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Abstract

Orthogonal frequency division multiplexing (OFDM) systems have been used extensively
in wireless communications applications in recent years; thus, there is significant interest in
analyzing the properties of the transmitted signal in such systems. In particular, a large amount
of recent work has focused on analyzing the variation of the complex envelope of the transmit-
ted signal and on designing methods to minimize this variation. In this paper, it is established
that the complex envelope of a bandlimited uncoded OFDM signal converges weakly to a
Gaussian random process as the number of subcarriers goes toinfinity. This establishes that
the properties of the OFDM signal will asymptotically approach those of a Gaussian random
process over any finite time interval. The symbol length in a bandlimited OFDM system will
eventually exceed any finite time interval as the number of subcarriers approaches infinity;
however, practical interest is in how asymptotic approximations apply for a finite number of
carriers, and, hence, the convergence proof is reasonable motivation for considering how the
extremal value theory of Gaussian random processes might provide accurate approximations
for the distribution of the peak-to-mean envelope power ratio (PMEPR) of practical OFDM
systems. Indeed, numerical results are presented that indicate that the resulting simple expres-
sions are accurate for a wide range of the distribution for moderate numbers of subcarriers.
The important extensions of the analytical and numerical results to coded OFDM systems are
also presented.
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1 Introduction

A major goal of modern communication systems is to allow high-speed communication, regardless

of the location or mobility of the system users. However, this goal is difficult to achieve due to

the multipath fading that affects wireless communication signals. One alternative for achieving

high-speed wireless communication in the presence of multipath fading is to employ a multicarrier

system, generally implemented as an orthogonal frequency division multiplexing (OFDM) system

[1], in conjunction with error control coding. Such coded OFDM systems have emerged recently as

a strong competitor to single-carrier systems and have beenemployed or are being considered for

a number of applications, including digital audio broadcast and digital video broadcast in Europe

[2], wireless local area networks [3], broadband fixed wireless access [4], and cellular data [5].

One of the challenges to be overcome when employing an OFDM system in low-power peer-

to-peer wireless communication systems is that the complexenvelope of the transmitted OFDM

signal can demonstrate significant variation; in other words, its peak-to-mean envelope power ratio

(PMEPR) can be much larger than that of an analogous single-carrier system [1, 6]. This large

PMEPR can require significant backoff of the average operating power of the power amplifier

in the transmitter if it is to be operated in the linear region, which results in significant power

inefficiency [7, 8]. Thus, there has been a large body of work in the analysis of the variation of

the complex envelope of the OFDM signal and in methods to reduce this variation. Here, the

focus is on the analysis problem. Although not universally adopted (see [9] and [10, 12, 13, 14]

as examples of approaches that do not rely on such), many recent papers that have analyzed the

PMPER of the transmitted OFDM signal [15, 16, 17, 18] or its effects [19] often assume that the

complex envelope of the transmitted OFDM signal converges in some sense to a Gaussian random

1S. Wei was with the University of Massachusetts, Amherst, MA01003 USA. He is now with the Louisiana State
University, Baton Rouge, LA 70803. D. Goeckel and P. Kelly are with the University of Massachusetts, Amherst, MA
01003 USA.

2This paper is based in part upon work supported by the National Science Foundation under Grant No. NCR-
9714597 and CAREER Award CCR-9875482.

3This paper was presented in part at the Thirty-Ninth Annual Allerton Conference on Communication, Control, and
Computing, Monticello, Illinois, USA, October 2001 and at the 2002 International Conference on Communications,
New York, New York, USA, May 2002.

2



process as the number of subcarriers becomes large. For example, in the work of [17] and [18], the

assumption of such convergence is used when studying the PMEPR distribution to justify the use

of Rice’s level-crossing results for the envelope of a complex Gaussian random process [21].

However, there exists no rigorous investigation into the limiting form of the complex envelope

of the transmitted OFDM signal, despite the theoretical andpractical importance of such an en-

deavor. Thus, in this paper, a formal proof that a bandlimited OFDM signal converges weakly to

a Gaussian random process is established, and its implications (including what it doesnot imply)

are considered. The main result of this paper is Theorem 2:

Theorem 2

Consider the complex signal

sN(t) =
1√
N

N−1
∑

k=0

Ake
jωkt, (1)

whereωk = 2πk
NTc

, Tc ∈ (0,∞), and{Ak, k = 0, · · · , N − 1} is an independent and identically

distributed (IID) sequence of complex random variables, where the real part (AR
k ) and imaginary

part (AI
k) are bounded (|AR

k | ≤ Ā and|AI
k| ≤ Ā), with E

[

AR
k

]

= E
[

AI
k

]

= 0, E[AR
kA

I
k] = 0, and

E
[

(

AR
k

)2
]

= E
[

(

AI
k

)2
]

= σ2. Then, asN → ∞, for any closed and finite intervalT ⊆ R,

{sN(t), t ∈ T} D−→ {s(t), t ∈ T}

where D−→ impliesconvergence in distribution ands(t) is a zero-mean stationary Gaussian random

process defined over the intervalT , with real partx(t) and imaginary party(t) such that

E [x(ti)x(tj)] = E [y(ti)y(tj)] = σ2sinc

(

2(tj − ti)

Tc

)

,

and

E [x(ti)y(tj)] = σ2
sin2

(

(tj−ti)π

Tc

)

π(tj−ti)

Tc

for all ti and tj in T . The implied weak convergence of the underlying measures isin the met-

ric space(CT × CT , ρ), whereCT is the space of continuous functions on the intervalT , and
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ρ ((x1, x2), (y1, y2)) = max {ρ(x1, y1), ρ(x2, y2)}, wherex1, x2, y1, y2 are inCT andρ(x, y) =

supt∈T |x(t) − y(t)|. 2

Theorem 2 can then be used to prove the following analogous result for the complex baseband

representation of the transmitted signal in multicarrier systems that are symmetric about the carrier

[17].

Theorem 3

Consider the complex signal:

VN(t) =
1√
N

N−1
∑

k=0

Ake
jωkt,

whereωk = 2π
NTc

(

k − N−1
2

)

and{Ak, k = 0, · · · , N − 1} is as defined above. Then, asN → ∞,

for any closed and finite intervalT ⊆ R,

{VN(t), t ∈ T} D−→ {V (t), t ∈ T}

whereV (t) is a zero-mean stationary complex Gaussian random process defined over the interval

T with independent real and imaginary parts, each with autocorrelation function

σ2sinc

(

(tj − ti)

Tc

)

, ∀ ti, tj ∈ T.

The implied weak convergence of the underlying measures is on the metric space(CT ×CT , ρ) as

defined above in Theorem 2. 2

Remarks: Note that we only assume uncorrelation betweenAR
K andAI

k in the theorems, not

the independence between the real and imaginary parts of each symbol [12]. This assumption

holds not only for quadrature amplitude modulation (QAM) constellations, but also for phase-shift

keying (PSK) constellations.

Using the assumption that the envelope of the transmitted OFDM signal is asymptotically

Gaussian, previous work [17, 18] has relied largely on the work of Rice [21] to develop results

for the PMEPR distribution of the OFDM signal. The work of [17] employs [21] in conjunction

with a number of approximations and a parameter obtained through simulation to arrive at a final
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expression for the PMEPR. The work of [18] finds lower and upper bounds for the PMEPR distri-

bution through the use of extensive manipulation on top of the results found in [21]. However, even

Theorem 2 and Theorem 3 cannot be used to rigorously justify such exercises. In particular, since

the proof of weak convergence consists of demonstrating convergence over any finite interval and

the symbol period for a bandlimited OFDM signal approaches infinity as the number of subcarriers

goes to infinity, Theorem 2 and Theorem 3 cannot be applied as rigorous justification for the work

in [17, 18]. And, unfortunately, the extension of Theorem 2 and Theorem 3 to an infinite interval

has proved elusive.

However, since our true interest in practice is how results obtained from asymptotic behavior

apply for a finite number of subcarriers, Theorem 2 and Theorem 3 motivate the consideration of

the asymptotic properties of a Gaussian random process, andour simulation results will firmly sup-

port such an endeavor. Given the Gaussianity of the signal, rather than following the complicated

approaches of [17] and [18], the modern theory of extreme values of chi-squared random processes

(i.e. those corresponding to the envelope process of the complex Gaussian process) is employed to

arrive in a straightforward manner at simple and accurate approximations to the PMEPR distribu-

tions for the envelope of the transmitted OFDM signal. It is demonstrated through simulation that

these simple and well-justified expressions are extremely accurate for a large part of the distribu-

tion, and, like the results in [17] and [18], apply surprisingly well for OFDM systems with only a

modest number of subcarriers.

After the presentation of the numerical results for uncodedOFDM systems, attention is turned

to coded systems. Because an OFDM system effectively forms alarge number of frequency-

nonselective subchannels, it is well-known that uncoded OFDM systems will perform poorly on

wireless communication channels due to a lack of diversity.Thus, wireless OFDM systems almost

always employ some form of error control coding. This introduces statistical dependence among

the symbols placed on the subcarriers, and thus Theorem 2 cannot be applied directly. However,

by invoking results from modern central limit theory for sums of dependent random variables, it

is possible to prove Theorem 4, which generalizes the results of Theorem 2 to most block coded
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and convolutionally coded systems. The corresponding PMEPR distribution approximation, which

relies only on correlation statistics and is identical to the uncoded case for most codes, then follows

directly. Numerical results confirm the accuracy of the derived expressions for moderate numbers

of subcarriers.

This paper is organized as follows. Section 2 provides the proofs of the main results of the

paper. First, Theorem 1, which establishes the appropriateconvergence of the real part ofsN(t),

is proven. Theorem 2 and Theorem 3 then easily follow, as wellas Theorem 4, which extends

the results to coded OFDM systems. Section 4 performs the extension of the results of previous

sections to uncoded OFDM systems with an unequal power distribution across subcarriers, a situ-

ation studied extensively in [18]. Finally, Section 5 presents a discussion of critical issues and the

conclusions of this work.

2 Proofs of the Main Theorems

2.1 Proofs of Theorems 2 and 3

The following result can be used in a straightforward mannerto prove all of the theorems in this

paper. In particular, Lemma 2.3 contains the crux of the proofs for Theorems 2 and 3.

Theorem 1

Consider

xN(t) =
1√
N

N−1
∑

k=0

(

AR
k cos

(

2π
k

NTc
t

)

−AI
k sin

(

2π
k

NTc
t

))

, t ∈ T (2)

for any closed and finite intervalT ⊆ R, where the complex sequence{Ak = AR
k + jAI

k, k =

0, · · · , N − 1} is an independent and identically distributed (IID) sequence of complex random

variables, where the real part (AR
k ) and imaginary part (AI

k) are bounded (|AR
k | ≤ Ā and|AI

k| ≤ Ā),

with E
[

AR
k

]

= E
[

AI
k

]

= 0, E[AR
kA

I
k] = 0, andE

[

(

AR
k

)2
]

= E
[

(

AI
k

)2
]

= σ2. Then,

{xN (t), t ∈ T} D−→ {x(t), t ∈ T}
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wherex(t) is a zero-mean stationary random process defined overT , with autocorrelation function

E [x(ti)x(tj)] = σ2sinc

(

2(tj − ti)

Tc

)

, ∀ti, tj ∈ T.

The implied weak convergence of the underlying measures is in the metric space(CT , ρ), where

CT is the space of continuous functions on the intervalT , andρ(x, y) = supt∈T |x(t) − y(t)|. 2

In this paper, all probabilities are defined on the probability space(Ω,F ,P), whereΩ is the

outcome space,F is theσ-field onΩ, andP is the probability measure defined onF . Measurability

of the appropriate quantities is then easily established [20].

To prove convergence in distribution of a sequence of randomfunctions{xN} to some{x(t), t ∈

T} in C, it is sufficient to show that the sequence{xN} is tight and that each of the finite-

dimensional distributionsPNπ
−1
t1,···,tk of xN converges weakly to the measureµt1,···,tk induced byx

on (Rk,Rk), for each(t1, · · · , tk) [22, pg. 47].

The sequence{xN} of random functions ofC is tight if and only it satisfies the following two

conditions [22, pg. 55]:

Condition 1.For each positiveη, there exists ana such that

P{|xN (0)| > a} ≤ η, N ≥ 1 (3)

Condition 2.For each positiveε andη, there exists aδ, with 0 < δ < 1, and an integerN0 such

that

P















sup
|s−t|<δ

s,t∈[0,1]

|xN(s) − xN (t)| ≥ ε















≤ η, N ≥ N0. (4)

Condition 1 is easily established via the following lemma. For lemmas in Section 2, proofs that

are omitted can be found in [20].

Lemma 2.1

Let {xN} be defined as in (2). Then, for each positiveη, there exists ana such that

P{|xN (0)| > a} ≤ η, N ≥ 1 (5)
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2

Establishing Condition 2 is the crux of the entire proof. First, a preliminary lemma is presented

and then Condition 2 is established. Note that only Lemma 2.2restricts the class of signals to

which the convergence results applies, and the OFDM signalsof interest are shown to be part of

this class.

Lemma 2.2

E |xN (t+ h) − xN (t)|2 ≤ β h2, β =
4

3

(

πσ

Tc

)2

, ∀N ≥ 1

2

Proof: The proof can be found in [20]; however, the interested reader will have no problem adapt-

ing the proof of Lemma 4.1 below to this case.2

Lemma 2.3 Let {xN} be defined as in (2). Then, for each positiveε andη, there exists aδ, with

0 < δ < 1, and an integerN0 such that

P















sup
|s−t|<δ

s,t∈[0,1]

|xN(s) − xN (t)| ≥ ε















≤ η, N ≥ N0. (6)

2

Proof:

Based on the proposition in [23, pg. 55-56], since{xN(t), t ∈ T} ∈ C, then every countable

setS dense inT is a separating set, which means, with probability 1:

sup
t,s∈S

|t−s|<δ

|xN (t) − xN (s)| = sup
t,s∈T

|t−s|<δ

|xN (t) − xN (s)| , 0 < δ < 1 (7)

Define the setS to be the set of dyadic rationals:

S =

{

k

2n
, k = 0, 1, · · · , 2n − 1; n = 0, 1, 2, · · ·

}

, (8)

Define the random variables

Z(N)
v (ω) = sup

0≤k≤2v−1

∣

∣

∣

∣

∣

xN

(

ω,
k + 1

2v

)

− xN

(

ω,
k

2v

)
∣

∣

∣

∣

∣

, ω ∈ Ω, (9)
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then [23, pg. 56],

sup
t,s∈S

|t−s|<2−M

|xN (ω, t) − xN (ω, s)| ≤ 2
∞
∑

v=M+1

Z(N)
v (ω), ω ∈ Ω (10)

whereM is a positive integer. By employing (7) and (10),

P















sup
s,t∈T

|t−s|<2−M

|xN (s) − xN (t)| ≥ ε















= P















sup
s,t∈S

|t−s|<2−M

|xN (s) − xN(t)| ≥ ε















≤ P






∞
∑

v=M+1

Z(N)
v ≥ ε

2







≤ P






∞
⋃

v=M+1

{

Z(N)
v ≥ D(ǫ)

qv

}







≤
∞
∑

v=M+1

P
{

Z(N)
v ≥ D(ǫ)

qv

}

(11)

whereD(ǫ) andq are constants. The constantq will be specified later, and the constantD(ǫ) can

be determined by the following equation forq > 1:

∞
∑

v=M+1

D(ǫ)

qv
= D(ǫ)

1/qM+1

1 − 1/q
=

1

2
ε (12)

From (9),

P
{

Z(N)
v ≥ D(ǫ)

qv

}

= P
{

sup
0≤k≤2v−1

∣

∣

∣

∣

∣

xN

(

k + 1

2v

)

− xN

(

k

2v

)∣

∣

∣

∣

∣

≥ D(ǫ)

qv

}

≤
2v−1
∑

k=0

P
{∣

∣

∣

∣

∣

xN

(

k + 1

2v

)

− xN

(

k

2v

)∣

∣

∣

∣

∣

≥ D(ǫ)

qv

}

(13)

By Lemma 2.2 and Chebyshev’s inequality [24],

P
{∣

∣

∣

∣

∣

xN

(

k + 1

2v

)

− xN

(

k

2v

)∣

∣

∣

∣

∣

≥ D(ǫ)

qv

}

≤
E
∣

∣

∣xN

(

k+1
2v

)

− xN

(

k
2v

)
∣

∣

∣

2

(D(ǫ)/qv)2

≤ β( 1
2v )2

D(ǫ)2 1
q2v

=
β

D(ǫ)2

(

q2

4

)v

. (14)

Then, from (13)

P
{

Z(N)
v ≥ D(ǫ)

qv

}

≤ β

D(ǫ)2

(

q2

2

)v

. (15)
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Given (11) and (15), if1 < q <
√

2,

P















sup
s,t∈T

|t−s|<2−M

|xN (s) − xN(t)| ≥ ε















≤
∞
∑

v=M+1

P
{

Z(N)
v ≥ D(ǫ)

qv

}

≤ β

D(ǫ)2

(

q2

2

)M+1

1 − q2

2

, ∀N ≥ 1 (16)

By substituting inD(ǫ) from (12),

β

D(ǫ)2

(

q2

2

)M+1

1 − q2

2

=
2β G(q)

ε22M
(17)

whereG(q) = [(1 − 1/q)2 · (1 − q2/2)]
−1.

Thus, for any positiveε andη, select1 < q <
√

2 and positive integerM to satisfy

M ≥ log2

[

2β

ε2 · ηG(q)

]

= log2

[

8π2σ2

3T 2
c ε

2η
G(q)

]

, (18)

and letδ = 2−M . Then, the condition of (4) is satisfied:

P















sup
|s−t|<δ

s,t∈[0,1]

|xN (s) − xN (t)| ≥ ε















≤ η, N ≥ N0 = 1.

Sinceε andη were arbitrary, this establishes Condition 2. 2

Hence, for the sequence{xN} in (2) of random functions ofC, both Condition 1 and Condition

2 are satisfied, and thus{xN} is tight [22, pg. 55]. Given Lemma 3, establishing Theorem 1

only requires a demonstration that the finite-dimensional distributionPNπ
−1
t1,···,tk of xN , which is

determined by the random vector(xN (t1), · · · , xN(tk)), converges weakly to the measureµt1,···,tk

induced byx on (Rk,Rk), for each(t1, · · · , tk) [22, pg. 54]. First, a technical lemma is presented,

and then the Cramér-Wold Device [22, pg. 49] is employed in astraightforward manner to establish

the result.

Lemma 2.4

lim
N→∞

1

N

N−1
∑

k=0

cos

(

2πk

NTc

τ

)

= sinc
(

2τ

Tc

)
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2

Lemma 2.5

Let xN (t) be defined as in (2), and pick any integerL ≥ 1 and collection of sample times

{t1, t2, . . . , tL}. Then

ΓN = (xN (t1), xN (t2), . . . , xN(tL))T D−→ Γ,

whereΓ = (Γ1,Γ2, . . . ,ΓL)T is anL-dimensional vector with jointly Gaussian components, mean

vector0, and covariance matrixΣ, where the(i, j)th element ofΣ is given by

Σi,j = E[ΓiΓj] = σ2sinc

(

2(ti − tj)

Tc

)

(19)

2

Proof:

Pick any integerL ≥ 1 and collection of sample times{t1, t2, . . . , tL}. The Cramér-Wold Theorem

[22, pg. 49] will be employed below; thus, consider any linear combination:

ZN =
L
∑

l=1

alxN(tl)

wherea1, a2, . . . , aL are real constants. Then,

ZN =
1√
N

N−1
∑

k=0

AR
k

L
∑

l=1

al cos

(

2π
k

NTc

tl

)

− 1√
N

N−1
∑

k=0

AI
k

L
∑

l=1

al sin

(

2π
k

NTc

tl

)

=
1√
N

N−1
∑

k=0

AR
k rk,N − 1√

N

N−1
∑

k=0

AI
kik,N

=
N−1
∑

k=0

γk,N

where

rk,N =
L
∑

l=1

al cos

(

2π
k

NTc
tl

)

,

ik,N =
L
∑

l=1

al sin

(

2π
k

NTc

tl

)

,

γk,N =
1√
N

(

AR
k rk,N − AI

kik,N

)

.
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Noting |rk,N | <
∑L

l=1 |al| and|ik,N | <
∑L

i=1 |al|, and
∣

∣

∣AR
k

∣

∣

∣ ≤ Ā,
∣

∣

∣AI
k

∣

∣

∣ ≤ Ā, Lindeberg’s condition

for triangular arrays [24, pg. 116] is satisfied as follows. Since

∣

∣

∣AR
k rk,N − AI

kik,N

∣

∣

∣ ≤
∣

∣

∣AR
k

∣

∣

∣ |rk,N | +
∣

∣

∣AI
k

∣

∣

∣ |ik,N |

≤ 2Ā
N−1
∑

l=0

|al| = C0,

and, for anyǫ > 0, there existsN0, such that whenN ≥ N0,
√
Nǫ > C0. Therefore, ifN ≥ N0,

N−1
∑

k=0

E
{

|γk,N |2 ; |γk,N | > ǫ
}

=
N−1
∑

k=0

E
{

|γk,N |2 ;
∣

∣

∣AR
k rk,N −AI

kik,N

∣

∣

∣ >
√
Nǫ
}

= 0

The limiting value of the variance ofZN will determine two separate cases. Thus, notingE[ZN ] =

0, the variance ofZN is computed as follows. First, note

E[Z2
N ] =

L
∑

l=1

L
∑

m=1

alamE[xN (tl)xN(tm)]

Next, note

E[xN (tl)xN (tm)] =
1

N

N−1
∑

k=0

N−1
∑

v=0

E

[(

AR
k cos

(

2πk

NTc

tl

)

−AI
k sin

(

2πk

NTc

tl

))

(

AR
v cos

(

2πv

NTc
tm

)

− AI
v sin

(

2πv

NTc
tm

))]

=
1

N

N−1
∑

k=0

(

σ2 cos

(

2πk

NTc
tl

)

cos

(

2πk

NTc
tm

)

+ σ2 sin

(

2πk

NTc

tl

)

sin

(

2πk

NTc

tm

))

=
σ2

N

N−1
∑

k=0

cos

(

2πk(tm − tl)

NTc

)

−→ σ2sinc

(

2(tm − tl)

Tc

)

,

which implies

ψ2 ∆
= lim

N→∞
E[Z2

N ] =
L
∑

l=1

L
∑

m=1

σ2alamsinc

(

2(tm − tl)

Tc

)

.
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If ψ2 > 0, Lindeberg’s conditions for triangular arrays [24, pg. 116] are thus satisfied; there-

fore,ZN
D−→ Z, whereZ is normal,E[Z] = 0, andE[Z2] = ψ2.

If ψ2 = 0: Chebyshev’s inequality [24] yields

P (|ZN | ≥ η) ≤ E[Z2
N ]

η2
−→ 0,

for anyη > 0, which impliesZN
P−→ 0. Thus,ZN converges in distribution to a Gaussian random

variable with mean 0 and variance 0.

The two cases together imply thatZN
D−→ Z ∼ N(0, ψ2) for any ψ2. Now, for the same

constantsa1, a2, . . . , aL, defineU =
∑L

l=1 alΓl, whereΓi denotes theith element ofΓ. U is normal

with meanE[U ] = 0 and varianceE[U2] = ψ2. Thus,U D
= Z for any L and collection of

{a1, a2, . . . , aL}. By the Cramér-Wold Theorem,

ΓN = (xN(t1), xN(t2), . . . , xN (tL))T D−→ Γ

2

Thus, Theorem 1 is established. Establishing Theorems 2 and3 is then a straightforward

extension. The reader interested in the detailed proofs is referred to [20].

2.2 Extension to Coded Systems

Per Section 1, one of the guiding tenets of wireless OFDM systems is that the bandwidth of each

subcarrier should be less than the coherence bandwidth of the wireless channel, which results in

no intersymbol interference (ISI) on a given subcarrier andthus obviates the need for complex

equalization at the receiver. However, by definition, this makes the effective channel on each

subcarrier a frequency non-selective fading channel, which implies that uncoded OFDM systems

will perform very poorly. Thus, it has been widely recognized that some form of error control

coding is necessary in wireless OFDM systems. However, whenerror control coding is applied,

the independence assumptions required for the central limit theorem results of Theorem 2 and

Theorem 3 are violated. Thus, in this section, the results ofthe previous sections are extended to

systems employing error control coding.

13



It is clear from the work of other researchers that error control coding can have a significant

impact on the distribution of the PMEPR of OFDM systems; in fact, a recent line of research has

exploited such a fact to develop error control codes for OFDMsystems that greatly reduce the

PMEPR (see [8] and references therein). In this section, it is shown that, despite the dependence

of the symbols at the output of the error control coder on one another, analogous results to those of

Theorem 2 and Theorem 3 hold under very broad conditions. In particular, the results hold well for

any system with enough “mixing” of codewords or, perhaps surprisingly, for many standard codes

for a number of subcarriers on the order for which the resultsheld in the uncoded case.

To establish an analog to Theorem 2, first consider the type ofsymbol sequence that is em-

ployed in a coded system in place of the IID symbol sequence ofthe uncoded OFDM system.

Clearly, the sequence output from the coded modulation in a system employing some form of error

control coding contains dependent symbols, for the introduction of such dependenceis the role of

the error control coder. However, most good codes for randomerrors do not introduce correlation

into the symbol stream [25, pg. 527][26], and thus, althoughit certainly contains dependence, the

coded symbol stream can be modeled as uncorrelated. Also, note that such a symbol stream is only

locally dependent for traditional codes (i.e. codes that donot introduce the long-term dependence

exemplified by, for example, turbo codes [27]). For block codes, symbols separated in index by

more than a block length are independent; for convolutionalcodes, symbols separated in index

by more than the constraint length are independent. Thus, the random process at the output of

the coded modulation is a form of random process known as “m-dependent” [22], which will be

important to establish the mixing results required in the proof of Theorem 4. Finally, note that

most coded OFDM systems employ some form of interleaving between the coded modulator and

the IFFT in order to obtain some form of diversity; thus, it isimportant to allow for the possibility

of such, although it should be noted that it isnot required for the results. These assumptions lead

to the statement of Theorem 4, which is a generalization of Theorem 2. The proof of Theorem 4

follows from the work of Section 2.1 and [28]; for details, see [20].

Theorem 4
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Consider the complex signal

sN (t) =
1√
N

N−1
∑

k=0

Bk,Ne
jωkt, (20)

whereωk = 2πk
NTc

, Tc ∈ (0,∞), and{Bk,N , k = 0, · · · , N − 1} is defined by

BN = (B0,N , B1,N , . . . , BN−1,N)T = PNAN , wherePN is an arbitraryN×N permutation matrix,

which permutes the entries ofAN = (A0, A1, . . . , AN−1)
T , and let{Ak, k = 0, 1, . . . , N − 1}

be drawn from a stationary sequence of identically distributed (but not necessarily independent)

random variables where, for allk andl:

1. E[AR
k ] = E[AI

k] = 0.

2. E[(AR
k )2] = E[(AI

k)
2] = σ2 <∞.

3.
∣

∣

∣AR
k

∣

∣

∣ < A and
∣

∣

∣AI
k

∣

∣

∣ < A.

4. Al andAk are uncorrelated,k 6= l.

5. AR
k andAI

k are uncorrelated.

6. There exists an integern0 such thatAk andAl are independent if|k − l| ≥ n0.

Then, asN → ∞, for any closed and finite intervalT ⊆ R

{sN(t), t ∈ T} D−→ {s(t), t ∈ T}

where D−→ impliesconvergence in distribution ands(t) is a zero-mean stationary Gaussian random

process defined over the intervalT , with real partx(t) and imaginary party(t) such that

E [x(ti)x(tj)] = E [y(ti)y(tj)] = σ2sinc

(

2(tj − ti)

Tc

)

,

and

E [x(ti)y(tj)] = σ2
sin2

(

(tj−ti)π

Tc

)

π(tj−ti)

Tc

.
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for all ti andtj in T . The implied weak convergence of the underlying measures ison the metric

space(CT × CT , ρ) as defined above in Theorem 2. 2

Thus, a convergence result analogous to that demonstrated in Section 2 for uncoded systems

has been established for coded systems.

3 PMEPR Distribution of OFDM Signals by Extremal Theory

As noted in Section 1, the establishment of Theorems 2 and 3 does not rigorously establish the

work of [17] and [18]. This is because weak convergence of theOFDM process requires only

demonstrating convergence on every finite interval of the real line, and, since the symbol interval

of a bandlimited OFDM system will become infinite asN → ∞, the result cannot be strictly

applied. However, per above, the convergence result provides reasonable motivation for such an

endeavor. Rather than following the work of [17] and [18], weexploit modern extreme value theory

for the envelope of a complex Gaussian random process to arrive rather quickly at approximations

for the PMEPR distribution of OFDM systems with a finite number of subcarriers.

Consider an OFDM system whose passband is symmetric about its carrier; then, the complex

baseband representation of the OFDM signal can be expressedas:

s̃N(t) =
1√
N

N−1
∑

k=0

Ake
j 2π

NTc
(k−N−1

2 )t, (21)

and the PMEPR of̃sN(t) can be defined as [17]

PN
△
=

max0≤t≤NTc
|s̃N(t)|2

Pav

, (22)

wherePav = 2σ2. Note thatPN is a random variable, and it is the distribution ofPN that is studied

in this section.

3.1 Preliminaries

Extreme value theory [29, 30] can be employed to obtain the desired result. The required ele-

ments of extreme value theory are briefly summarized here. Let ζ(t), η(t), t > 0 be independent
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stationary Gaussian processes, each with zero mean, unit variance, and autocovariance function

r(t) = Cov(ζ(s), ζ(s+ t)) = Cov(η(s), η(s+ t)), where Cov(x, y) denotes the covariance of the

random variablesx andy. Supposer(t) admits the expansion

r(t) = 1 − λ
t2

2
+ o(t2), (23)

ast → 0, and thatζ(t) andη(t) have continuously differentiable sample paths, with Var(ζ ′(t)) =

Var(η′(t)) = λ = −r′′(0), where Var(x) denotes the variance of the random variablex. Then

χ2(t) = ζ2(t) + η2(t)

is said to be a stationaryχ2(2)-process with continuously differentiable sample paths. Suppose

further that

r(t) log(t) → 0, ast→ ∞,. (24)

Then

P

{

sup
0<t≤T

χ2(t) ≤ u2

}

→ e−τ (25)

if Tµ(u) → τ asT , u → ∞, whereµ(u) is termed the upcrossing intensity of levelu2 [30, 31],

i.e. the mean number of exits by(ζ(t), η(t)) , 0 ≤ t ≤ T , acrossSu, where

Su =
{

(x1, x2) ∈ R2, x2
1 + x2

2 = u2
}

.

The upcrossing intensity is related toT by

u2 = 2 logT + log log T + log (λ/π) − 2 logTµ(u) + o(1) (26)

Combining (25) and (26) yields

P
{

aT

(

max
0≤t≤T

χ2(t) − bT

)

≤ x
}

→ exp
(

−e−x
)

, asT → ∞ , (27)

for

aT = 1/2, bT = 2 logT + log log T + log (λ/π) . (28)
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3.2 Application to the PMEPR Distribution of Uncoded OFDM

Per Section 2, asN → ∞, the complex baseband OFDM signal (21) is converging weaklyto a

complex Gaussian random processs̃(t) = X(t) + jY (t) in any finite closed intervalT , with

r(τ) = E[X(t)X(t+ τ)] = E[Y (t)Y (t+ τ)] = σ2sinc
(

τ

Tc

)

, (29)

and

E[X(t1)Y (t2)] = 0, ∀t1 andt2, t1 ∈ T, t2 ∈ T. (30)

It is clear thatχ2(t) = 1
σ2 (X2(t) + Y 2(t)) is aχ2(2)-process.

From the definition ofxN(t) in (2), it can be seen that, for eachN , xN(t) has continuously

differentiable sample paths. LeṫX(t) be the first derivative function ofX(t), which is well de-

fined due to the continuity of the second derivative ofr(τ), r̈(τ), at τ = 0 [23, pg. 79]. Then,

E
[

Ẋ(t+ τ)Ẋ(t)
]

= −r̈(τ). With r(τ) determined as in (29), it can be shown that

E
∣

∣

∣Ẋ(t+ h) − Ẋ(t)
∣

∣

∣

2 ≤ 0.2σ2
(

π

Tc

)4

h2, ∀t ∈ T, h < 1. (31)

Therefore, almost every sample function ofẊ(t) is uniformly continuous onT by the Kolmogorov

condition [23, pg. 57]. Hence,X(t) has continuously differentiable sample paths almost surely, as

doesY (t).

The conditions stated in (23) and (24) are satisfied byr(τ) in (29), withλ = 1
3

(

π
Tc

)2
. Hence,

asN → ∞, the probability density function (PDF) of the PMEPR of the baseband OFDM signal

has the following asymptotic characteristic,

P
{

max
0≤t≤T

1

2σ2

[

X2(t) + Y 2(t)
]

≤ y
}

= P
[

max
0≤t≤T

χ2(t) ≤ 2y
}

−→ exp
(

−e−x
)

, asT → ∞, (32)

wherex = (2y − bT ) aT . The variablesaT and bT are defined the same as in (27), withλ =

1
3

(

π
Tc

)2
.

Whereas (32) gives the strict convergence result from extremal value theory, the normalization

required for such is not that which is typically employed in the study of the PMEPR of OFDM
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systems. In particular, practical interest is in the distribution of the PMEPR of a codeword, whose

average grows withN and thus whose distribution does not demonstrate strict convergence. Before

moving to the latter, the accuracy of the strict convergenceof (32) is demonstrated. Figures 1 and

2 demonstrate that (32) is quite accurate, particularly fortheN = 256 case.

Next, consider scaling (32) to obtain the distribution of the PMEPR of an OFDM symbol. Let

T = NTc. When the time-scale is normalized byTc, λ = π2

3
and the PDF of the PMEPRPN can

be approximated as

P{PN ≤ y} ≈ exp
{

−e−yN

√

π

3
logN

}

, (33)

whenN is large enough.

Remarks: In [13, pp. 2840] under Remark2 about our work [11], the authors argue that the

above result in (33) implies that the number of codewords that have a constant PMEPRy = λ

(independent of the number of subcarriersN) is given by

qN · P{PN ≤ y} ≈ q
N

(

1− e−λ

log q

√
π
3

log N

)

, (34)

where a codeword is defined asCN
∆
= [A0, A1, · · · , AN−1] with Ak selected from a finite alphabet

setQ with q elements. It can be inferred from (34) thatqN · P{PN ≤ y} goes to zero asN ap-

proaches infinity, which contradicts Corollary1 in [13], and consequently, as put in [13], indicates

the CDF of PMEPR in (33) is not correct. However, this argument does not hold as it is based on a

misinterpretation of (33). The main reason is that the approximation of CDF for PMEPR obtained

in (33) is only valid for largeN and largey, wherey is determined from (26):

y = u2/2 = log T +
1

2
log logT +

1

2
log (λ/π) − log Tµ(u) + o(1). (35)

Therefore, this approximation cannot hold for a fixed constant y = λ while lettingT = NTc grow

to infinity, which explains why we cannot assumey = λ < ∞ and use (33) to approximately

compute the average number of codewords whose PMEPR is belowλ. In addition, it can be easily

seen that the PMEPR is in the order oflogN + O(log logN), which was shown in [13] using

different approaches.
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In [17], the following approximations for largeN is derived by employing the method of level-

crossing rates [21]:

P{PN ≤ y} ≈ exp
{

−e−yN

√

π

3
y
}

, for P{γ > y|γ > r̄} → 0 , (36)

whereγ is an arbitrary peak in one OFDM symbol (within[0, NTc]) and r̄ is a proper threshold

selection such that each positive crossing of the levelr̄ has a single positive peak that is above the

level r̄ [17].

The upper bound of the complementary cumulative distribution function (CDF) of the PMEPR

was derived as shown in (40) of [18] forN large as

P{PN > y} ≤ e−yN

√

π

3
y. (37)

By comparing (36) with (37), it can be seen that the upper bound in (37) is exactly the first order

approximation obtained through a Taylor series expansion of 1−exp
{

−e−yN
√

π
3
y
}

in (36), which

is expected to be accurate asy becomes large.

The comparison of (33), (36) and (37), in terms of the complementary CDF (i.e. P{PN ≥ y})

with simulation results is shown in Figure 3 and Figure 4. Thecontinuous signal was approximated

by a “32-time oversampling” of the complex baseband signal, which means a sampling at32 times

the Nyquist rate. It can be observed that, although the asymptotic form of (36) and (37) differ from

the rigorously justified expression of (33), all three expressions provide good characterizations of

the PMEPR of the uncoded OFDM system for a moderate number of subcarriers in the OFDM

system.

3.3 Extension to Coded Systems

To consider the distribution of the PMEPR for coded systems,note that the expressions for such

in the case of uncoded systems depend only on the second orderstatistics of the limiting process.

Thus, since the second order statistics of the limiting process of the coded system are identical to

that for the uncoded system, the result of 3.2 can be applied to coded systems without modification.
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Numerical results for coded systems are shown in Figures 5 through 8. Figure 5 and 6 are

for the case where a binary convolutional code with rate1/2 and constraint length6 is employed

without interleaving. Figure 7 and 8 are for the same convolutional code, but now with a block

symbol-wise8× 8 interleaver. It can be seen from these figures that asN is increased from100 to

256, the simulation results are approaching the analytical ones as expressed in (33), (36) and (37).

4 Extensions to Systems with Unequal Power Distributions

4.1 Issues Regarding Convergence

In previous sections, it has been assumed that the power allocated on each subcarrier of the OFDM

system is identical, i.e.E
∣

∣

∣

1√
N
A2

k

∣

∣

∣ = 2σ2

N
, k = 0, · · · , N − 1. However, since OFDM systems are

usually used in channels with nonflat frequency response, itis often desirable to allocate different

amounts of power to different subcarriers [18], particularly if some sort of channel state informa-

tion is available at the transmitter. LetsN(t) be a complex OFDM symbol, which is redefined

as

sN (t) =
N−1
∑

k=0

sN,ke
jωkt, (38)

wheresN,k, k = 0, · · · , N − 1, are independent complex random variables, andωk = ω0 + 2π
NTc

k.

Let sR
N,k andsI

N,k be the real and imaginary parts ofsN,k, which have the following statistical char-

acteristics:E
[

sR
N,k

]

= E
[

sI
N,k

]

= 0,E
[

(

sR
N,k

)2
]

= E
[

(

sI
N,k

)2
]

= gN(k), andE
[

sR
N,ks

I
N,k

]

= 0.

Assume there exists a finite constantD0, such that

P





sR
N,k

√

gN(k)
≤ D0



 = P





sI
N,k

√

gN(k)
≤ D0



 = 1. (39)

The functiongN(k) gives the amount of power allocated to thekth subcarrier. Here, it is as-

sumed that the OFDM system is designed to approximate some given power spectral densityG (ω)

[18]. The functionG(ω) is assumed to be Riemann-integrable in the interval[ω0, ω0 + 2π/Tc], and

bounded by some constantMG, with

∫ ω0+2π/Tc

ω0

G(ω) dω = σ2. (40)
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This power distribution may be approximated if the power allocated to thekth subcarrier is

gN(k) = σ2 G (ωk)
∑N−1

m=0 G (ωm)
. (41)

in which case the average power of the baseband OFDM signal isPav = 2
∑N−1

k=0 gN(k) = 2σ2.

Let λ1 andλ2 be the first and second normalized moment of1
σ2G(ω), respectively, as defined in

[18],

λ1 = lim
N→∞

1

σ2

N−1
∑

k=0

gN(k)ωk =
1

σ2

∫ ω0+BW

ω0

ωG(ω)dω

λ2 = lim
N→∞

1

σ2

N−1
∑

k=0

gN(k)ω2
k =

1

σ2

∫ ω0+BW

ω0

ω2G(ω)dω (42)

whereBW = 2π
Tc

.

As before, letsN(t) = xN (t) + jyN(t) andRsN
(τ) = E [s∗N(t)sN (t+ τ)]; then,

E [s∗N (t)sN (t+ τ)] =
N−1
∑

k=0

E |sN,k|2 ejωkτ

= 2σ2

∑N−1
k=0

BW
N
G(ωk)e

jωkτ

∑N−1
k=0

BW
N
G(ωk)

→ 2
∫ ω0+BW

ω0

G(ω)ejωτdω = Rs(τ), asN → ∞, (43)

whereRxN
(τ) = E [xN (t)xN(t+ τ)] andR(yN ,xN )(τ) = E [xN (t)yN(t+ τ)]. It can be shown

that

RxN
(τ) = RyN

(τ) =
N−1
∑

k=0

gN(k) cos (ωkτ)

R(yN ,xN )(τ) =
N−1
∑

k=0

gN(k) sin (ωkτ) .

Therefore, the autocorrelation functions of the random processesxN (t) andyN(t) and their cross-

correlation function have the following relationships,

RsN
(τ) = 2

(

RxN
(τ) + jR(yN ,xN )(τ)

)

R(yN ,xN )(τ) = −R(xN ,yN )(τ) = −R(yN ,xN )(−τ). (44)
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Let s(t), x(t) andy(t) be the random processes to whichsN(t), xN (t) andyN(t) are converging

in distribution, respectively. The convergence of these random processes will be proved in the

coming paragraphs. Hence, asN → ∞, RxN
(τ) → Rx(τ) = Re

{

∫ ω0+BW
ω0

G(ω)ejωτdω
}

, and

R(yN ,xN )(τ) → R(y,x)(τ) = Im
{

∫ ω0+BW
ω0

G(ω)ejωτdω
}

. SinceR(yN ,xN )(τ) = −R(yN ,xN )(−τ),

R(yN ,xN )(0) = 0; in other words,xN(t) andyN(t) are uncorrelated for eacht, as arex(t) andy(t).

To prove thatxN(t) is converging to a Gaussian random processx(t) with autocorrelation

functionRx(τ) = Re
{

∫ ω0+BW
ω0

G(ω)ejωτdω
}

, it is sufficient to show the tightness of{xN(t)} and

convergence of the finite distributions of arbitrary finite samplings ofxN (t) as has been done in

the previous sections for the equal power case. Using (39) and the fact thatG(ω) is upper bounded

by MG, it is trivial to prove the convergence of finite distributions, as well as the conditions for

tightness. Thus, all that is required is to show a counterpart to Lemma 2.2.

Lemma 4.1: ∀ǫ > 0, there existsN0(ǫ), such that

E |xN (t+ h) − xN(t)|2 ≤ βh2, ∀N ≥ N0.

Proof:

E |xN (t+ h) − xN(t)|2 = 4
N−1
∑

k=0

gN(k)sin2

(

ωkh

2

)

≤
N−1
∑

k=0

gN(k)ω2
kh

2

= h2σ2

∑N−1
k=0 G(ωk)ω

2
k

BW
N

∑N−1
k=0 G(ωk)

BW
N

→ h2
∫ ω0+BW

ω0

ω2G(ω) dω = h2λ2, asN → ∞

2

Then, ∀ǫ > 0, there existsN0 such thatE |xN (t+ h) − xN (t)|2 ≤ βh2, if N ≥ N0, where

β = λ2 + ǫ. As a result, in (18) of the proof of Lemma 2.3, the corresponding lower bound ofM

will be

M ≥ log2

[

2 (λ2 + ǫ)

ε2 · η G(q)

]

, (45)
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and the rest follows in an identical fashion to the proof of Lemma 2.3.

For {sN(t)}, it can be shown in a straightforward manner that tightness and the convergence

of the finite-dimensional distributions is assured. Therefore, it can be concluded that asN → ∞,

the sequence of complex random processes{sN(t)} is converging in distribution to a complex

Gaussian random processs(t) = x(t) + jy(t), with zero mean and autocorrelation function

Rs(τ) =
∫ ω0+BW
ω0

G(ω)ejωτdτ . SinceR(y,x)(0) = 0, x(t) andy(t) are independent of each other at

eacht. Thus|s(t)|2 = x2(t) + y2(t) is aχ2(2)-process.

4.2 Distribution of the PMEPR

Let the PMEPR of a baseband OFDM signal defined in (38) be as that defined in (22) withPav =

2σ2, ands̃N(t) = sN(t). To derive the probability density function of the PMEPR of abaseband

OFDM signal in the case of unequal power allocations on each subcarrier, extreme value theory

will be employed again. In [30], it was pointed out that the results in [30] still hold, even if the

imaginary partξ(t) and real partη(t) of a complex Gaussian random process are correlated, if the

following conditions are satisfied:

1. ξ(t) andη(t) have continuously differentiable paths.

2. ξ(t) andη(t) are independent for eacht.

3. supτ |Cov(ξ(t), η(t+ τ))| < 1.

4. Cov(ξ(t), η(t+ τ)) log τ → 0, asτ → ∞.

5. r(τ) = Cov(ξ(t), ξ(t+ τ)) = Cov(η(t), η(t+ τ))

6. r(τ) log τ → 0, asτ → ∞.

Defineη(t) = 1
σ
x(t), ξ(t) = 1

σ
y(t), andχ2(t) = η2(t)+ξ2(t) = 1/σ2 |s(t)|2. By employing the

same arguments as those in Section 3.2, it can be shown thats(t) has continuously differentiable
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paths. SinceRy,x(0) = 0, ξ(t) andη(t) are independent for eacht. Since

Rη(τ) + jRξ,η(τ) =
1

σ2

∫ ω0+2π/Tc

ω0

G(ω)ejωτ dω, (46)

and

|Rη(τ) + jRξ,η(τ)| =
1

σ2

∣

∣

∣

∣

∣

∫ ω0+2π/Tc

ω0

G(ω)ejωτ dω

∣

∣

∣

∣

∣

≤ 1

σ2

∫ ω0+2π/Tc

ω0

∣

∣

∣G(ω)ejωτ
∣

∣

∣ dω

= 1, (47)

condition (3) is satisfied. Conditions 4 and 5, require that

log(τ)
∫ ω0+2π/Tc

ω0

G(ω)ejωτ dω → 0, asτ → ∞.

Thus, the cross-correlation and autocorrelation functions must decrease faster than1/ log(τ), as

τ → ∞, which is true in most cases. Assuming conditions 4 and 5 are satisfied, letµ(u) be

the upcrossing intensity of a levelu2 for a χ2(2)-processχ2(t) = η2(t) + ξ2(t) with dependent

components, which can be derived to be

µ(u) = (2π)−1/2 ue−
1
2
u2
(

b− a2
)1/2

, (48)

whereb = −R̈η(τ)|τ=0 anda = Ṙξ,η(τ)|τ=0. The functionsR̈η(τ) andṘξ,η(τ) are defined as the

second and first derivative ofRη(τ) andRξ,η(τ) with respect toτ , respectively.

Based on (46), it can be shown that

a =
1

σ2

∫ ω0+2π/Tc

ω0

ωG(ω) dω = λ1, (49)

and

b =
1

σ2

∫ ω0+2π/Tc

ω0

ω2G(ω) dω = λ2. (50)

Let λ̃ = b−a2 = λ2−λ2
1. Then,µ(u) =

(

λ̃
2π

)1/2
ue−u2/2, which is exactly the same as for the case

whenξ(t) andη(t) are independent Gaussian random processes [30, Theorem 1.1]. Therefore, the
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PMEPR of a OFDM signal with unequal power allocated on each subcarrier in terms of the power

spectral densityG(ω) has the same form as that in (32) withλ replaced bỹλ:

P
{

max
0≤t≤T

1

2σ2

[

x2(t) + y2(t)
]

≤ y
}

= P
[

max
0≤t≤T

χ2(t) ≤ 2y
}

→ exp







−e−yT

√

λ̃

π
log T







(51)

whenT = NTc → ∞, asN → ∞. After the time scale has been normalized byTc, i.e. Tc = 1 as

that in (33), the CDF of PMEPRPN in the case of unequal power allocation can be approximated

as

P{PN ≤ y} ≈ exp







−e−yN

√

λ̃

π
logN







. (52)

From (52), it can be seen that the probability distribution function of the PMEPR of an OFDM

signal defined as in (38), whose power on each subcarrier is determined by (40) and (41), is only

dependent on the first and second moment of the normalized power spectral densityG(ω)/σ2, λ1

andλ2, respectively, as well as the number of subcarriersN , whenN is large.

Equation (39) in [18] is the upper bound of the complementaryCDF of the PMEPR asN

is large in the case of an unequal power distribution acrossN subcarriers. After replacing the

parameters with the ones employed in this work, this upper bound

P{PN > y} ≤ Ne−y

√

λ̃

π
y. (53)

As one example, let the power spectral densityG(ω) be

G(ω) =

{

Tc

π
if − π

Tc
≤ ω < 0,

Tc

2π
(1 + cos (ωTc)) if 0 ≤ ω ≤ π

Tc
.

(54)

andσ2 =
∫ π/Tc

−π/Tc
G(ω) dω = 3/2. Thus by substitutingG(ω) of (54) into (49) and (50), it can be

shown that

λ̃ =
1

T 2
c

[

π2

3
− 2

3
− 4

9

(

π

4
+

1

π

)2
]

≈ 2.0818

T 2
c

. (55)

It can also be shown that|Rs(τ)| =
∣

∣

∣

∫ ω0+2π/Tc

ω0
G(ω)ejωτdω

∣

∣

∣ is in the order of1/τ , asτ → ∞.

Therefore, condition 4 and 5 are satisfied for this example, and the CDF of the PMEPR in (52) can

thus be applied for largeN .
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The comparison of (52) and the corresponding upper bound (53) with simulation results for

the complementary cumulative distribution function of thePMEPR of an uncoded OFDM signal

is shown in Figures 9 and 10. Once again, it can be seen that thenumerical results agree well with

Monte-Carlo simulation results for moderate numbers of subcarriers.

5 Conclusions

In this paper, it has been demonstrated that, under a broad range of conditions, the complex en-

velope of a bandlimited OFDM system converges (in the limit of a large number of subcarriers)

weakly to a Gaussian random process. Although this result applies only to analysis over a finite

time interval (and thus does not strictly apply to bandlimited OFDM systems in this limit), the

result motivates the application of modern extremal theoryfor Gaussian random processes to the

OFDM problem. This leads in a straightforward manner to simple yet accurate expressions for the

distribution of the PMEPR in both uncoded and coded OFDM systems for moderate numbers of

subcarriers.
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Figure 1: Accuracy of (32) for an uncoded OFDM signal with 100subcarriers and employing
QPSK.
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Figure 2: Accuracy of (32) for an uncoded OFDM signal with 256subcarriers and employing
QPSK.
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Figure 3: Complementary cumulative distribution functionof the peak-to-mean envelope power
ratio (PMEPR) of an uncoded OFDM signal with 100 subcarriersand employing QPSK: simula-
tion, the proposed expression (33), and that of (36) and (37), with equal power distributions across
subcarriers. Note the close agreement of the proposed expression with the simulated PMEPR
for a number of subcarriers as small as 100. The simulation curves are obtained by running106

independent OFDM symbols.
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Figure 4: Complementary cumulative distribution functionof the peak-to-mean envelope power
ratio (PMEPR) of an uncoded OFDM signal with 256 subcarriersand employing QPSK: simula-
tion, the proposed expression (33), and that of (36) and (37), with equal power distributions across
subcarriers. Note the close agreement of the proposed expression with the simulated PMEPR. The
simulation curves are obtained by running106 independent OFDM symbols.
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Figure 5: Complementary cumulative distribution function(CDF) of the peak-to-mean envelope
power ratio (PMEPR) of a non-interleaved (2,1,6) convolutionally-coded OFDM system with 100
subcarriers employing QPSK: simulation, the proposed expression (33), and that of (36) and (37),
with equal power distributions across subcarriers. Note the close agreement of the proposed ex-
pression with the simulated PMEPR; thus, as expected, the closed form of the CDF of the PMEPR
of an uncoded OFDM signal still holds for this coded system. The simulation curves are obtained
by running106 independent OFDM symbols.
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Figure 6: Complementary cumulative distribution function(CDF) of the peak-to-mean envelope
power ratio (PMEPR) of a non-interleaved (2,1,6) convolutionally-coded OFDM system with 256
subcarriers employing QPSK: simulation, the proposed expression (33), and that of (36) and (37),
with equal power distributions across subcarriers. Note the close agreement of the proposed ex-
pression with the simulated PMEPR; thus, as expected, the closed form of the CDF of the PMEPR
of an uncoded OFDM signal still holds for this coded system. The simulation curves are obtained
by running106 independent OFDM symbols.
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Figure 7: Complementary cumulative distribution function(CDF) of the peak-to-mean envelope
power ratio (PMEPR) of a coded (8 × 8 block symbol-wise interleaver,(2, 1, 6) convolutional
code), OFDM system with 100 subcarriers employing QPSK: simulation, the proposed expression
(33), and that of (36) and (37), with equal power distributions across subcarriers. The simulation
curves are obtained by running106 independent OFDM symbols.
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Figure 8: Complementary cumulative distribution function(CDF) of the peak-to-mean envelope
power ratio (PMEPR) of a coded (8×8 block symbol-wise interleaver,(2, 1, 6) convolutional code)
OFDM system with 256 subcarriers employing QPSK: simulation, the proposed expression (33)
and that of (36) and (37), with equal power distributions across subcarriers. The simulation curves
are obtained by running106 independent OFDM symbols.
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Figure 9: Complementary cumulative distribution function(CDF) of the peak-to-mean envelope
power ratio (PMEPR) of a uncoded OFDM signal with unequal power distribution across subcar-
riers determined by (54), with 100 subcarriers employing QPSK: simulation, the proposed expres-
sion (52), and the upper bound (53), whereλ̃ is given by (55). There is close agreement of the
proposed expression with the simulated PMEPR for a number ofsubcarriers as small as 100. The
simulation curves are obtained by running106 independent OFDM symbols.
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Figure 10: Complementary cumulative distribution function (CDF) of the peak-to-mean envelope
power ratio (PMEPR) of a uncoded, OFDM signal with unequal power distribution across subcar-
riers determined by (54), with 256 subcarriers employing QPSK: simulation, the proposed expres-
sion (52), and and the upper bound (53), whereλ̃ is given by (55). Note the close agreement of the
proposed expression with the simulated PMEPR. The simulation curves are obtained by running
106 independent OFDM symbols.
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