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Convergence of the Complex Envelope
of Bandlimited OFDM Signals
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Abstract—Orthogonal frequency division multiplexing (OFDM)
systems have been used extensively in wireless communications
in recent years; thus, there is significant interest in analyzing the
properties of the transmitted signal in such systems. In particular,
a large amount of work has focused on analyzing the variation of
the complex envelope of the transmitted signal and on designing
methods to minimize this variation. In this paper, it is established
that the complex envelope of a bandlimited uncoded OFDM signal
converges weakly to a Gaussian random process as the number of
subcarriers goes to infinity. This shows that the properties of the
OFDM signal will asymptotically approach those of a Gaussian
random process over any finite time interval. The convergence
proof is then extended to two important cases, namely, coded
OFDM systems and systems with an unequal power allocation
across subcarriers.

Index Terms—Convergence, extreme value theory, Gaussian
random process, orthogonal frequency division multiplexing
(OFDM), peak-to-mean envelope power ratio.

I. INTRODUCTION

A MAJOR goal of modern communication systems is
to allow high-speed communication, regardless of the

location or mobility of the system users. However, this goal
is difficult to achieve due to the multipath fading that affects
wireless communication signals. One alternative for achieving
high-speed wireless communication in the presence of mul-
tipath fading is to employ a multicarrier system, generally
implemented as an orthogonal frequency division multiplexing
(OFDM) system [1], in conjunction with error control coding.
Such coded OFDM systems have been employed or are being
considered for a number of applications, including digital audio
broadcast and digital video broadcast in Europe [2], wireless
local area networks [3], broadband fixed wireless access [4],
and cellular data [5].
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One of the challenges to be overcome when employing an
OFDM system in low-power peer-to-peer wireless communi-
cation systems is that the complex envelope of the transmitted
OFDM signal can demonstrate significant variation; in other
words, its peak-to-mean envelope power ratio (PMEPR) can be
much larger than that of an analogous single-carrier system [1],
[6]. This large PMEPR can require significant backoff of the av-
erage operating power of the power amplifier in the transmitter
if it is to be operated in the linear region, which results in sig-
nificant power inefficiency [8], [9]. Thus, there has been a large
body of work in the analysis of the variation of the complex en-
velope of the OFDM signal and in methods to reduce this vari-
ation [6], [7] (and references therein). Here, the focus is on the
analysis problem.

In the literature, there are in general two approaches to
analyzing the PMEPR distribution for OFDM signals. The first
approach is to seek bounds on the PMEPR distribution without
requiring the statistical characterization of the baseband OFDM
signals [11], [13], [15], [18]. These results have motivated
PMEPR reduction techniques that modify the constellation on
each subcarrier [14], [16]–[18].

The second approach taken by many recent papers that
have analyzed the PMPER of the transmitted OFDM signal
[19]–[22], [24] or its effects [23] often assume that the complex
envelope of the transmitted OFDM signal converges in some
sense to a Gaussian random process as the number of subcar-
riers becomes large. For example, in the work of [21] and [22],
the assumption of such convergence is used when studying the
PMEPR distribution to justify the use of Rice’s level-crossing
results for the envelope of a complex Gaussian random process
[26]. However, there exists no rigorous investigation into the
limiting form of the complex envelope of the transmitted
OFDM signal, despite the theoretical and practical importance
of such an endeavor. Thus, in this paper, a formal proof that
an uncoded bandlimited OFDM signal converges weakly to a
Gaussian random process is rigorously established for the first
time in literature.

Using the assumption that the envelope of the transmitted
OFDM signal is asymptotically Gaussian, previous work [21],
[22] has relied largely on the work of Rice [26] to develop re-
sults for the PMEPR distribution of the OFDM signal. The work
of [21] employs [26] in conjunction with a number of approxi-
mations and a parameter obtained through simulation to arrive
at a final expression for the PMEPR. The work of [22] finds
lower and upper bounds for the PMEPR distribution through
the use of extensive manipulation on top of the results found
in [26]. At first glance, it might appear that the work here can
be used to make these previous results rigorous. However, since

0018-9448/$26.00 © 2010 IEEE



4894 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 10, OCTOBER 2010

the proof of weak convergence consists of demonstrating con-
vergence over any finite interval and the symbol period for a
bandlimited OFDM signal approaches infinity as the number of
subcarriers goes to infinity, our convergence proof cannot be ap-
plied to complete the rigorous justification for the work in [21],
[22]. And, unfortunately, the extension of our proof to an infi-
nite interval has proved elusive.

After showing the complex envelope of an uncoded OFDM
system converges in distribution to a complex Gaussian random
process, we then turn our attention to coded systems. Because an
OFDM system effectively forms a large number of frequency-
nonselective subchannels, it is well-known that uncoded OFDM
systems will perform poorly on wireless communication chan-
nels due to a lack of diversity. Thus, wireless OFDM systems
almost always employ some form of error control coding. This
introduces statistical dependence among the symbols placed on
the subcarriers, and thus the technique in the proof for the un-
coded case cannot be applied directly. However, by invoking
results from modern central limit theory for sums of dependent
random variables, it is possible to prove that the complex en-
velope of coded baseband OFDM signals also converges to a
Gaussian random process over any finite time interval, which
generalizes the results for the uncoded case to many block coded
and convolutionally coded systems.

Another extension made is to the convergence study of the
complex envelope of an OFDM system employing an unequal
power distribution over multiple carriers. In [24], an analytical
expression of the PMEPR distribution was obtained by applying
the extreme value theory [35], [36] for random process to
OFDM systems with an unequal power distribution across sub-
carriers. To justify the application of extreme value theory, [24]
directly cited the proof of convergence in [12], which only ap-
plies to the case when power is divided evenly across subcar-
riers. Thus, a proof is provided here which shows the conditions
under which OFDM systems with an unequal power allocation
will exhibit a similar convergence result as those with an equal
power allocation. In addition, it should be noted that the similar
results to those in [24] on the PMEPR distribution in the unequal
power distribution case were obtained independently in [25] by
also exploiting extreme value theory, which, however, bears a
more general formulation than that of [24].

This paper is organized as follows. Section II provides the
proofs of the main results of the paper. First, the appropriate
convergence of the real part of the baseband OFDM signal is
established. This proof then provides a foundation to the proof
of convergence of the complex envelope of baseband OFDM
signal to a complex Gaussian random process as the number of
subcarriers grows to infinity, as well as the extension to coded
OFDM systems in Section III. In Section IV, the extension is
made to uncoded OFDM systems with an unequal power dis-
tribution across subcarriers. Finally, conclusions are drawn in
Section V.

II. CONVERGENCE OF THE ENVELOPE OF UNCODED

BASEBAND OFDM SIGNALS

The convergence of the complex envelope of an uncoded
OFDM systems serves as the basis for the remainder of the

results in the paper, including the important coded OFDM
case. The proof for the convergence of the real part of the
baseband OFDM signal given in (1) is considered first, and
then its straightforward extension to the complex envelope is
performed.

Theorem 1: Consider the real part of the complex envelope of
the transmitted signal of an OFDM system with subcarriers:

(1)

for , where is any closed and finite interval, the
complex sequence is
an independent and identically distributed (i.i.d.) sequence of
complex random variables, and the real part and imagi-
nary part are bounded ( and ), with

, and
. Then

where is a zero-mean stationary random process defined
over , with autocorrelation function

Before providing the proof of Theorem 1, we first define a
number of key terms to set the context. The implied weak con-
vergence of the underlying measures in Theorem 1 is in the
metric space , where is the space of continuous func-
tions on the interval , and . In
this paper, all probabilities are defined on the probability space

, where is the outcome space, is the -field on ,
and is the probability measure defined on . Measurability
of the appropriate quantities is then easily established [25].

The notion of weak convergence on is now defined for-
mally. A sequence of random functions of converges
in distribution to the random function , denoted by

or

(2)

if the following is true [27]:

(3)

where a set in is an -continuity set if ,
where is the boundary of [27], consisting of those points
that are limits of sequences of points in and are also limits of
sequences of points outside .

The finite-dimensional distributions corresponding to
in (1) are crucial to the proof and are defined next.

For points in , let be the contin-
uous mapping that carries the point of to the point
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in the -dimensional Euclidean space .
The finite-dimensional sets are now defined as sets of the form

with , where is the class of Borel
sets in . Then each random function of induces on

a unique probability measure , defined by
, for .

Then, is called the finite-dimensional distribution
corresponding to [27, p. 19, 30].

Now, we turn to the proof of Theorem 1. For lemmas in
Section II, proofs that are omitted can be found in [25]. To prove
convergence in distribution of a sequence of random functions

to some in , it is sufficient to show that the
sequence is tight and that each of the finite-dimensional
distributions of converges weakly to the mea-
sure induced by on , for each
[27, p. 47]. The sequence of random functions of is
tight if and only if it satisfies the following two conditions [27,
p. 55].

Condition 1: For each positive , there exists an such that

(4)

Condition 2: For each positive and , there exists a , with
, and an integer such that

(5)

Lemma 1: Let be defined as in (1). Then, for each pos-
itive , there exists an such that

(6)

Establishing Condition 2 is the crux of the entire proof. First,
a preliminary lemma is presented and then Condition 2 is estab-
lished. Note that only Lemma 2 restricts the class of signals to
which the convergence results apply, and the OFDM signals of
interest are shown to be part of this class.

Lemma 2:

.
Proof: Note that the derivatives of the functions

have variances that are uniformly bounded (in and ). This
can be used to show that there is a finite constant such that for
all and , the variance of is bounded by

. (A full proof by alternate means can be found in [25].)

Lemma 3: Let be defined as in (1). Then, for each pos-
itive and , there exists a , with , and an integer

such that

(7)

The proof of Lemma 3, which is the crux of the entire result,
can be found in Appendix A. Hence, for the sequence in
(1) of random functions of , both Condition 1 and Condition 2
are satisfied, and thus is tight [27, p. 55]. Given Lemma 3,
establishing Theorem 1 only requires a demonstration that the fi-
nite-dimensional distribution of , which is deter-
mined by the random vector , converges
weakly to the measure induced by on , for
each [27, p. 54]. First, a technical lemma is pre-
sented, and then the Cramér-Wold Theorem [27, p. 49] is em-
ployed in a straightforward manner to establish the result.

Lemma 4:

where .

Lemma 5: Let be defined as in (1), and pick any integer
and collection of sample times . Then

where is an -dimensional vector with
jointly Gaussian components, mean vector , and covariance
matrix , where the element of is given by

(8)

The proof of Lemma 5 can be found in Appendix A. Thus,
Theorem 1 is established, which then provides a foundation for
the straightforward proof of convergence of the complex enve-
lope of baseband OFDM signal to a complex Gaussian random
process as the number of carriers grows to infinity, as given in
Theorem 2 and Theorem 3, respectively. The reader interested
in the detailed proofs of Theorem 2 and Theorem 3 is referred
to [25].

Theorem 2: Consider the complex envelope of the trans-
mitted signal in an OFDM system with subcarriers

(9)

where , and
is an independent and identically distributed (i.i.d.) sequence of
complex random variables, where the real part and imagi-
nary part are bounded ( and ), with

, and
. Then, as , for any closed and finite

interval
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where implies convergence in distribution and is a
zero-mean stationary Gaussian random process defined over the
interval , with real part and imaginary part such that

and

for all and in .
The implied weak convergence of the underlying measures is

in the metric space , where is the space of contin-
uous functions on the interval , and

(10)

where are in and
. Theorem 2 can then be used to prove the following analo-

gous result for the complex baseband representation of the trans-
mitted signal in multicarrier systems that are symmetric about
the carrier [21].

Theorem 3: Consider the complex signal

where and is
as defined above. Then, as , for any closed and finite
interval

where is a zero-mean stationary complex Gaussian random
process defined over the interval with independent real and
imaginary parts, each with autocorrelation function

The implied weak convergence of the underlying measures is on
the metric space , as defined above in Theorem 2.

Remarks: Note that we only require that and are un-
correlated, and not the stronger condition of independence be-
tween the real and imaginary parts of each symbol [13]. This
assumption holds not only for quadrature amplitude modulation
(QAM) constellations, but also for phase-shift keying (PSK)
constellations.

III. THE CONVERGENCE OF THE COMPLEX

ENVELOPE OF CODED OFDM SYSTEMS

One of the guiding tenets of wireless OFDM systems is that
the bandwidth of each subcarrier should be less than the coher-
ence bandwidth of the wireless channel, which results in no in-
tersymbol interference (ISI) on a given subcarrier and thus ob-
viates the need for complex equalization at the receiver. How-
ever, by definition, this makes the effective channel on each sub-
carrier a frequency non-selective fading channel, which implies

that uncoded OFDM systems will perform very poorly. Thus,
it has been widely recognized that some form of error control
coding is necessary in wireless OFDM systems. However, when
error control coding is applied, the assumption of independence
between symbols required for the results of Theorem 2 and The-
orem 3 are violated. Thus, in this section, the results of the pre-
vious sections are extended to systems employing error control
coding.

It is clear from the work of other researchers that error control
coding can have a significant impact on the distribution of the
PMEPR of OFDM systems; in fact, a recent line of research has
exploited such a fact to develop error control codes for OFDM
systems that greatly reduce the PMEPR (see [9] and references
therein). In this section, it is shown that, despite the dependence
of the symbols at the output of the error control coder on one
another, analogous results to those of Theorem 2 and Theorem
3 hold under very broad conditions. In particular, the results hold
well for any system with enough “mixing” of codewords.

To establish an analog to Theorem 2, first consider the type
of symbol sequence that is employed in a coded system in place
of the i.i.d. symbol sequence of the uncoded OFDM system.
Clearly, the sequence output from the coded modulation in a
system employing some form of error control coding contains
dependent symbols, for the introduction of such dependence is
the role of the error control coder. However, most good codes
for random errors do not introduce correlation into the symbol
stream [30, p. 527], [31], and thus, although it certainly con-
tains dependence, the coded symbol stream can be modeled as
uncorrelated. Also, note that such a symbol stream is only lo-
cally dependent for traditional codes (i.e., codes that do not in-
troduce the long-term dependence exemplified by, for example,
turbo codes [32]). For block codes, symbols separated in index
by more than a block length are independent; for convolutional
codes, symbols separated in index by more than the constraint
length are independent. Thus, the random process at the output
of the coded modulation is a form of random process known as
“m-dependent” [27], which will be important to establish the
mixing results required in the proof of Theorem 4. Finally, note
that most coded OFDM systems employ some form of inter-
leaving between the coded modulator and the IFFT in order to
obtain some form of diversity; thus, it is important to allow for
the possibility of such, although it should be noted that it is not
required for the results. These assumptions lead to the statement
of Theorem 4, which is a generalization of Theorem 2. The proof
of Theorem 4 follows from the work of Section II and [33]; for
details, see Appendix A.

Theorem 4: Consider the complex envelope of the trans-
mitted signal in a coded OFDM systems

(11)

where , and
is defined by ,
where is an arbitrary permutation matrix, which
permutes the entries of , and let
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be drawn from a stationary se-
quence of identically distributed (but not necessarily indepen-
dent) random variables where, for all and

1) .
2) .
3) and .
4) and are uncorrelated, .
5) and are uncorrelated.
6) There exists an integer such that and are inde-

pendent if .
Then, as , for any closed and finite interval

where implies convergence in distribution and is a
zero-mean stationary Gaussian random process defined over the
interval , with real part and imaginary part such that

and

for all and in .
The implied weak convergence of the underlying measures is
on the metric space as defined above in Theorem
2. Thus, a convergence result analogous to that demonstrated in
Section II for uncoded systems has been established for many
coded systems.

IV. EXTENSION TO SYSTEMS WITH UNEQUAL

POWER DISTRIBUTIONS

In previous sections, it has been assumed that the power allo-
cated on each subcarrier of the OFDM system is identical, i.e.,

. However, since OFDM
systems are usually used in channels with nonflat frequency
response, it is often desirable to allocate different amounts of
power to different subcarriers [22], particularly if some sort
of channel state information is available at the transmitter. Let

be a complex OFDM symbol, which is redefined as

(12)

where are independent complex
random variables, and . Let and
be the real and imaginary parts of , which have the fol-
lowing statistical characteristics:

, and .
Assume there exists a finite constant , such that

(13)

The function gives the amount of power allocated to the
th subcarrier. Here, it is assumed that the OFDM system is de-

signed to approximate some given power spectral density
[22]. The function is assumed to be Riemann-integrable
in the interval , and bounded by some constant

, with

(14)

This power distribution may be approximated if the power allo-
cated to the th subcarrier is

(15)

in which case the average power of the baseband OFDM signal
is . Let and be the first and
second normalized moment of , respectively, as defined
in [22]

(16)

where .
As before, let and

; then

(17)

as , where and
. It can be shown that

Therefore, the autocorrelation functions of the random pro-
cesses and and their cross-correlation function
have the following relationships:

(18)

Let and be the random processes to which
and are converging in distribution, re-

spectively. The convergence of these random processes
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will be proved in the coming paragraphs. Hence, as
,

and .
Since ; in
other words, and are uncorrelated for each , as
are and .

To prove that is converging to a Gaussian random
process with autocorrelation function

, it is sufficient to show the
tightness of and convergence of the finite dimensional
distributions of arbitrary finite samplings of as has been
done in the previous sections for the equal power case. Using
(13) and the fact that is upper bounded by , it is trivial
to prove the convergence of the finite dimensional distributions,
as well as the conditions for tightness. Thus, all that is required
is to show a counterpart to Lemma 2.

Lemma 6: , there exists , such that

Proof:

as .

Then, , there exists such that
, if , where . As a result, in

(32) of the proof of Lemma 3, the corresponding lower bound
of will be

(19)

and the rest follows in an identical fashion to the proof of
Lemma 3.

For , it can be shown in a straightforward manner that
tightness and the convergence of the finite-dimensional distribu-
tions is assured. Therefore, we have Theorem 5 proven, namely,
the following.

Theorem 5: As , the sequence of complex random
processes converges in distribution to a complex
Gaussian random process , with zero mean
and autocorrelation function ,
where determines the power allocation function as given
in (15), satisfying (14).

It can seen that since and are inde-
pendent of each other at each , implying that

is a -process.

V. CONCLUSION

Many approximations to the PMEPR of OFDM systems are
based on assumptions of Gaussianity that invoke the Central
Limit Theorem for a large number of subcarriers in the system.
Here, we have considered this justification in more detail than
previous efforts. In particular, we have demonstrated that the
complex envelope of the transmitted OFDM signal converges
weakly to a limiting Gaussian random process under broad con-
ditions. In particular, the convergence holds for uncoded sys-
tems with a uniform power allocation across subcarriers, a broad
class uncoded systems with an unequal power allocation across
subcarriers, and for many coded systems.

Unfortunately, as the number of subcarriers goes to infinity,
the symbol period of an OFDM system grows without bound.
Hence, the weak convergence demonstrated here, which ap-
plies to any finite interval, cannot be used to complete the rig-
orous justification of many results that have relied on asymptotic
Gaussianity for PMEPR characterization. Hence, it is of consid-
erable interest to extend the results contained here to an infinite
interval, although such an extension appears nontrivial.

APPENDIX

II. ESTABLISHING TIGHTNESS FOR THE REAL PART OF

THE COMPLEX ENVELOPE OF AN OFDM BASEBAND

SIGNAL: PROOF OF LEMMA 3

Lemma 3: Let be defined as in (1). Then, for each pos-
itive and , there exists a , with , and an integer

such that

(20)

Proof: Based on the proposition in [28, pp. 55,56], since
, then every countable set dense in is

a separating set, which means, with probability 1

(21)

for .
Define the set to be the set of dyadic rationals

(22)

Define the random variables

(23)
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for , where is a positive integer, we then have
[28, p. 56],

(24)

for , where is a positive integer. By employing (21)
and (24)

(25)

where and are constants. The constant will be specified
later, and the constant can be determined by the following
equation for :

(26)

From (23)

(27)

By Lemma 2 and Chebyshev’s inequality [29]

(28)

Then, from (27)

(29)

Given (A) and (29), if

(30)

. By substituting in from (26)

(31)

where .
Thus, for any positive and , select and positive

integer to satisfy

(32)

and let . Then, the condition of (5) is satisfied

Since and were arbitrary, this establishes Condition 2 of the
tightness definition for the sequence of random signals in (1).

III. CONVERGENCE OF THE FINITE-DIMENSIONAL

DISTRIBUTIONS: PROOF OF LEMMA 5

Lemma 5: Let be defined as in (1), and pick any integer
and collection of sample times . Then

where is an -dimensional vector with
jointly Gaussian components, mean vector , and covariance
matrix , where the th element of is given by

(33)

Proof: Pick any integer and collection of sample
times . The Cramér-Wold Theorem [27, p. 49]
will be employed; thus, consider any linear combination
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where are real constants. Then

(34)

where

Noting and , and
, Lindeberg’s condition for triangular arrays [29, p.

116] is satisfied as follows. Since

and, for any , there exists , such that when
. Therefore, if

(35)

The limiting value of the variance of will determine two
separate cases. Thus, noting , the variance of is
computed as follows. First, note

Next, note

(36)

which implies

If , Lindeberg’s conditions for triangular arrays [29,
p. 116] are thus satisfied; therefore, , where is
normal, , and .

If : Chebyshev’s inequality [29] yields

for any , which implies . Thus, converges
in distribution to a Gaussian random variable with mean 0 and
variance 0.

The two cases together imply that
for any . Now, for the same constants , define

, where denotes the th element of . is
normal with mean and variance . Thus,

for any and collection of . By the
Cramér-Wold Theorem,

IV. CONVERGENCE OF THE COMPLEX ENVELOPE OF CODED

OFDM SYSTEMS: PROOF OF THEOREM 4

This Appendix contains the proof of Theorem 4, which ex-
tends our results from uncoded OFDM systems to many coded
systems. It is straightforward to verify measurability of the ap-
propriate quantities and tightness of the sequence of measures
in a manner analogous to that in Section II for the uncoded case.
In particular, establishing tightness for the uncoded case, which
was the crux of the proof, depended only on the second order
statistics of the random process. Since the second order statis-
tics of the random process of Theorem 4 are identical to those
of the random process of Theorem 2, tightness follows in an
identical fashion. However, the proof of the analog of Lemma 5
is greatly complicated, since the dependence of the summands
greatly complicates central limit theory. However, a result of
Withers [33] is sufficient for Theorem 4; in fact, it is clear that
Theorem 4 holds under much broader conditions for the random
process input to the IFFT. The statement and proof of Lemma
7, which is the analog to Lemma 5 for complex signals, is given
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here. Since the remainder of the arguments follow those of The-
orem 2 [25], Lemma 7 completes the proof of Theorem 4.

Lemma 7: Pick any and collection of sample times
, and define

and

Then

where

is a -dimensional jointly Gaussian distributed random vector,
with mean vector , and covariance matrix defined by

(37)

and

(38)

Proof: The Cramér-Wold Theorem will be employed.
Thus, consider any linear combination

where are real constants. Then

(39)

where is the sequence of functions that maps indexes
from symbols in to indexes of symbols
in ; in other words, .
Now define

such that

and let

Then, , and

(40)

and
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(41)

Also, let and
and

such that

For : can be established by verifying
the conditions of Theorem 2.1 of [33] hold; in particular, it is
sufficient to show that , such that follows.

Condition 1: is -mixing
with

as , where we have (42), shown at the bottom of the
page.

Condition 2:

as .

Condition 3: as and ,
where

and

To show Condition 1, note that and are -dependent
with ; thus, the are -dependent, which implies

for and for and any
real . Thus, Condition 1 holds for all .

From [33, Prop. 2.1(a)], Condition 2 will hold for
, if

and

Thus, consider

(43)

Now, and are each upper bounded by
. Thus

Next, exploiting the uncorrelated nature of the sequences

For each and . Thus

and

thus establishing Condition 2.
To establish Condition 3, note that

and

(42)

and



WEI et al.: COMPLEX ENVELOPE OF BANDLIMITED OFDM SIGNALS 4903

Recalling for all and yields

Condition 3 is now established by noting that for any
.

Thus, for

If , Chebyshev’s inequality [29] yields

as for any , which implies . Thus,
converges in distribution to a Gaussian random variable with
mean 0 and variance 0.

The two cases together imply that for
any . Then for the same constants , define

. is a Gaussian random variable with
mean 0 and .

Thus, for any collection of .
By the Cramér-Wold Theorem
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