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On the Asymptotic Capacity of MIMO Systems
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Abstract—Previous authors have shown that the asymptotic
capacity of a multiple-element-antenna (MEA) system with N
transmit and N receive antennas [termed an (N, N) MEA]
grows linearly with N if, for all l, the correlation of the fading
for two antenna elements whose indices differ by l remains fixed
as antennas are added to the array. However, in practice, the
total size of the array is often fixed, and thus the correlation of
the fading for two elements separated in index by some value
l will change as the number of antenna elements is increased.
In this paper, under the condition that the size of an array of
antennas is fixed, and assuming that the transmitter does not have
access to the channel state information (CSI) while the receiver
has perfect CSI, the asymptotic properties of the instantaneous
mutual information IN,N of an (N, N) MEA wireless system
employing uniform linear arrays in a quasi-static fading channel
are derived analytically and tested for accuracy for finite N
through simulations. For many channel correlation structures, it is
demonstrated that the asymptotic performance converges almost
surely, implying that such MEA systems have a certain strong
robustness to the instantiation of the channel fading values.

Index Terms—Channel capacity, fading channels, MIMO
sytems, Toeplitz matrices.

I. INTRODUCTION

MULTIPLE-ELEMENT-ANTENNA (MEA) wireless
systems have demonstrated the theoretical [1], [2]

and practical [3] potential to increase system bandwidth
efficiencies well beyond those previously imagined. In this
paper, the instantaneous mutual information between the
transmitter and receiver in an (NT, NR) MEA system, withNT

transmit antennas and NR receive antennas, is considered for
uniform linear arrays.1 Early work in this area, which motivated
much of the MEA work to follow, assumed that the fading
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1The extension to an arbitrary two-dimensional array under certain condi-
tions on the correlation function can be found in [31].

between different element pairs was independent identically
distributed (i.i.d.). Under this assumption, it has been shown
[1], [2] that, even if the transmitter has no knowledge of the
channel fading values, the capacity divided by N̂ = min
(NT, NR) approaches a nonzero constant for a fixed average
transmit power, as N̂ → ∞.

The aforementioned assumption of an i.i.d. distribution of
channel path gains can often be violated due to the insufficient
spacing of antennas and/or the absence of a rich scattering
environment around the transmitter and/or receiver. For exam-
ple, for a given angular spreading of the incoming waves, the
spatial correlation of the signals received at two points will
generally increase with decreasing distance between the points
[4]. Electromagnetic mutual coupling between the elements
will also change the correlation between the signals received
from adjacent points. Recent work investigating the impact
of correlated fading on the capacity of MEA systems can
be found in [5] and [6]. In [6], an (N,N) MEA wireless
system is assumed, and antennas are arranged in a regular
grid, the total size of which scales upward with the number
of antennas, thus preserving the relative position of adjacent
antennas. Under this assumption, [6] employed the random
matrix theory to show that, as N approaches infinity, the
instantaneous mutual information IN,N of such MEA systems
still increases linearly, albeit with a smaller rate than in the i.i.d.
fading case.

In practice, the maximum physical size of the antenna array
is fixed due to physical constraints imposed by the application
(e.g., on a mobile unit). In this paper, the asymptotic char-
acteristics of IN,N are investigated in a scenario where the
length of a uniform linear array is fixed, and neither channel
state information (CSI) nor the channel statistics are available
to the transmitter while the receiver has the perfect CSI. Two
different sets of assumptions for the signal-to-noise ratio (SNR)
will be considered. In one case, it is assumed that the total
average transmit power from the NT antennas will be fixed,
which implies that the average receiver power grows linearly
with NR. This set of assumptions would apply, for example,
if a systems engineer were considering adding small dipoles
to a sparse linear array at the receiver, in which case the total
effective area of the receive array would scale with NR. In
contrast, [7] independently has considered asymptotic mean
capacity for antenna arrays of fixed size assuming that the total
average received power is fixed, thereby implying that the total
effective area of the receive antennas does not grow with NR.
Physically, this set of assumptions models the scenario where a
single antenna element the size of the array is replaced with
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Fig. 1. Instantaneous mutual information IN,N of an (N,N) MEA system versus N , with the fixed total average transmit power. Simulation results are
obtained through generating one realization of random variable IN,N for each N in terms of the first equation in (5), where LR = 5 λ, ρ = 22 dB. For the
case when the fixed-length linear array is placed at the receiver side only, five realizations are generated for each N , and the Toeplitz matrix ΨR is determined
by ψR(r) = sinc(2r/λ), ΨT = IN . For the case when the fixed-length linear arrays are placed at both the transmitter and receiver side, two realizations are
generated for eachN , and ΨR = ΨT are determined by ψT(r) = ψR(r) = sinc (2r/λ). Analytical results are obtained by the sum term in (28), where fR(N)

is approximated as NR = 15 and eigenvalues {λ(R,N)
k

} are obtained from Fig. 2.

two antenna elements, each half of the size of the array, or
three antenna elements, each a third of the size of the array, etc.
Thus, in this case, the results will indicate the gain as radio
frequency (RF) chains are added at the receiver while fixing the
total received power, which is determined by the aggregate area
of the antenna elements.

Traditional information theory for fading channels has often
been devoted to finding the mean capacity for a given channel,
as is investigated in [7]. However, recent work in information
theory for fading channels, particularly for multiple antenna-
element systems, has been devoted to outage capacity (e.g., [1]).
That is, it is often of interest to know how often the capacity of
a system will be above some required rate. By demonstrating
almost-sure convergence of the asymptotic capacity of fixed-
size linear arrays, the mean and outage capacities are both
addressed. In particular, almost-sure convergence to a limiting
expression implies: 1) the mean capacity converges to the same
expression; and 2) the system will almost always be in outage
for desired rates above the derived capacity and almost never be
in outage for rates below the derived capacity.

To understand the practical significance of almost-sure con-
vergence of the mutual information of (N,N) multiple-input
multiple-output (MIMO) systems, contrast such results with
those for asymptotic mean capacity (e.g., [7]). For a given type
of propagation environment characterized by the correlation
properties of the channel fading matrix, the mean capacity
characterizes how well a system does on average but says
little about how the system would operate in any single envi-
ronment, thus greatly complicating wireless network planning.
The demonstration of almost-sure convergence for the same
system for a given channel correlation structure implies that

the system will operate reliably—regardless (almost surely)
of the actual instantiation of the channel fading values that
are encountered. Fig. 1 shows a representative example of the
results derived here. For the case with a fixed-size array at
the receiver end only (e.g., a base-to-mobile communication),
the upper set of curves demonstrates that the mutual informa-
tion under each of the instantiations of the fading converges
rapidly to the mean capacity, thus demonstrating the robustness
of the performance of the MEA system to the specific instantia-
tion of the fading values. The lower set of curves of Fig. 1 shows
results when there are fixed-size arrays at both the transmitter
and receiver (e.g., a mobile-to-mobile communication), where
mean convergence occurs but almost-sure convergence does
not occur. Using certain approximations, [8] and [9] arrived at
similar conclusions regarding the saturations of the capacity for
a uniform circular array with fixed radius and an antenna array
with a fixed volume, respectively, without recognizing/proving
the almost-sure convergence. Recent independent work [10]
under a different set of assumptions (fixed total transmission
power, independent fading variables for different element pairs)
has shown a similar type of strong convergence in the MIMO
channel as described here—a phenomenon the authors referred
to as “channel hardening.”

The main results of this work are shown in Table I. In
Section II, the system model is presented, which follows that in
[6]. Note that the approaches taken in [6] cannot be employed
here. Instead, the asymptotic characteristics of eigenvalues of
Hermitian matrices and the statistical characteristics of eigen-
values of large sample covariance matrices are investigated
in Sections III-A and III-B, respectively. Section IV applies
the results to the analysis of the mutual information of MEA
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TABLE I
THE MAIN RESULTS OF THE PAPER, WHERE IN,N IS THE INSTANTANEOUS MUTUAL INFORMATION OF AN (N,N) MEA SYSTEM, AND E[IN,N ] IS ITS

EXPECTED VALUE FOR VARIOUS TRANSMIT (TX) AND RECEIVE (RX) ASSUMPTIONS. THE VARIABLE ρ REPRESENTS THE TOTAL RECEIVED POWER

IN THE FIRST ROW (FIXED TOTAL RX POWER), AND THE RECEIVED SNR AT EACH ANTENNA IN THE SECOND ROW (FIXED TOTAL TX POWER),
RESPECTIVELY. {λ(R,∞)} IS THE SET OF NONZERO EIGENVALUES OF THE HERMITIAN OPERATOR ψR(x, y), AS DETERMINED IN (8), AND C0

AND C1 ARE DETERMINISTIC CONSTANTS. THE NUMBER OF NONZERO EIGENVALUES fR(N) OF THE NORMALIZED SPATIAL CORRELATION

MATRIX ΨR/N CAN BE APPROXIMATED AS N0 FOR A BANDLIMITED SPATIAL CORRELATION FUNCTION FOR LARGE N

systems. Simulation results are presented in Section V, and
conclusions are drawn in Section VI.

II. SYSTEM MODEL

Throughout the paper, the following notations will be used:
IN for the N ×N identity matrix, A† for transpose conjugate
of the matrix A, A∗ for conjugate of the matrix A, det(A) for
determinant of the square matrix A, A′ for transpose of the
matrix A, tr(A) for the trace of matrix A, and X for column
vector.

A single-user point-to-point narrowband wireless-
communication system withN transmit andN receive antennas
is assumed. The case where the number of transmit and receive
antennas differ can be considered in an analogous manner. Let
H be the N ×N channel fading matrix, whose (i, j)th entry
Hi,j is the complex path gain between transmitter j and re-
ceiver i. Then, the discrete-time equivalent system model is
given by

Y = HX + Z (1)

where X is an N × 1 vector whose jth component represents
the signal transmitted by the jth antenna. Similarly, the received
signal and received noise are represented by N × 1 complex
vectors Y and Z, respectively. The noise vector Z is an
additive white Gaussian random vector, whose entries {Zi, i =
1, . . . , N} are i.i.d. circularly symmetric complex Gaussian
random variables with mean zero, whereZi is the additive noise
in the ith receiver. Let σ2

0 be the variance of Zi, which will
be normalized to 1. Thus, Zi ∼ Ñ(0, 1), where ∼ Ñ(µ, σ2)
indicates a random variable possesses a circularly symmetric
complex Gaussian distribution with mean µ and variance σ2.

As noted in the Section I, two different assumptions re-
garding the total average transmit and receiver power will be
considered in this paper: 1) the total average receive power
is fixed; and 2) the total average transmit power is fixed. For
the reminder of this section, quantities will be written only for

the second case to make the exposition smoother, but they are
easily modified for the first case as shown in Section IV-A.
Let the total average power transmitted across the N transmit
antennas be E[

∑N
k=1 |Xk|2] = ρ, regardless of N . Entries of

the channel fading matrix H are assumed to be circularly sym-
metric complex Gaussian random variables with zero mean
and E[|Hi,j |2] = 1, and thus a Rayleigh fading channel is
being assumed. Therefore, the average SNR at a single receive
antenna is ρ for the second case as stated above. In this paper,
H will be treated as quasi-static, which means entries of H are
constant during a data frame and vary from frame to frame. It
is assumed that the transmitter has neither knowledge of the
entries of H nor knowledge of the correlation statistics of the
entries, but that the receiver has perfect knowledge of the entries
of H (i.e., no transmitter CSI is assumed, but perfect receiver
CSI is assumed). Hence, as in [2], if the input vector X is
a proper complex Gaussian random vector, whose covariance
matrix is E[X · X†] = Q, the mutual information IN,N of this
MEA system (conditioned on H) is

IN,N = log2 det(IN +H ·Q ·H†) bps/Hz. (2)

Finding the true capacity, of course, requires maximization
of the mutual information over all channel input distributions.
If the channel correlation structure were known at the trans-
mitter, the channel would be defined by a single statistical
model, and the capacity can then be calculated directly (e.g.,
see [11]–[13] and references therein). Since it is assumed here
that the correlation structure is unknown to the transmitter,
an input distribution is chosen that maximizes the minimum
mutual information across all possible correlation structures.
In particular, it is shown in [14] that Q = (ρ/N)IN is optimal
in the sense of maximizing the minimum ergodic capacity
of an MIMO system. Thus, it will be assumed that data are
transmitted independently with the same average power ρ/N
across each of the N antennas. Then, (2) simplifies to

IN,N = log2 det
(
IN +

ρ

N
H ·H†

)
bps/Hz. (3)
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It is assumed that the covariance matrix of the random
variables Hi,j has the following general covariance structure,
as described in [6]:

E
[
Hi,kH

∗
j,l

]
= ΨT

k,lΨ
R
i,j (4)

where ΨT and ΨR are N ×N covariance matrices generated
by the transmit and receive antennas, respectively. In [6], it
was assumed that as N was increased, the relative position
of adjacent antennas is fixed for some regular arrays, such as
square or linear grids, implying that the total size of the array
grows with N . In contrast to [6], assume that the total length of
the linear array at the receiver (mobile unit) side is fixed. The
length of the linear array at the transmitter side (base station)
will be assumed to be either: 1) fixed; or 2) large enough to
make ΨT = IN .

As in [6], matrix H can be factorized in the form H
D=

(ΨR)1/2
W (ΨT)′(1/2)

, where the entries of W are i.i.d. with

Ñ(0, 1), and x
D= y means random variables x and y have the

same distribution. In order to analyze the asymptotic perfor-
mance of (3), as N → ∞, a unitary transformation of matrices
yields

IN,N
D= log2 det

(
IN +

ρ

N
ΨRW (ΨT)

′
W †
)

D= log2 det
(
IN +

ρ

N
DR

NWDT
NW

†
)

(5)

where DR
N and DT

N are diagonal matrices, whose diagonal
entries are the eigenvalues of ΨR and ΨT, respectively, in
descending order of their magnitudes: i.e., DR

N (1, 1) ≥ · · · ≥
DR

N (N,N) and DT
N (1, 1) ≥ · · · ≥ DT

N (N,N). The second
equality in (5) is due to the fact that the entries of W are i.i.d.
complex Gaussian random variables, whose joint distribution
will not change when W is multiplied by a unitary matrix.

III. ASYMPTOTIC ANALYSIS OF EIGENVALUES

OF LARGE MATRICES

From (5), it is clear that the eigenvalues of the random
matrix (1/N)DR

NWDT
NW

† determine the characteristics of
IN,N . First, in Section III-A, the asymptotic behavior of the
deterministic covariance matrix ΨR/N is considered. Next, in
Section III-B, the asymptotic behavior of eigenvalues of the
random matrix 1/N2(DR

N )1/2WW †(DR
N )1/2 is studied.

A. Characteristics of Eigenvalues of
Large Covariance Matrices

In this section, interest is in the number of nonzero eigen-
values of ΨR and the rate at which the eigenvalues converge
to their limiting values. Without loss of generality, let ψ̃R(r),
which maps r ∈ [−LR, LR] to the real line, be the normalized
(ψ̃R(0) = 1) spatial correlation function at the receiver end for
a linear array of fixed length, such that

ΨR
i,j = ψ̃R

(
i− j

N − 1
LR

)
, i, j = 1, . . . , N (6)

whereLR is the total length of the linear array. Therefore, ΨR is
a nonnegative definite Hermitian and Toeplitz matrix. As noted
in [7] and proven below, the eigenvalues of the matrix ΨR/N
will be converging to the point spectrum (i.e., eigenvalues in
this case) {λ(R,∞)

k } of the nonnegative definite Hermitian oper-
ator ψR(x, y) = ψ̃R[(x− y)LR] on the Hilbert space L2[0, 1],
where x, y ∈ [0, 1]. The operator ψR(x, y) is complete-
ly continuous and square summable over [0, 1] × [0, 1] [24]

1∫
0

1∫
0

∣∣ψR(x, y)
∣∣2 dx dy <∞. (7)

Eigenvalues {λ(R,∞)
k } of ψR(x, y) can be determined by

1∫
0

ψ̃R [(x− y)LR]φ(R)
k (y)dy = λ

(R,∞)
k φ

(R)
k (x),

k = 0, 1, . . . ,∞ (8)

where x ∈ [0, 1], and {φ(R)
k (x)} are the eigenfunctions of the

operator ψR(x, y). From [24, p. 365], zero is the only limit
point of the spectrum of ψR(x, y). In addition, the nonzero
eigenvalues of ψR(x, y) have finite multiplicity and form a
sequence tending to zero if they are denumerable infinite in
number [24, p. 233].

First, consider the convergence and rate of such of the
eigenvalues of ΨR/N to their limiting values. Let {λ(R,N)

k } be
the eigenvalues of the N ×N matrix ΨR/N = AN listed in
decreasing order. Then, due to the normalization ψ̃R(0) = 1, it
can be shown that

N−1∑
k=0

λ
(R,N)
k = tr

(
ΨR

N

)
= 1, for all N. (9)

From (6) and (8), observe that the desired eigenvalues {λ(R,N)
k }

are the solution to a different problem as well. In particular,
they are precisely what one would obtain if employing the
quadrature method using the rectangle rule [18, p. 107] to
approximate the eigenvalues of the homogeneous Fredholm’s
integral equation of the second kind in (8). Hence, convergence
results of all kinds from the latter problem can be applied
directly to the problem of interest to study the convergence rate
of λ(R,N)

k . Thus, as N → ∞, the nonzero eigenvalue λ(R,N)
k

converges to the corresponding eigenvalue λ(R,∞)
k of the linear

operator in (8) [18, p. 248], and there exists a uniform error
bound such that |λ(R,N)

k − λ
(R,∞)
k | ≤ C/N , for any k ≤ N ,

where C is a positive constant [18, p. 270].
The rest of this section will show that the number of nonzero

eigenvalues of ΨR/N is o(N), for large N . For any matrix A
with real eigenvalues, let FA denote the empirical distribution
function (i.e., e.d.f.) of the eigenvalues of A; if A is n× n, then

FA(x) =
1
n

(number of eigenvalues of A ≤ x). (10)
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Therefore, there exists a sequence of e.d.f. {FAN } defined
according to (10). Due to the nonnegative definiteness of AN

and (9), it can be easily observed that λ(R,N)
k ∈ [0, 1]. Hence,

FAN is concentrated on [0,1]. Let the kth moment of FAN be
defined as

EN [xk] =

∑N−1
j=0

[
λ

(R,N)
j

]k
N

=

1∫
0

xkFAN {dx} (11)

where FAN {dx} is the fraction of the eigenvalues of AN that
is contained in the interval dx. If k 	= 0, then EN [xk] → 0
as N → ∞, because

∑N−1
j=0 [λ(R,N)

j ]k ≤∑N−1
j=0 λ

(R,N)
j = 1; if

k = 0,
∫ 1

0 F
AN {dx} = 1, for any N .

The convergence of the moments demonstrated above leads
to the conclusion that the sequence of distribution functions
converges to a proper distribution function and allows the
identification of that distribution function, as is demonstrated
next. First, note that the sequence of the kth moment of FAN

converges (inN ) to a number uk (in this case, 0 or 1) for each k.
Such a convergence of the moments implies that the sequence
{FAN } converges to a proper cumulative distribution function

(CDF) F0 in distribution [25, p. 251] (i.e., FAN
D−→ F0) with∫ 1

0 xF0{dx} = 0, and this implies that F0(0) = 1 [28, p. 51].
Finally, the desired result that the number of nonzero eigen-

values is o(N) can be obtained as follows. The support of an
e.d.f. defined as in (10) is the set of all eigenvalues. Therefore,
the support of FAN is the set {λ(R,N)

k }, and the support of
F0 over positive values corresponds to the nonzero eigenvalues
of the operator ψR(x, y). Thus, an eigenvalue λ(R,∞)

k is zero
almost surely when measured by F0. In other words, FAN ({λ :
λ > 0}) = fR(N)/N → 0, as N → ∞, where fR(N) is the
number of nonzero values in {λ(R,N)

k , k = 0, . . . , N − 1}. It
can be concluded that fR(N) is o(N).

The speed of fR(N)/N → 0 depends on smoothness of the
kernel ψ̃R(r) in (8) in the sense of continuous differentiability
of various orders [26], with smoother ψ̃R(r) corresponding to
a faster convergence of fR(N)/N → 0, as will be observed in
the simulation results.

B. Eigenvalues of Large Dimensional
Sample Covariance Matrices

In this section, convergence issues regarding the eigenvalues
of (random) sample covariance matrices of the form

BN =
1
N

(
D̃R

N

) 1
2
XNX

†
N

(
D̃R

N

) 1
2

(12)

are addressed, where D̃R
N = DR

N/N , and XN is an N ×N
random matrix with entries that are i.i.d. complex Gaussian
random variables distributed as Ñ(0, 1). In particular, it is
established that the eigenvalues of the random matrix BN are
related to those of the deterministic matrix D̃R

N .

Let the diagonal entries of D̃R
N be the set {λ(R,N)

k , k =
0, . . . , N − 1}, whose asymptotic properties were studied in
Section III-A. Then, the desired result is established by showing

that ∀k ≥ 0, such that λ(R,∞)
k > 0, λ(BN )

k converges almost

surely to λ
(R,∞)
k . In (12), the number of nonzero entries in

the diagonal matrix D̃R
N is fR(N); therefore, the number of

nonzero eigenvalues of BN in (12) is not larger than fR(N).
Let B̂N denote the fR(N) × fR(N) random matrix

B̂N =
1
N

(
D̂R

N

) 1
2
X̂N X̂

†
N

(
D̂R

N

) 1
2

(13)

where D̂R
N is an fR(N) × fR(N) diagonal matrix with diag-

onal entries equal to the nonzero diagonal entries of D̃R
N in

the same order, and X̂N is the fR(N) ×N random matrix
with i.i.d. elements distributed as Ñ(0, 1). Hence, the fR(N)
eigenvalues (in decreasing order) of B̂N in (13) are the same as

those first fR(N) eigenvalues of BN in (12), i.e., λBN

k = λB̂N

k ,
k = 0, . . . , fR(N) − 1. In [19] and [20], it has been shown that
for a matrix of the form of B̂N in (13), the following inequal-
ity holds:

λ
(R,N)
k λ

1
N X̂N X̂†

N

fR(N)−1 ≤ λBN

k ≤ λ
(R,N)
k λ

1
N X̂N X̂†

N
0 (14)

where k = 0, . . . , fR(N) − 1, and λ
(1/N)X̂N X̂†

N

fR(N)−1 and

λ
(1/N)X̂N X̂†

N
0 are the smallest and the largest eigenvalues

of the random matrix (1/N)X̂N X̂
†
N , respectively. As stated in

Section III-A, λ(R,N)
k → λ

(R,∞)
k , for any k such that λ(R,∞)

k >
0. Since fR(N)/N → c = 0, it can be shown that [21], [22]

λ
1
N X̂N X̂†

N
0

a.s.−→ (1 +
√
c)2 = 1 (15)

and

λ
1
N X̂N X̂†

N

fR(N)−1

a.s.−→ (1 −√
c)2 = 1. (16)

Therefore, it can be concluded that the number of nonzero
eigenvalues of BN is fR(N) as well for large N , and they
converge to the nonzero eigenvalues of ψR(x, y) pointwisely,
with probability 1, as N → ∞.

IV. ASYMPTOTIC ANALYSIS OF

MUTUAL INFORMATION IN,N

A. Asymptotic Analysis of IN,N With Fixed
Total Received Signal Power

In Section II, the motivating equations were written for the
case when the total transmitted power is ρ after normalizing
the variance of the additive noise. For the case of a fixed total
received power, the modification is obtained mathematically by
further scaling the transmitted power by 1/N , thus making the
correlation matrix Q in (2) equal to (ρ/N2)IN [7].
1) Fixed-Length Linear Array at the Receiver Side Only: In

this section, it will be assumed that as N → ∞, ΨT can be
maintained as IN . However, at the receiver side, the antennas
will need to be fit into a fixed-length linear array. This set of
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assumptions models the case when the base station can afford
a large array, while the mobile unit cannot due to its physical
constraints. In such a scenario, the asymptotic characteristics of
IN,N , which is now

IN,N = log2 det
(
IN +

ρ

N2

(
DR

N

) 1
2 WW † (DR

N

) 1
2
)

(17)

will be investigated, where DR
N is defined as in (5). Based on

the assumptions stated above, the authors in [7] argued that if
there exists only one-sided correlation caused by the receive
antennas, E[IN,N ] [i.e., the average of IN,N in (2)] converges
to a constant. In this section, by employing the results of
Section III, a stronger result will be shown. In particular, with
a fixed-length linear array on the receiver side, as well as
the total received signal power fixed, the instantaneous mutual
information IN,N will be shown to converge almost surely to a
deterministic constant as N → ∞. That constant can be deter-
mined by the nonzero eigenvalues in {λ(R,∞)

k } of ψR(x, y).
By the definition of det(·), (17) becomes

IN,N =
N−1∑
k=0

log2

(
1 + ρλ

(BN )
k

)

=
fR(N)−1∑

k=0

log2

(
1 + ρλ

(B̂N )
k

)
(18)

where BN and B̂N are defined in (12) and (13), respec-
tively. λ(BN )

k and λ
(B̂N )
k are the (k + 1)th largest eigenvalue

of the random matrix BN and B̂N , respectively. Recall from
Section III that the number of nonzero eigenvalues λ(BN )

k is
almost surely fR(N), the number of nonzero eigenvalues of
DR

N/N .

As shown in Section III-B, {λ(B̂N )
k } converge pointwisely

to the nonzero eigenvalues {λ(R,∞)
k } of ψR(x, y), with proba-

bility 1, which results in the following theorem.
Theorem 1:

fR(N)−1∑
k=0

log2

(
1 + ρλ

(BN )
k

)
a.s.−→

fR(N)−1∑
k=0

log2

(
1 + ρλ

(R,∞)
k

)
,

as N → ∞. (19)

Since fR(N) could approach infinity as N → ∞, Theorem 1
cannot be established in a single line by noting the continuity
of function log2(x); instead, it is proved by Lemmas 1 and 2,
which are stated and proven in Appendix A. It can be shown fur-
ther that the right-hand side of (19) is upper bounded by ρ/ ln 2,
which is obtained by ln(1 + x) ≤ x and

∑N
k=0 λ

(R,∞)
k ≤ 1.

Hence, if the fixed-length linear array is located at the
receiver side, as N approaches infinity, IN,N in (18) converges
almost surely

IN,N
a.s.−→

fR(N)−1∑
k=0

log2

(
1 + ρλ

(R,∞)
k

)
(20)

which is upper bounded by a finite number ρ/ ln 2. Theorem 1
is a more precise statement of Lemma 2 of the independent
work [30], which employs a quite different proof technique.
2) Fixed-Length Linear Array at Both Sides: In this section,

the case with fixed-length linear arrays located at both the trans-
mitter and receiver will be investigated. In this case, let ψR(r)
and ψT(r) be the spatial correlation functions caused by the re-
ceive and transmit antennas, and let LR and LT be the length of
the linear arrays. By following the same approach taken above,
it can be concluded that the number of nonzero eigenvalues
of matrices ΨR/N and ΨT/N will be in the order of o(N),
which can be represented by fR(N) and fT(N), respectively,
with fT(N)/N → 0 and fR(N)/N → 0, asN → ∞. Let these
eigenvalues (in decreasing order) be the diagonal entries of the
diagonal matrix D̂R

N = diag{λ(R,N)
i , i = 0, . . . , fR(N) − 1}

and D̂T
N = diag{λ(T,N)

i , i = 0, . . . , fT(N) − 1}, respectively.
Therefore, with Q = (ρ/N2)IN , (5) becomes

IN,N
D= log2 det

(
IN +

ρ

N2
DR

NWDT
NW

†
)

D= log2 det
(
IfR(N) + ρD̂R

NYN D̂
T
NY

†
N

)
(21)

where YN is an fR(N) × fT(N) random matrix, whose entries
are i.i.d. and distributed as Ñ(0, 1). As N → ∞, λ(R,N)

k →
λ

(R,∞)
k , λ(T,N)

k → λ
(T,∞)
k , where λ(R,∞)

k and λ
(T,∞)
k are the

kth largest nonzero eigenvalues of ψR(x, y), and ψT(x, y),
respectively, which are determined by the receive and transmit
spatial correlation function in the same way as that in (8).

It can be further shown that the expected value of IN,N in
(21) can be upper bounded by IN,N with the fixed-length linear
array at the receiver end only

E
[
log2 det

(
IfR(N) + ρD̂R

NYN D̂
T
NY

†
N

)]
≤ log2 det

(
IfR(N) + ρD̂R

NE
[
YN D̂

T
NY

†
N

])

=
fR(N)−1∑

k=0

log2

(
1 + ρλ

(R,N)
k

)

which can be obtained using E[YN D̂
T
NY

†
N ] = tr(D̂T

N )IfR(N)

and tr(D̂T
N ) = 1. As more antennas are placed in this MEA

system, the mutual information will be nondecreasing under
the conditions (without coupling, the total received power at
the receiver end is either fixed or grows linearly with N as N
increases) assumed throughout this work. Note that the decrease
of mutual information due to the coupling among antennas has
been studied in [32]. Thus, since E[IN,N ] has a finite upper
bound, it can be concluded that E[IN,N ] → C, which agrees
with what is claimed in [7] for the mean capacity, and C
is a finite constant that will depend on the spectrum of the
Hermitian operators ψR(x, y) and ψT(x, y), respectively.

B. Asymptotic Analysis of IN,N With Fixed
Total Transmit Signal Power

1) Linear Array of Fixed Length at Receiver Side Only: Fol-
lowing Section III-B, IN,N in (5) will have the same asymptotic
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characteristics as

ÎN,N = log2 det
(
IfR(N) + ρ

(
D̂R

N

) 1
2
X̂N X̂

†
N

(
D̂R

N

) 1
2

)

=
fR(N)−1∑

k=0

log2

(
1 +Nρλ

(B̂N )
k

)
(22)

as N → ∞, where B̂N and D̂R
N are defined in (13).

In this case of fixed total transmit power, we are unable
to get a result similar to the almost-sure convergence to a
deterministic constant as that in Theorem 1 for the case with
the fixed total received power. This is directly attributed to
the extra factor N in (22), and can be explained intuitively by
noticing that as N increases, the total received power will be
increased accordingly, which will make the mutual information
IN,N grow as well. Thus, in this section, two results that
are much weaker than the precise almost-sure convergence in
Theorem 1 are established. In particular, it will be shown that,
for the case of fixed total transmit power: 1) the normalized
mutual information converges almost surely to zero; and 2)
the mean capacity is upper bounded by an expression that is
analogous to that on the right side of Theorem 1. Much stronger
results (analogous to Theorem 1) can be justified by exploiting
properties of specific spatial correlation functions, as will be
discussed in Section IV-C.

First, it will be shown that the normalized mutual information
ÎN,N/N converges to zero almost surely

ÎN,N

N

=
1
N

fR(N)−1∑
k=0

log2

(
1 +Nρλ

(B̂N )
k

)

≤ fR(N)
N

log2


1 +

N

fR(N)

fR(N)−1∑
k=0

ρλ
(B̂N )
k




≤ fR(N)
N

log2


1 +

N

fR(N)

fR(N)−1∑
k=0

ρλ
(R,N)
k λ

1
N X̂N X̂†

N
0




=
fR(N)
N

log2

(
1 +

N

fR(N)
ρλ

1
N X̂N X̂†

N
0

)
a.s.−→ 0 (23)

where the first inequality is because of the concavity of
the function log2(x), and the second inequality is because
of that in (14). The last equality is the consequence of∑fR(N)−1

k=0 λ
(R,N)
k = 1. Finally, the almost-sure convergence is

based on the a.s. convergence in (15), fR(N)/N → 0, and
x log2(1 + a/x) → 0, as x→ 0, where a > 0.

Next, the upper bound of the ergodic capacity E[IN,N ] can
be shown, similarly to that of Section IV-A2, as [31]

E[IN,N ] ≤
fR(N)−1∑

k=0

log2

(
1 +Nρλ

(R,N)
k

)
, for all N.

(24)

2) Fixed-Size Linear Array at Transmitter and Receiver: If
the transmitting antennas are also spatially dense (i.e., with
fixed-length linear arrays located at both the base station and
mobile), and Q = (ρ/N)IN , then the analog to (21) with fixed
total transmit power becomes

IN,N = log2 det
(
IfR(N) +NρD̂R

NYN D̂
T
NY

†
N

)
. (25)

By taking the same approach as that in Section IV-A2, it can
be shown as well that [31]

E[IN,N ] ≤
fR(N)−1∑

k=0

log2

(
1 +Nρλ

(R,N)
k

)
, for all N.

(26)

C. Exploiting Properties of Common Correlation Functions

In Sections IV-A and IV-B, attention has been restricted to
a general spatial correlation function ψR(x, y) and to results
that can be proven very formally. In this section, properties
of the eigenvalues resulting from common spatial correlation
functions are studied to assist in the evaluation of the quantities
derived in Sections IV-A and IV-B and to develop some well-
justified (although less formal) approximations for the asymp-
totic behavior of the mutual information. In particular, a result
similar to Theorem 1 for the case of fixed total transmit power
is developed, and consideration is given to how the expressions
for the asymptotic mutual information in all cases can be
approximated very simply from properties of the power spectral
density corresponding to the spatial correlation function.

Significant simplifications are obtained by approximating the
number of nonzero eigenvalues in {λ(R,N)

k }, for large N , as
a finite constant N0 for a broad class of spatial correlation
functions. First, consider fR(N) for the case of a bandlimited
spatial correlation function, which is true in many applications
[4, p. 134], [5]. Let FR(Ω) be the power spectral density
corresponding to ψR(r), and assume the support of FR(Ω)
is on the interval [−ΩR

0 ,Ω
R
0 ]. Based on Toeplitz matrix theory

[16], by taking the same approach as that in our work on
power control [17], it can be shown that as N → ∞, {λ(R,N)

k }
is asymptotically equally distributed with {f (∞)(ωk = kπ/N),
k = 0, 1, . . . , N − 1} [31]. Let ωk = ΩkLR/N , and thus Ωk =
kπ/LR. Then, f (∞)(ωk) = f (∞)(Ωk), where f (∞)(Ω) =
(1/LR)

∫ LR

−LR
ψR(r)e−jΩrdr. Therefore, as N → ∞, eigenval-

ues of the large matrix ΨR/N behave the same as the sampling
points of the power spectral density determined by f (∞)(Ω)
in an average sense. What this indicates is that for a given
linear array of fixed length, if more and more antennas are allo-
cated within this array, the same segment of fading correlation
function of ψR(r) over [−LR, LR] is sampled with higher and
higher spatial frequency. Since ψR(r) is bandlimited, the num-
ber of sampling points lying in the nonzero part of f (∞)(Ω) will
be approximated as N0, which correspond to the dominant N0

nonzero eigenvalues of the Toeplitz Hermitian matrix ΨR/N , if
N is sufficiently large. All other eigenvalues of ΨR/N will fall
outside the nonzero region of f (∞)(Ω).
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Fig. 2. Discrete Fourier transform of the first column and the first row of the covariance matrix ΨR/N as determined in (29), where ΨR is determined by (6),
and N = 200, ψR(r) = sinc (2r/λ), LR = 5 λ. The number of dominant eigenvalues of ΨR/N is NR = 15, and they are listed in increasing order.

Fig. 3. Instantaneous mutual information IN,N of an (N,N) MEA system versusN , with fixed total average received power, such thatQ = (ρ/N2)IN in (2).

Simulation results are obtained using the same configuration as that in Fig. 1, except LR = 5 λ, fR(N) ≈ NR = 15, and eigenvalues {λ(R,N)
k

} are obtained in

Fig. 2 with
∑NR−1

k=0
log2(1 + ρλ

(R,N)
k

) = 44.1497.

Since f (∞)(Ω) is the Fourier transform of the spatial correla-
tion function truncated to [−LR, LR], the strictly bandlimited
nature of FR(Ω) implies that f (∞)(Ω) is not bandlimited.
However, as will be shown below, the numerical results suggest
that a bandlimited approximation to such is quite useful for
numbers of antenna elements of interest. In particular, the
power spectral density decays rapidly outside of a transition
region. Thus, while the {λ(R,N)

k } are converging pointwisely

to the point spectrum {λ(R,∞)
k } of the Hermitian and Toeplitz

operator specified in (8), the number of nonzero eigenvalues
fR(N) can be approximated as a finite number N0. It should
be noted that any nonzero eigenvalue will eventually (N large
enough) have a significant absolute impact on the capacity in
the case when the total average transmit power is fixed [i.e.,
in (28)], but this does not happen until N approaches the
inverse of that eigenvalue, and thus the threshold below which



1616 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 4, NO. 4, JULY 2005

Fig. 4. Instantaneous mutual information IN,N of an (N,N) MEA system versus N , with fixed total average received power and low SNR ρ = −5 dB. The
spatial correlation function is no longer bandlimited: ψR(r) = exp[−1/2(2πrσθ/λ)]2, where σθ = 0.25. Analytical results are obtained by the sum term in

(20), where eigenvalues {λ(R,N)
k

} are obtained through numerical computations, and
∑fR(200)−1

k=0
log2(1 + ρλ

(R,N)
k

) = 0.4419.

Fig. 5. Instantaneous mutual information IN,N of an (N,N) MEA system versus N , with fixed total average receive power, such that Q = (ρ/N2)IN in (2),

ψR(r) = exp(−|r|/λ). Analytical results are obtained by the sum term in (20), with
∑N−1

k=0
log2(1 + ρλ

(R,N)
k

) = 52.0460.

a sample of the power spectral density is ignored can be chosen
small enough to place those N beyond the values of interest.
Numerical results will firmly support this approach.

Even if the spatial correlation function is not bandlimited,
the approximation of fR(N) ≈ N0 can still be obtained if
ψ̃(r) satisfies certain analytic properties. As noted in [26],
for a kernel ψ(x, y) like that in (8), if ψ(x, y) is an analy-
tic function in y on the whole segment [0,1] including the
endpoints, uniformly in x, then |λ(R,∞)

k | < exp(−αk − β),

where α and β are positive constants, and it can be inferred
that λ(R,∞)

k is decreasing to zero very rapidly. Since the
nonzero λ

(R,N)
k converges to the nonzero eigenvalue λ(R,∞)

k ,
as N → ∞, for k > N0, λ(R,N)

k can be approximated as zero.
Hence, in this case, fR(N) can be approximated as N0 as well,
which will be illustrated in the simulation results.

Therefore, if the spatial correlation function ψ̃(r) is bandlim-
ited or ψ(x− y) satisfies the analytic properties stated above, as
N → ∞, the diagonal matrix D̂R

N in (22) can be approximated
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Fig. 6. With the same parameters as those in Fig. 4, the three figures shown above are the histograms of IN,N , when the total received signal power is fixed, and
the fixed-length array is placed at the receiver side only. The histograms are obtained through generating 100 independent IN,N samples for N = 40, 80, and
200, respectively.

as a diagonal matrix whose N0 upper left diagonal entries are
positive, and all other entries will be vanishing. Hence, for large
N , the mutual information for the case of fixed transmit power
(22) becomes

IN,N ≈ ÎN0,N = log2 det
(
IN0 + ρ

(
D̄R

N

) 1
2 ŴŴ † (D̄R

N

) 1
2
)

(27)

where D̄R
N is anN0 ×N0 diagonal matrix with diagonal entries

as {λ(R,N)
k }, and Ŵ is aN0 ×N random matrix, whose entries

are circularly symmetric complex Gaussian random variables:
∼ i.i.d. Ñ(0, 1).

Let B̄N = (1/N)(D̄R
N )1/2ŴŴ †(D̄R

N )1/2, which is a
Wishart matrix of dimension N0 ×N0. It is trivial to show
that λ(B̄N )

k converges to λ(R,∞)
k , for k = 0, . . . , N0 − 1, almost

surely, where λ(B̂N )
k is the (k + 1)th largest eigenvalue of the

random matrix B̂N . Therefore, the following convergence
result concerning the mutual information ÎN0,N in (27) will
hold:

lim
N→∞

(
ÎN0,N −

N0−1∑
i=0

log2

(
1 +Nρλ

(R,∞)
i

))
= 0, a.s. (28)

which can be proven by employing the results that λ(B̄N )
k →

λ
(R,∞)
k , a.s., k = 0, . . . , N0 − 1, and N0 <∞ [22]. Thus, the

desired analog to Theorem 1 for the case of fixed total transmit

power is obtained. Further interpretation of (28) can be
found in [15].

V. SIMULATION RESULTS

The key to the applicability of the results of Section IV is how
well they hold for large but finite N . The parameters employed
are as follows: linear array lengths at the mobile unit of length
LR = 5λ or λ, where λ is the carrier wavelength, and SNRs of
ρ = −5 dB, or ρ = 22 dB. Consider the correlation function
ψR

1 (r) = sinc(2r/λ), which has bandlimited power spectral
density; it is obtained for uniform angles of arrival in both
the azimuth and elevation planes. A spatial correlation func-
tion that is not bandlimited, ψR

2 (r) = exp[−1/2(2πrσθ/λ)]2

[29], where σθ = 0.25, is also taken as one of the examples.
Finally, the artificial example ψR

3 (r) = exp(−|r|/dλ), where
dλ = λ, is considered to demonstrate analytic requirements
for ψR(r). For the case with a fixed-length linear array at
transmitter and receiver, let ψR(r) = ψT(r).

Fig. 2 shows the discrete Fourier transform

f (N)(ω) =
1
N

N−1∑
l=−N+1

ψR

(
lLR

N − 1

)
e−jlω (29)

for ψR(r) = sinc(2r/λ), N = 200, and LR = 5λ, with the
corresponding set of dominant eigenvalues {λ(R,N)

k } of ΨR/N
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Fig. 7. With the same parameters as those in Fig. 4, the three figures shown above are the histograms of IN,N , when the total received signal power is fixed, and
the fixed-length array is placed at both the transmitter and the receiver side.

Fig. 8. Instantaneous mutual information IN,N of an (N,N) MEA system versus N , with fixed total average transmit power, such that Q = (ρ/N)IN in (2).
ψR(r) = exp[−1/2(2πrσθ/λ)]2.

listed in increasing order, where the number of dominant eigen-
values has been chosen as NR = 15.

Almost-sure convergence is demonstrated through a combi-
nation of two approaches. First, a number of randomly gen-
erated realizations of IN,N are shown to behave as expected.

Second, histograms are generated to demonstrate convergence
in distribution of IN,N , which is, of course, implied by almost-
sure convergence. Figs. 3–5 show the characteristics of instan-
taneous mutual information IN,N of an (N,N) MEA system
versus N , with the normalized total average received power,
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Fig. 9. Instantaneous mutual information IN,N of an (N,N) MEA system versus N , with fixed total average transmit power, such that Q = (ρ/N)IN in (2).
The spatial correlation function ψR(r) = exp(−|r|/λ) is neither bandlimited nor has nice analytical properties, which implies that fR(N) can no longer be
approximated asN0 because of the slow rate of decrease of λ(R,N)

k
. It can be observed that for each realization in the case with a fixed-length array at the receiver

side only, IN,N cannot be approximated by the analytical result, and the upper bound in (24) is becoming looser, as N grows large.

for various spatial correlation functions. In the case with a
fixed-length array at the receiver side only, IN,N is converg-
ing to the analytical results as N grows large as claimed in
Theorem 1 (19). In the case of the fixed-length arrays placed
at both sides, more randomness is observed, as expected. In
addition, the mean value of IN,N is demonstrated to converge
to a constant that is smaller than the limit if a fixed-length linear
array exists at only one side.

For spatial correlation function ψR
3 (r), since exp(−|r|/λ)

does not have a derivative at r = 0, and thus does not satisfy
the analytical conditions stated in Section IV-B1, the decreasing
rate of λ(R,∞)

k is only of the order of k−2 for large k [27].
However, the conditions required by Theorem 1 are still sat-
isfied for ψR

3 (r). Therefore, when the total received power is
fixed, similar convergence conclusions can still be drawn as
claimed by Theorem 1 and verified in Fig. 5, but with slower
convergence than that in Fig. 3, as predicted in the proofs of
Lemmas 1 and 2.

In Figs. 6 and 7, histograms of IN,N agree with the re-
sults obtained in Fig. 4, because the probability density func-
tions (PDFs) of IN,N are becoming more concentrated around∑fR(N)−1

k=0 log2(1 + ρλ
(R,N)
k ) = 0.4419, as N increases from

40 to 200, when the fixed-length array is placed at only one
side. The PDF does not show convergence asN increases when
fixed-length arrays are placed at both sides, but the mean of
IN,N shows little variation with increasing N , as expected.

Figs. 1, 8, and 9 demonstrate the performance of the instan-
taneous mutual information IN,N of an (N,N) MEA system
versus N , with the fixed total average transmit power. It can be
observed that the sum term in (28) is a very accurate approx-
imation for IN,N if there exists a fixed-length linear array at
one side with spatial correlation functions being bandlimited or
having nice analytical properties as that of ψR

2 (r). Therefore,

the upper bound of the ergodic capacity E[IN,N ] in (24) is tight
in this scenario. If there are fixed-length linear arrays at both
sides, IN,N , indicated by the dash–dot lines in those figures,
does not show convergence, which is as expected from analysis,
and the average value is upper bounded by the asymptotic value
of IN,N when the fixed-length array is used at one side only, as
given in (26).

VI. CONCLUSION

In this paper, the convergence of the instantaneous mutual
information IN,N of an (N,N) MEA system employing uni-
form linear arrays is investigated analytically and tested through
simulations, for the case when spatial correlations are caused
by the restriction that the elements of the array must occupy
a fixed length at either the mobile unit or at both sides (see
Table I). The main contribution of this paper is that the almost-
sure convergence of the mutual information IN,N under certain
conditions has been shown in Theorem 1 by exploiting the
relationships between the eigenvalues of the random matrixBN

and the eigenvalues of the linear operator ψR(x, y). In addition,
for those common spatial correlation functions described in
Section IV-C, some simple approximations of IN,N can be
achieved for the case with total fixed transmit power. This im-
plies that, when the fixed-length array is placed at the receiver
side only, and N is large, IN,N can be approximated well by
a deterministic figure, which only relies on a finite number
of nonzero eigenvalues determined by the spatial correlation
function. Similar results can be obtained in a straightforward
way in the case when an arbitrary two-dimensional (2-D)
antenna array is used at either the receiver side or both sides by
exploiting the Hermitian characteristic of the covariance matrix
ΨR and ΨT [31].



1620 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 4, NO. 4, JULY 2005

APPENDIX A
PROOFS OF RESULTS FROM SECTION IV-A1

Lemma 1:

fR(N)−1∑
k=0

[
log2

(
1 + ρλ

(BN )
k

)
− log2

(
1 + ρλ

(R,N)
k

)]
a.s.−→ 0.

(30)

Proof: Let Ω be the set of outcomes of the underlying
probability space [23], and let ω refer to an outcome in Ω.

Since λ
(1/N)X̂N X̂†

N
0 and λ

(1/N)X̂N X̂†
N

fR(N)−1 in (14) converge to 1
almost surely, ∃ a set A, P (A) = 1, such that for

ω ∈ A, λ
(1/N)X̂N (ω)X̂†

N
(ω)

0 → 1, and λ
(1/N)X̂N (ω)X̂†

N
(ω)

fR(N)−1 → 1.
Therefore, for any 1 > δ > 0, ω ∈ A, there exists N0(ω, δ),

such that when N > N0(ω, δ), |λ(1/N) ˆX(ω)N X̂†
N

(ω)
0 − 1| < δ,

|λ(1/N) ˆX(ω)N X̂†
N

(ω)

fR(N)−1 − 1| < δ, and for any 0 ≤ k ≤ fR(N), by

inequality in (14), the following bound of λ(BN )
k can be ob-

tained

(1 − δ)λ(R,N)
k ≤ λ

(BN (ω))
k ≤ (1 + δ)λ(R,N)

k . (31)

By substituting the bounds of λ(BN (ω))
k in (31) into IN,N , and

employing the two inequalities

ln(1 + x+ ε) ≤ ln(1 + x) + ε

ln(1 + x− ε) ≥ ln(1 + x) − ε

for any x > 0, ε > 0, and x > ε, we have the following bounds
concerning log2(1 + ρλ

(BN (ω))
k ):

log2

(
1 + ρλ

(R,N)
k

)
− ρ

ln 2
δλ

(R,N)
k

≤ log2

(
1 + ρλ

(BN (ω))
k

)
≤ log2

(
1 + ρλ

(R,N)
k

)
+

ρ

ln 2
δλ

(R,N)
k . (32)

By summing up the inequality in (32) from 0 to fR(N), and
taking advantage of

∑fR(N)−1
k=0 λ

(R,N)
k = 1, it yields

∣∣∣∣∣∣
fR(N)−1∑

k=0

[
log2

(
1 + ρλ

(BN (ω))
k

)
− log2

(
1 + ρλ

(R,N)
k

)]∣∣∣∣∣∣
≤ ρ

ln 2
δ (33)

which is true for any ω ∈ A, and 0 < δ < 1. Recalling P (A) =
1, Lemma 1 is shown. �

Lemma 2:

fR(N)−1∑
k=0

[
log2

(
1 + ρλ

(R,N)
k

)
− log2

(
1 + ρλ

(R,∞)
k

)]
−→ 0.

(34)

Proof: Using the uniform upper bound |λ(R,N)
k −

λ(R,∞)| ≤ C/N , for all k, as stated in Section III-A yields

log2

(
1 − ρ

N

)fR(N)

≤
fR(N)−1∑

k=0

[
log2

(
1 + ρλ

(R,N)
k

)
− log2

(
1 + ρλ

(R,∞)
k

)]

≤ log2

(
1 +

ρ

N

)fR(N)

. (35)

Note (1 − ρ/N)fR(N) → e0 = 1, and (1 + ρ/N)fR(N) →
e0 = 1, since fR(N)/N → 0 [23, p. 80]. �
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