code, but now with a block
symbol-wise8 x 8 interleaver. It can be seen from these figures thaY asincreased from00 to

256, the simulation results are approaching the analyticas @seexpressed in (33), (36) and (37).

4 Extensionsto Systemswith Unequal Power Distributions
4.1 IssuesRegarding Convergence

In previous sections, it has been assumed that the powerngtid on each subcarrier of the OFDM
system is identical, |eE‘ 1 AQ‘ = %, k=0,---,N — 1. However, since OFDM systems are
usually used in channels with nonflat frequency responsepiten desirable to allocate different
amounts of power to different subcarriers [18], particiyldrsome sort of channel state informa-
tion is available at the transmitter. Let (¢) be a complex OFDM symbol, which is redefined

as
N-1 )
t) = Z SN e, (38)
wheresyy, k=0,---,N —1, are mdependent complex random variables, apek wy + ]\?” k.
Let sy, ands};, be the real and imaginary parts©f ., which have the following statistical char-
2 2
acteristies  [5%,] = F [s] = 0. [ (s8,)"] = £ |(s4,)] = ow(h), and [sf54,] = 0.

Assume there exists a finite constdn, such that

Sﬁk 55\/1@
P d <Dyl =P d < Dy

=1. 39
QN(k) a gn (k) 9

The functiongy (k) gives the amount of power allocated to thén subcarrier. Here, it is as-

sumed that the OFDM system is designed to approximate sorae gower spectral density (w)
[18]. The functionG(w) is assumed to be Riemann-integrable in the intevgkw, + 27 /7], and
bounded by some constahf, with

wo+2m/Te
/ G(w) dw = 0. (40)

wo
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This power distribution may be approximated if the poweoedited to théth subcarrier is

2 G (wy)
Ym0 G (wm)

in which case the average power of the baseband OFDM sigia)is- 2 0! gy (k) = 202

gn(k) =0 (41)

Let \; and ), be the first and second normalized momentiafi(w), respectively, as defined in
[18],

1 N1 1 jwotBW
A= ]\}Ln})o; z_: gn(K)wy = ;/0 wG(w)dw
' 1 N=1 ) 1 fewotBW
Ay = ]\}ILI})O; kz:%) g (k)wi; = o2 ) w G(w)dw (42)

whereBW = &

As before, letsy (t) = zn(t) + jyn(t) and R, (1) = E [sy(t)sn (t + 7)]; then,

N-—1
E[S}(V(t)SN (t+T>] = Z E|SN7k‘2€jwkT
k=0
o QZN lBWG( ) JwiT

ZN 1 BWG(CUk;)
wo+BW
— 2/ G(w)e’dw = R(7), asN — oo, (43)

wo

where R, (1) = Elzny(t)zn(t +7)] and Ry, o) (7) = Elzn(t)yn(t + 7)]. It can be shown
that

Ryy(1) = ZgN ) cos (wyT)

Riyyan)(T) = Zgzv sin (wgT) -

Therefore, the autocorrelation functions of the randontesses: v (¢) andyy(t) and their cross-

correlation function have the following relationships,
Roy(r) = 2(Ray(r) + iR (7))
R(ZJNJCN)(T) = _R(xNﬂN)(T) = _R(yNJCN)(_T)' (44)

22



Let s(¢), z(t) andy(t) be the random processes to which(t), xy(t) andyy(t) are converging
in distribution, respectively. The convergence of thesedoen processes will be proved in the
coming paragraphs. Hence, &5 — 0o, R, (1) — R.(7) = Re{f“’”BW G(w )eﬂ'wdw}, and
Riywan)(T) = Riyay(7) = Im{ [FPY Gw)edmdw}. Since Ry o) (1) = —Riyyan)(—7),
Ry .2y (0) = 0;in other wordszy (t) andyy (t) are uncorrelated for eachas arer(t) andy(t).

To prove thatry(t) is converging to a Gaussian random proce&9 with autocorrelation
function R, (1) = Re{f“’“*BW G(w )ej‘”dw}, it is sufficient to show the tightness 6f v ()} and
convergence of the finite distributions of arbitrary finiengplings ofz (¢) as has been done in
the previous sections for the equal power case. Using (39)renfact that?(w) is upper bounded
by Mg, itis trivial to prove the convergence of finite distributgy as well as the conditions for
tightness. Thus, all that is required is to show a countétpdremma 2.2.

Lemma4.1: Ve > 0, there existsVy(¢), such that
El|zy(t+h) —zn(t)]* < BR%, YN > N,.
Proof:

FE |.1'N(t + h) — I'N(t)‘Q = 4 Z gN Sln2 <wkh>

IN

Z g (k)wih?
2o 2Z]I<:V 01 G(wp)w B]\I;V
Yy Glwr) B
o [“OTBW 2
N h/ WG (w) dw = h2Xg, aSN — 00

wo

O
Then, Ve > 0, there existsN, such thatFE |zy(t + h) — zx ()| < BRh%, if N > N,, where
0 = Ao + €. As aresult, in (18) of the proof of Lemma 2.3, the correspogdower bound ofM/

will be
2 ()\2 + 6)

MZlogQ[ 2o

G(q)] : (45)
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and the rest follows in an identical fashion to the proof ofrirea 2.3.

For {sy(t)}, it can be shown in a straightforward manner that tightnessthe convergence
of the finite-dimensional distributions is assured. Therefit can be concluded that 85 — oo,
the sequence of complex random processes(t)} is converging in distribution to a complex
Gaussian random proces$t) = x(t) + jy(t), with zero mean and autocorrelation function
Ry(7) = [PV G(w)e? dr. SinceRy, . (0) = 0, z(t) andy(t) are independent of each other at

eacht. Thus|s(t)|” = 22(t) + () is ax?(2)-process.
4.2 Distribution of the PMEPR

Let the PMEPR of a baseband OFDM signal defined in (38) be asi¢fiaed in (22) withP,, =

202, andsy(t) = sy(t). To derive the probability density function of the PMEPR dfaseband
OFDM signal in the case of unequal power allocations on eablkasrier, extreme value theory
will be employed again. In [30], it was pointed out that theui¢s in [30] still hold, even if the
imaginary part (t) and real part)(t) of a complex Gaussian random process are correlated, if the

following conditions are satisfied:

1. £(t) andn(t) have continuously differentiable paths.

2. £(t) andn(t) are independent for each

w

. sup, [Cov(&(t),n(t+ 7)) < 1.
4. Cov({(t),n(t+7))logT — 0, asT — oc.
5. r(1) = Cov(&(t),&(t+ 7)) = Cov(n(t),n(t+ 1))

6. r(7)logT — 0,asT — oo.

Definen(t) = Lx(t), £(t) = Ly(t), andx?(t) = n*(t)+€%(t) = 1/0?|s(t)|*. By employing the

same arguments as those in Section 3.2, it can be shows(thdtas continuously differentiable
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paths. Since?, .(0) = 0, {(t) andn(t) are independent for ea¢hSince

‘ 1 jwot2m/Te ,
Ry(r) + jRea(r) = = | G(w)e™ dw, (46)
wo
and
) 1 wo+2m/Te T
|R,(T) + jRe ()| = ;/ G(w)e’ dw
wo

1 fwot2r/Te

0'2 wo

= L (47)

IN

G(w)eT

dw

condition (3) is satisfied. Conditions 4 and 5, require that

wo~+2m/Te )
log(T)/ G(w)e’*" dw — 0,asT — 00.
wo

Thus, the cross-correlation and autocorrelation funationust decrease faster thanlog(r), as
T — o0, Which is true in most cases. Assuming conditions 4 and 5 atisfied, letu(u) be
the upcrossing intensity of a levef for a \*(2)-processy®(t) = n?(t) + £%(t) with dependent

components, which can be derived to be
ulu) = @m) e i (b - a2)"”, (48)

whereb = — R, (7)|,—0 anda = Re,(7)|-—o. The functionsk, (7) and R , () are defined as the
second and first derivative @, (7) and R, ,,(7) with respect tar, respectively.
Based on (46), it can be shown that

1 fwot2r/Te

a=— s wG(w) dw = A, (49)
and
1 wo+2m/Te
b= — / WG (W) dw = o (50)
g wo

~ 1\ 1/2
Let A =b—a® = \y— \2. Then,u(u) = (%) / ue~"*/?, which is exactly the same as for the case

when¢(t) andn(t) are independent Gaussian random processes [30, Theorgriitietefore, the
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PMEPR of a OFDM signal with unequal power allocated on eableauier in terms of the power

spectral densitys(w) has the same form as that in (32) withieplaced byA:

P{ max ! [xQ(t) +y2(t)} < y} = P[max Yi(t) < Qy}

0<t<T 202 0<t<T

—  exp {—e‘yT\/ A logT} (1)
T

whenT = NT,. — oo, asN — oco. After the time scale has been normalizedlyi.e.T. =1 as
that in (33), the CDF of PMEPR) in the case of unequal power allocation can be approximated
as _
P{Pn <y} ~exp {—eyN %log N} . (52)

From (52), it can be seen that the probability distributiandtion of the PMEPR of an OFDM
signal defined as in (38), whose power on each subcarrieitésrdmed by (40) and (41), is only
dependent on the first and second moment of the normalizedmpapectral densitgz(w) /o2,
and)\,, respectively, as well as the number of subcarriérsvhenV is large.

Equation (39) in [18] is the upper bound of the complementaBF of the PMEPR asVv
is large in the case of an unequal power distribution acréssubcarriers. After replacing the

parameters with the ones employed in this work, this uppanto

P{Py >y} < Ney\/;. (53)

As one example, let the power spectral den6itw) be

Te H T
Le If—ﬁ§w<0,

G(w):{ %(1+cos(wT0)) f0<w< 7. 54)

ando? = ffg;c G(w) dw = 3/2. Thus by substituting+(w) of (54) into (49) and (50), it can be

shown that

S 1 [x® 2 4 m 132 2.0818
fo L[ _2_4(m 1y 20818 55
TCQ[B 3 9(4+7r)] 72 (55)

It can also be shown thaR,(7)| = ‘f;?*Q”/TC G(w)ej‘”dw‘ is in the order ofl /7, asT — oo.

Therefore, condition 4 and 5 are satisfied for this exampid,the CDF of the PMEPR in (52) can
thus be applied for largé/.
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The comparison of (52) and the corresponding upper bounpvw&B simulation results for
the complementary cumulative distribution function of ,PAIIEPR of an uncoded OFDM signal
is shown in Figures 9 and 10. Once again, it can be seen thattherical results agree well with

Monte-Carlo simulation results for moderate numbers otanters.

5 Conclusions

In this paper, it has been demonstrated that, under a broag raf conditions, the complex en-
velope of a bandlimited OFDM system converges (in the lihia éarge number of subcarriers)
weakly to a Gaussian random process. Although this respliegponly to analysis over a finite
time interval (and thus does not strictly apply to bandleditOFDM systems in this limit), the
result motivates the application of modern extremal thdoryGaussian random processes to the
OFDM problem. This leads in a straightforward manner to $eyet accurate expressions for the
distribution of the PMEPR in both uncoded and coded OFDMesystfor moderate numbers of

subcarriers.
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Figure 1. Accuracy of (32) for an uncoded OFDM signal with libcarriers and employing
QPSK.
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Figure 2: Accuracy of (32) for an uncoded OFDM signal with Zafcarriers and employing
QPSK.

31



10" = g T T T T
e —— Simulation result

SN — — Extreme value theory
N — - Ochai result [10]
BT Dinur result [11]

CDF of PMEPR
=
oI
N
T

10 [

10” ! I I !
4 5 6 7 8

PMEPR (in dB)

Figure 3: Complementary cumulative distribution functiointhe peak-to-mean envelope power
ratio (PMEPR) of an uncoded OFDM signal with 100 subcarrggrd employing QPSK: simula-
tion, the proposed expression (33), and that of (36) and (@) equal power distributions across
subcarriers. Note the close agreement of the proposed ssiprewith the simulated PMEPR
for a number of subcarriers as small as 100. The simulatiovesuare obtained by runnin)®
independent OFDM symbols.
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Figure 4: Complementary cumulative distribution functiointhe peak-to-mean envelope power
ratio (PMEPR) of an uncoded OFDM signal with 256 subcarrggrd employing QPSK: simula-
tion, the proposed expression (33), and that of (36) and (@) equal power distributions across
subcarriers. Note the close agreement of the proposedssiprewith the simulated PMEPR. The
simulation curves are obtained by runnit@ independent OFDM symbols.
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Figure 5: Complementary cumulative distribution functi@DF) of the peak-to-mean envelope
power ratio (PMEPR) of a non-interleaved (2,1,6) convainilly-coded OFDM system with 100
subcarriers employing QPSK: simulation, the proposedesgion (33), and that of (36) and (37),
with equal power distributions across subcarriers. Notedlose agreement of the proposed ex-
pression with the simulated PMEPR,; thus, as expected, tisediform of the CDF of the PMEPR
of an uncoded OFDM signal still holds for this coded systeime $imulation curves are obtained
by running10° independent OFDM symbols.

34



10 F T T T T T
s —— Simulation result

— — Extreme value theory |]
NN — - Ochai result [10]
NS -~ Dinur result [11]

CDF of PMEPR
=
o
N
T

10” ! I ! ! I
6 7 8 9 10 11 12 13

PMEPR (in dB)

Figure 6: Complementary cumulative distribution functi@DF) of the peak-to-mean envelope
power ratio (PMEPR) of a non-interleaved (2,1,6) convainilly-coded OFDM system with 256
subcarriers employing QPSK: simulation, the proposedesgion (33), and that of (36) and (37),
with equal power distributions across subcarriers. Notedlose agreement of the proposed ex-
pression with the simulated PMEPR,; thus, as expected, tisediform of the CDF of the PMEPR
of an uncoded OFDM signal still holds for this coded systeime $imulation curves are obtained
by running10° independent OFDM symbols.
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Figure 7: Complementary cumulative distribution functi@DF) of the peak-to-mean envelope
power ratio (PMEPR) of a coded (x 8 block symbol-wise interleaveK2, 1,6) convolutional
code), OFDM system with 100 subcarriers employing QPSKu#ation, the proposed expression
(33), and that of (36) and (37), with equal power distribo@cross subcarriers. The simulation
curves are obtained by running® independent OFDM symbols.
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Figure 8: Complementary cumulative distribution functi@DF) of the peak-to-mean envelope
power ratio (PMEPR) of a coded & 8 block symbol-wise interleavef?, 1, 6) convolutional code)
OFDM system with 256 subcarriers employing QPSK: simuigtibe proposed expression (33)
and that of (36) and (37), with equal power distributionsasrsubcarriers. The simulation curves
are obtained by running0® independent OFDM symbols.
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Figure 9: Complementary cumulative distribution functi@DF) of the peak-to-mean envelope
power ratio (PMEPR) of a uncoded OFDM signal with unequal @oslstribution across subcar-
riers determined by (54), with 100 subcarriers employing®Psimulation, the proposed expres-
sion (52), and the upper bound (53), whérés given by (55). There is close agreement of the
proposed expression with the simulated PMEPR for a numbsulo¢arriers as small as 100. The
simulation curves are obtained by runnit@ independent OFDM symbols.
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Figure 10: Complementary cumulative distribution funat{@€DF) of the peak-to-mean envelope
power ratio (PMEPR) of a uncoded, OFDM signal with unequavgradistribution across subcar-
riers determined by (54), with 256 subcarriers employing®Psimulation, the proposed expres-
sion (52), and and the upper bound (53), wheig given by (55). Note the close agreement of the
proposed expression with the simulated PMEPR. The sinomatirves are obtained by running
10° independent OFDM symbols.
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