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Partition Information and Its Transmission Over
Boolean Multi-Access Channels

Shuhang Wu, Shuangqing Wei, Yue Wang, Ramachandran Vaidyanathan, and Jian Yuan

Abstract— In this paper, we propose a novel reservation system
to study partition information and its transmission over a noise-
free Boolean multiaccess channel. The objective of transmission
is not to restore the message, but to partition active users
into distinct groups so that they can, subsequently, transmit
their messages without collision. We first calculate (by mutual
information) the amount of information needed for the parti-
tioning without channel effects, and then propose two different
coding schemes to obtain achievable transmission rates over
the channel. The first one is the brute force method, where
the codebook design is based on centralized source coding; the
second method uses random coding, where the codebook is
generated randomly and optimal Bayesian decoding is employed
to reconstruct the partition. Both methods shed light on the
internal structure of the partition problem. A novel formulation
is proposed for the random coding scheme, in which a sequence
of channel operations and interactions induces a hypergraph.
The formulation intuitively describes the transmitted information
in terms of a strong coloring of this hypergraph. An extended
Fibonacci structure is constructed for the simple, but nontrivial,
case with two active users. A comparison between these methods
and group testing is conducted to demonstrate the potential of
our approaches.

Index Terms— Partitioning information, conflict resolution,
Boolean algebra, Fibonacci numbers.

I. INTRODUCTION

ONE primary objective of many coordination processes is
to order a set of participants. For example, multiaccess

can be viewed as (explicitly or implicitly) ordering a set of
users for exclusive access to a resource. Information interac-
tion plays a key role in establishing such an order. To formalize
this interactive information and derive fundamental limits on
its transmission, we propose, in this paper, a novel partition
reservation model over a noise-free Boolean multi-access
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channel and use an information theoretic approach in its
analysis.

For the simplest variant of the problem that we study,
let N = {1, . . . , N} be a set of N users and let
Gs = {i1, . . . , iK } ⊆ N be a set of K active users.
The problem is to let all users obtain a common ordered
K -partition1 � = (B1, . . . ,BK ) of N , so that each group
(or block) Bi has exactly one active user from Gs. Equivalently,
we use a vector z = [z1, . . . , zK ]� to represent the ordered
K -partition �, where zi ∈ K � {1, 2, . . . , K } is the id of
the group that user i belongs to; i.e., i ∈ Bk iff zi = k. The
desired partition is determined by a series of transmissions
and observations over a shared slotted Boolean multi-access
channel. Suppose that during slot t , each active user i trans-
mits bit xi,t ∈ {0, 1} on the channel. A common feedback
yt =

∨

i∈Gs

xi,t will be observed by all users; i.e., if no active

user transmits a 1 during slot t , then yt = 0, and if at least
one active user transmits a 1, then yt = 1. The idea is to
schedule (off-line) T rounds of transmissions (represented by
an accessing matrix X � [xi,t ]1≤i≤N,1≤t≤T ), and construct a
decoding function g(·), so that after observing T rounds of
channel feedback y � [y1, . . . , yT ]�, an ordered K -partition
of N , denoted by z = g(y), can be obtained by all users.
The objective is to find an achievable lower bound on the
number of slots T, within which there exists a matrix X and
function g(·) such that every possible active set Gs ⊆ N can
be partitioned as outlined above.

In the problem we consider, we do not seek to restore
the states of all users (that is, determine Gs exactly), but
to partition Gs and to make the partition z known to all
users. Thus, only information on a partition pertaining to the
relationship between active users in Gs is transmitted through
the channel. We will formalize this partition information, and
derive an achievable bound on its transmission rate over a
Boolean multi-access channel. This problem plays a significant
role in understanding the fundamental limits on establishing
order in distributed systems.

The proposed problem is closely related to the well-known
slotted conflict resolution problem [1], in which each active
user must transmit without conflict at least once during T slots;
i.e., if xi,t = 1 denotes a trial of transmission for active user i
at slot t , then there exists a slot 1 ≤ ti ≤ T such that xi,ti = 1,
and for all j ∈ Gs − {i}, we have x j,ti = 0. To achieve this

1An ordered K -partition � = (B1, . . . ,BK ) of N is a sequence of K
non-empty subsets of N that satisfies the following conditions: (a) for all
1 ≤ i < j ≤ K , Bi ∩ B j = ∅ and (b)

⋃K
i=1 Bi = N .
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goal, primarily two types of systems have been studied: direct
transmission systems and reservation systems with group
testing [2]. Direct transmission focuses on directly designing
an N × Tdt accessing matrix Xdt (subscript dt is for direct
transmission), so that each node finds at least one slot for
its exclusive access to the channel. Note that active users
are implicitly partitioned during transmission to ensure the
success of the transmission, (more specially, if the successful
transmission slot ti is known for each active user i , then the
desired partition can be constructed by all users); however, the
partition is not required to be known to all users. The second
system, reservation with group testing, has two stages. In the
first reservation stage, an accessing matrix Xg and decoding
function g(·) are designed such that Gs is determined exactly
by g(y), where y is the channel feedback. That is, (active
or inactive) states of all users are restored and, subsequently,
active users can transmit in a predetermined order without
conflict in a second stage. The reservation stage is also called
group testing [3] or compressed sensing [4] in different
fields. The two stages can use slots of different time scales.
Therefore, the separate reservation stage can use significantly
smaller time slots than the subsequent payload transmission
stage.

Compared to group testing and direct transmission systems,
the proposed reservation system provides a new way to analyze
the process of partitioning separately from data transmission.
It can replace group testing as the reservation stage in conflict
resolution problems, and holds the promise of requiring fewer
resources, since it seeks only to partition N , rather than
restore Gs. (Notice that in the reverse direction once Gs is
restored, obtaining a partition is straightforward.) Compared
with direct transmission, we observe that usually, the slot size
for reservation can be much smaller in partition/reservation
than that in payload transmission, thus it may need less time
for conflict resolution in practical use.

The proposed partition reservation system has a number
of applications in different areas. First, it can be directly
applied to the reservation stage in conflict resolution instead of
group testing. Second, since the partition reservation system
conveys information about the partition to all users, more
complex coordination problems can be addressed (than simply
avoiding conflict in time domain); this additional possibility
is not obvious in traditional conflict resolution schemes. For
example, code-division multiple accessing (CDMA) codes
could be assigned to users in different groups based on the
partition obtained, so that active users can claim accessing
code sequences from a common pool in a distributed way
without coordination from a central scheduler. Other examples
can be found in parallel and distributed computing [5]–[7],
such as leader election [8] and broadcasting [9]. In this paper,
the system is constrained to a case such that K active users
non-adaptively access a noiseless Boolean channel. It is a
fundamental case of the problem, but also has practical value.
Consider a system with N users each of which stays active
with a probability p. In this paper, we consider channel access
by K ≈ pN active users. If p scales with N , then K can be
assumed to be constant; this assumption is also reasonable
for access to a single channel. We consider a non-adaptive

model that is both simple and with low overheads. It also
represents a fundamental structure for our new approach.
It should be noted such non-adaptive channel model has
also been considered in the MAC or group testing literature
(for example, [3], [10]–[12], etc.). Our study will help us
understand the fundamental limits on transmission resources
to achieve a partitioned coordination among active users.

We first use source coding to quantify the partition informa-
tion. Then we propose two coding schemes for the accessing
matrix X and the decoding function g(·). The first is a
brute force method to design X and g(·) directly based
on results from source coding. Here the purpose of source
coding is to compress the source information by determining
a smallest set C of partitions, that contains a valid partition
for nearly every possible active set Gs. The brute force
method uses the channel to find a valid partition by checking
every partition in C. The second scheme, employing random
coding, generates accessing matrix elements xi,t (i.i.d. by
Bernoulli distribution); then, the partition is recovered by
the optimal Bayesian decoding. The two methods can pro-
vide different views of the partition problem. In particular
in the brute force method, if the number of slots used is
TB F = K K+1

K ! f (N), where f (N) is an arbitrary function
satisfying lim

N→∞ f (N) = ∞, then we show that the average

error probability P(N)e ≤ e− f (N) satisfies lim
N→∞ P(N)e = 0. For

the simple, but non-trivial, K = 2 case we prove by random
coding, for any ξ > 0, that if log N

T ≤ max
0≤p≤1

C(p)− ξ , (where

C(p) = −(1 − (1 − p)2) logϕ(p) − (1 − p)2 log(1 − p),

and ϕ(p) = p+
√

4p−3p2

2 ), then the average error probability
P(N)e ≤ 1

N� , for some � > 0, such that lim
N→∞ P(N)e = 0

(i.e., with polynomial speed). The above two achievable
bounds are shown to be better than that for group testing.

Moreover for the random coding approach, we introduce
a hypergraph based framework to solve the problem. Here
the problem is expressed in terms of a hypergraph in which
interaction among a set of active nodes is represented as
hyperedges. Channel effect is expressed as operations on
hyperedges through strong hypergraph coloring. The joint
work between the encoder and decoder is to ensure that the
hypergraph becomes strongly colorable iff sufficient informa-
tion is transmitted by active node interaction. In a simple, but
nontrivial, case with K = 2 active users from a set of N users,
the hypergraph is a simple graph and 2-colorability is used.
A (suboptimal) odd-cycle based analysis is proposed, and a
structure of extended Fibonacci numbers is found, which sheds
lights on the inherent structure of the partition information and
Boolean channel. This approach could be extended to K > 2.

In summary, the contributions of this paper are twofold.
First, we formulate a novel partition reservation problem which
captures the transmission and restoration of information about
the relationship among active users. This problem is also
represented in terms of a hypergraph. Second, we propose
two types of coding approaches, and derive the corresponding
achievable bounds on the communication period. This provides
intuitive examples to study the transmission of relationship
information over Boolean multi-access channels.
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The rest of this paper is organized as follows: in Section II,
we describe the related work. The problem formulation
appears in Section III. In Section IV, the partition infor-
mation is illustrated by centralized source coding, then a
brute force method, directly inspired by source coding, is
proposed in Section V. In Section VI, a random coding method
is considered and the problem is reformulated in terms of a
hypergraph. Based on this, the K = 2 case for random coding
is analyzed in Section VII. In Section VIII, we compare our
results with that of group testing. We summarize our results
and make some concluding remarks in Section IX.

II. RELATED WORK

Although the proposed partition model could be useful in
many problem settings, typical applications are in conflict
resolution problems. The work on conflict resolution is too
extensive to be included in full here; we thus only refer to
those most relevant to our setting.

To the best of our knowledge, Pippenger [14] first expressed
conflict resolution as a two-stage problem: (a) partitioning
active users into different groups; (b) payload transmission.
Hajek [15] further studied this problem using a model in
which K users are randomly distributed (uniform or Poisson)
in the [0, 1] real interval and a valid K-partition of [0, 1] is
sought, so as to separate active users into different groups.
This model corresponds to the model we propose when
N → ∞. Hajek [15] derived an upper bound (achievability
bound) on partition information on the above model. The tight
lower bound discussed by Hajek, Körner, Simonyi and
Marton [16]–[18] on this information still remains an open
question.

This partition problem (without considering channel effect)
is also closely related to perfect hashing, zero-error capacity,
and list codes [19, Ch. V]. The problem is formulated in a
combinatorial way: a subset A of KL is called K -separated
if every subset of A consisting of K sequences is separated,
i.e., if for at least one coordinate i , the i th coordinates of the
said sequences all differ. Let AL = AL(K ) denote the size of
a maximal K -separated subset A ⊆ KL . It can be seen that
AL corresponds to N users in our problem settings, and the
set A can be viewed as a set of K partitions with size L,
so that for any active set of AL users, there exists a valid
K partition.

The relationship between this combinatorial model and
the probabilistic model is stated by Körner [17]. We note
that these problems do not consider the channel effect, and
are, therefore a form of source coding from the information
theoretic perspective. For completeness, we will discuss the
source coding problem further in Section IV of this paper.
In contrast, the problem we are focusing on in this paper is
a transmission problem; i.e., construction of a valid partition
relationship among active users using the feedback from their
explicit transmission over a collision Boolean multi-access
channel. To the best of our knowledge, this problem has not
been addressed previously.

In addition to the conflict resolution problems, there has
been extensive work on direct transmission and group testing

Fig. 1. Example of the formulation. (N = 4, K = 2, G = {1, 2} indicates
that users 1 and 2 are active; the total number of time slots is T = 3.)

that considers channel effects from the combinatoric and
probabilistic perspectives. Ding-Zhu and Hwang [3] provide
an overview; more specific approaches can be found on
superimposed codes for either disjunct or separable
purposes [11], [20]–[23], on selective families [9], on
the broadcasting problem [24], and for other methods [10],
[22], [25]. It should be noted that recently, group testing has
been reformulated using an information theoretic framework
to study the limits of restoration of the IDs of all active nodes
over Boolean multiple access channels [26]. We address in
this paper the transmission of partition information (rather
than identification information) over the channel, and it is
thus, different from existing work.

III. SYSTEM MODEL

A. Formulation

In this paper, lower-case (resp., upper-case) boldface letters
are used for column vectors (resp., matrices). For instance,
wi is used for the i -th element of vector w, and wi, j is used
for the (i, j)-th element of matrix W. Logarithms are always
to base 2. The probability of a random variable A having value
Ã is denoted by pA( Ã) � Pr(A = Ã). Similarly, pA|B( Ã|B̃) �
Pr(A = Ã|B = B̃). Where there is no danger of ambiguity,
we will drop the subscripts and simply write p(A) or p(A|B)
to denote the above quantities.

Assume the number of active users K is known to all users.
The users are also given a common N × T accessing matrix
(or codebook) X, and a decoding function g(·). We use a
Boolean vector s = [s1, . . . , sN ]� to represent the active or
inactive states of users, where si = 1 iff user i is active (that is,
i ∈ Gs). Active users will use T slots to transmit according to
codebook X and observe the feedback y = [yt : 1 ≤ t ≤ T ]�
over these T slots. Then users derive the partition z = g(y).
There are two dimensions in this problem, the user dimension
of size N and the time dimension of size T .

An Example: Our approach is illustrated by an example
in Fig. 1 with four users from N = {1, 2, 3, 4}, of which
the users in set Gs = {1, 2} are active. The N × T codebook
is X. In each slot 1 ≤ t ≤ 3 = T , user i writes to the channel
iff i is active and xi,t = 1. For example, in slot 1, that has
x1,1 = x2,1 = 1 and x3,1 = x4,1 = 0, both active users 1 and 2
write to the channel, resulting in a channel feedback of y1 = 1.
In slot 2, x3,2 = 1, however, since user 3 is not active, there is



WU et al.: PARTITION INFORMATION AND ITS TRANSMISSION 1013

no write and y2 = 0. In slot 3, users 1 and 3 are called upon to
write, but only user 1 writes as user 3 is not active. The channel
feedback over the three slots is y = [y1, y2, y3]� = [1, 0, 1]�.
From this feedback, the knowledge of K = 2 and the accessing
matrix X, the following conclusions can be drawn.

• Because x3,2 = 1 and y2 = 0, it can be concluded that
user 3 is not active.

• Because x1,3 = x3,3 = 1 and y3 = 1, it can be
concluded that user 1 is active (as user 3 is inactive), also
Gs � {2, 4}.

• The interaction in slot 1 only says that Gs � {3, 4}.
• Since K is known to be 2, we conclude that exactly one

of users 2 and 4 must be active and the other inactive.
• Thus, the partition {{1, 3}, {2, 4}} of N separates active

nodes into different groups, and z = [1 2 1 2]� can be
one of the results of decoding y.

Observe that (unlike the restoration of Gs), we do not (and
need not) know which among users 2 and 4 is active. Likewise
although we happen to know that user 1 is active and user 3
is not, this knowledge is coincidental; the partition approach
does not invest resources to seek this knowledge.

To have a more general formulation, the problem can be
treated as a coding problem in multi-access channels from the
information theoretic view, as shown in Fig. 2. Consider N
users whose active states are given in a vector s ∈ SK ;N �
{s ∈ {0, 1}N : ∑ si = K }. The i -th row of X, denoted by
x�

i can be viewed as a codeword of user i (note that xi is
a column vector, we would like to use a row vector x�

i to
represent the codeword, as is customary). It is also easy to see
that user i sends si x�

i on the channel. The channel feedback
is y =∨N

i=1 si xi � [∨N
i=1 si xi,t ]T

t=1. Then the decoded output
is an ordered partition z ∈ ZK ;N , where:

ZK ;N = {z ∈ KN : ∀1 ≤ k ≤ K , ∃zi = k
}

is the set of all possible K -ordered partition. Recall that the
definition of z is equivalent to that of an order partition as
in footnote 1. A distortion function is defined for any status
vector s ∈ SK ;N and a partition vector z ∈ ZK ;N as follows:

d(s, z) =
{

0, if ∀i, j ∈ Gs, (i �= j) �⇒ (zi �= z j )

1, otherwise.
(1)

The objective is to design a proper matrix X and a corre-
sponding decoding function z = g(y), so that d(s, g(y)) = 0
for nearly all s ∈ SK ;N .

To simplify the notation, we write y = X� ⊗ s, where ⊗
denotes Boolean matrix multiplication in which the tradi-
tional arithmetic multiplication and addition operations are
replaced by logical AND and OR, respectively. For any
given s, we denote the set of all possible z as ZK ;N (s) ={
z ∈ ZK ;N : d(s, z) = 0

}
. The set of all possible vectors s

that are compatible with a given z to produce 0 distortion
is denoted by SK ;N (z) = {s ∈ SK ;N : d(s, z) = 0}. In some
situations, we will need to know the number of users, nk , in
a given group k ∈ K. The set of all possible z with group

Fig. 2. Encoding-channel-decoding system with distortion criterion.

sizes (n1, . . . , nK ), where
K∑

k=1

nk = N , is denoted by:

ZK ;N (n1, . . . , nK )

�
{

z ∈ ZK ;N :
(

N∑

i=1

�(zi = k)

)
= nk, 1 ≤ k ≤ K

}
;

here the indicator function �(A), which accepts a Boolean
value A as input, is 1 if A is true, and 0 if A is false.

B. Performance Criteria

In this paper, we use a probabilistic model and consider
average error. Assume each input s ∈ SK ;N is with equal
probability, i.e., s ∼ U(SK ;N ), where U(A) denotes the
uniform distribution over a set A. Thus ∀s̃ ∈ SK , ps(s̃) �
Pr(s = s̃) = 1/

(N
K

)
. For a given X, the average error

probability is defined as follows:

P(N)e (X)

�
∑

s∈SK ;N

p(s)Pr(d(s, g(y)) �= 0|s,X)

= 1
(N

K

)
∑

s∈SK ;N

∑

y

�(d(s, g(y)) �= 0)�(y = X� ⊗ s) (2)

Note that we use p(s) instead of ps(s̃) for simplification. The
first term �(d(s, g(y)) �= 0) reveals the effect of decoding,
and the second term �(y = X� ⊗ s) the effect of the channel.

We define a number of slots T (N)c to be achievable, if for any
T > T (N)c , there exists a N × T matrix X(N) and a decoding
function g(N)(·), such that lim

N→∞ P(N)e (X(N)) = 0. The aim is

to find T (N)c , when N → ∞.
Remark: In this problem, the objective is to restore a

partition vector z ∈ ZK ,N , so that for given input s,
d(s, z) = 0. Whereas in group testing, the objective is to
restore every user’s state; i.e., the output should be a binary
vector zg ∈ SK ;N , and correct restoration means zg = s. Thus,
if we use the definition of distortion

dg(s, zg) � �(zg = s), (3)

instead of the one defined in Equation (1), the problem
above is exactly a noiseless group testing problem. Thus,
the main difference between our partition problem and group
testing problem lies in the different definitions of distortion
functions or, more importantly, in the different forms of infor-
mation to transmit. Furthermore, since knowing Gs will always
induce a correct partition of N by the distortion definition
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Fig. 3. Source coding part with distortion criterion.

in Equation (1), the partition problem requires no more
information transfer than that in the case of group testing.
In the next section, we rigorously analyze the amount of the
information used to solve the partition problem.

A further remark can be made that the transmitted partition
information will remain the same, if we slightly extend the
definition of the output vector to be z̃ ∈ Z̃K ;N , where:

Z̃K ;N = {z̃ ∈ ({0} ∪ K)N : ∀1 ≤ k ≤ K , ∃zi = k
}
, (4)

and the distortion function to be

d̃(s, z̃)=

⎧
⎪⎨

⎪⎩

0, ∀i, j ∈ Gs,

(i �= j) �⇒ (z̃i , z̃ j �= 0 and z̃i �= z̃ j );
1, otherwise

(5)

this is shown in the next section and in the proof of Lemma 1
in Appendix A. The difference between this extended z̃ and
the original z is that we could have z̃i = 0, indicating user i is
inactive. In the main body of this paper, we will always use
the original definition that z ∈ ZK ;N and d(s, z) is defined as
in Equation (1).

IV. SOURCE CODING

In this section, we first focus on the inputs and outputs of the
system without considering channel effects (i.e., a centralized
source coding scheme as illustrated in Fig. 3), to find the
amount of information needed for describing the source with
the purpose of partition. In other words, the purpose is to find a
set of partitions C with minimum size, so that for nearly every
possible s ∈ SK ;N , there is a partition z ∈ C and d(s, z) = 0.
With the help of source codebook C, for any unknown input s,
we can utilize the channel to check every partition in C to find
the valid partition; details appear in the next section.

For group testing, the objective is to restore all states of
users, if we use a source codebook Cg � {s1, . . . , sL(N)} to
represent all s ∈ SK ;N , the codebook size L(N) should be
|SK ;N | = (N

K

)
. However, in the partition reservation system,

for a given z ∈ ZK ;N , there can be more than one s so
that d(s, z) = 0. Actually when z ∈ ZK ;N (n1, . . . , nK ),
the number of possible active vectors so that d(s, z) = 0
(for s ∈ SK ;N (z)) is |SK ;N (z)| = �K

k=1nk . Thus, we can use
codebook with size smaller than SK ;N to represent the inputs.
Strictly speaking, for s ∼ U(SK ;N ), we are seeking a source
encoding function:

f s
N : SK ;N → {1, 2, . . . , L(N)},

(we use superscript “s” to represent it is “source coding”, and
it is the same for the definition belows), and a source decoding
function:

gs
N : {1, 2, . . . , L(N)} → ZK ;N ,

so that we can map s to a decoding output z = gs
N ( f s

N (s)),
with the average source decoding error

Ps,(N)
e �

∑

s∈SK ;N

p(s)�(d(s, gs
N ( f s

N (s))) �= 0) (6)

such that Ps,(N)
e approaches 0 as N → ∞. Thus, we will

call (L(N), f s
N , gs

N ) an achievable source code sequence for the
uniform source s ∼ U(SK ;N ). The range of gs

N (·) is defined
as the source codebook. The minimum of log L(N) for all
achievable source code sequences will be called the partition
information for s ∼ U(SK ;N ).

In this section, we first compute the minimum constrained
mutual information, W I

N , between s and valid partition z
(see Lemma 1), and then prove the existence of an achievable
source code sequence (L(N), f s

N , gs
N ) for a set of values

L(N) > 2W I
N specified in Theorem 1.

Constrained mutual information is always related to the
rate distortion problem [28], [29]. Thus, we first calculate the
constrained minimum mutual information for s ∼ U(SK ;N )
and valid z, i.e.,

W I
N � min

p(z|s)∈Pz|s
I (s, z) (7)

where the constraint is:

Pz|s � {p(z|s) : p(z|s) = 0, if d(s, z) = 0}, (8)

which means only a valid partition z can be chosen for
a given s. The result corresponds to that of Hajek [15],
when N → ∞.

Lemma 1:

W I
N � min

p(z|s)∈Pz|s
I (s, z) = log (N

K)∏K
k=1 n∗

k
(9)

where

(n∗
1, . . . , n∗

K ) = arg

(
max

nk

K∏

k=1

nk

)
, (10)

subject to
K∑

k=1

nk = N, and ∀k ∈ K, nk ≥ 1.

W I
N can be achieved by choosing

z|s ∼ U
(
ZK ;N (n

∗
1, . . . , n∗

K )
⋂

ZK ;N (s)
)
. (11)

Equation (11) means that for any given s, the partition z
should be chosen from the “correct” set ZK ;N (s) under the
constraint of Pz|s , and to minimize the mutual information we
require that z ∈ ZK ;N (n∗

1, . . . , n∗
K ). This means that there

are n∗
k users assigned to group k. The partition z can be

chosen uniformly from the set satisfying these two conditions.
In the proof, which appears in Appendix A, we first partition
ZK ;N as

⋃
(n1,...,nK )

ZK ;N (n1, . . . , nK ), and then for each set
of partitions, log sum inequality is used to obtain the lower
bound. For the achievability, we directly construct the optimal
p(z|s) using Equation (11).

Theorem 1 (Source Coding): There exists a codebook
{z�}L(N)

�=1 of size L(N), and a source coding sequence
(L(N), f s

N , gs
N ), so that for all N, the average source decoding
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error probability is bounded by Ps,(N)
e ≤ e−2

(
log L(N)−W I

N

)

.

When log L(N) > W I
N and

(
log L(N) − W I

N

) N→∞−−−−→ ∞,
sequence (L(N), f s

N , gs
N ) is achievable.

Proof Outline: The complete proof is in Appendix B. The
core of the proof is to use a random coding method to
construct the codebook {z�}L(N)

�=1 ; in particular, we choose z�
i.i.d. from U

(
ZK ;N (n∗

1, . . . , n∗
K )
)
, and show the average

of Ps,(N)
e over all possible codebooks satisfies the bound

in Theorem 1, thus there must exist at least one codebook
satisfying this bound. Then by assigning the source encoding
function f s

N (s) = arg min1≤�≤L(N) d(s, z�), and the source
decoding function gs

N (�) = z�, we obtain the source coding
sequence (L(N), f s

N , gs
N ) with the error probability bounded

by Theorem 1.
From Theorem 1, we see that W I

N can be used to measure
the amount of asymptotic partition information of the source.
It explicitly shows the partition information, as well as its
difference from the required information to restore all states
in further remarks.

Remark 1: For group testing, if we define W I
G,N as that in

Equation (7), we have:

W I
G,N = log

(
N

K

)

Thus W I
N = log

(N
K

)− log
(∏K

k=1 n∗
k

)
of partition problem is

smaller by a log
(∏K

k=1 n∗
k

)
term than that of group testing.

We next remark on the effect of the order of K (compared
to N) on the achieved mutual information, as well as the error
probability.

Remark 2: First, we derive the explicit expression for W I
N .

From the restriction on [nk]K
k=1 in Equation (10), it is easy

to see without requiring nk to be an integer that the optimal
values of nk are

n∗
1 = n∗

2 = . . . = n∗
K = N

K
.

Thus

W I
N ≥ log

(
N

K

)
− log

(
N

K

)K

(12)

The equality is achieved when K divides N , and it has a good
approximation when N � K . Also, we have the inequalities:

(N
K

)

( N
K

)K

(a)≤ K K

K !
(b)≤ eK , (13)

Equality in Equation (13)(a) will be approximately achieved
when K � N , and the equality of Equation (13)(b)
requires K � 1.

Remark 3: When K = O(N), e.g. K = ηN for a constant
0 < η < 1, we have:

lim
N→∞

1

N
W I

N = −(1 − η) log(1 − η) (14)

lim
N→∞

1

N
W I

G,N = −(1 − η) log(1 − η)− η log η

� H (η) (15)

They are obtained by a tight bound of
(N

K

)
derived by

Wozencraft and Reiffen [28], (see Section 17.5). Thus we
can define an achievable source information rate Rs for the
partition problem (note the unit of the rate defined here is
bits/user), so that for any R ≥ Rs + ξ , where ξ > 0 is
any constant, there exists an achievable coding sequence
(L(N) = 2N R, f s

N , gs
N ), and

Ps,(N)
e → 0, when N → ∞

By Theorem 1 and Equation (14), we can see that when
K = ηN , we have Rs = −(1 − η) log(1 − η), since we
can always construct the achievable coding sequence of
L(N) = 2N R that, for all ξ > 0, and ∀R ≥ Rs + ξ , satisfies

Ps,(N)
e ≤ e−2N(R−Rs )

and lim
N→∞ Ps,(N)

e = 0

Note that the error is doubly exponential. While for group
testing, if we define Rg

s similarly to Rs , we can see by
Equations (14) and (15) that Rg

s = Rs + (−η log η) > Rs .
Thus, we need higher rate to represent the states of users
than to partition them.

Remark 4: When K = o(N), limN→∞ W I
N = log K K

K ! .
A special example is that K is a constant, then limN→∞ W I

N
is also a constant. We can see the proposed achievable rate
Rs = 0, since 1

N W I
N ≤ K

N log e → 0. By Theorem 1, for
any L(N) = f (N) (where f (N) is a function satisfying

f (N)
N→∞−−−−→ ∞), we can always construct a source coding

sequence with codebook size L(N) = f (N), and

Ps,(N)
e ≤ e−2

(
log f (N)−log K K

K !
)

→ 0, when N → ∞
We can choose L(N) to be of any order of N to guarantee
the convergence of Ps,(N)

e ; for example, L(N) = log log N .

On the other hand, group testing requires that L(N) = (N
K

)
to

represent the source, which can be much larger than that of
partition problem. However, different choices of f (N) will
influence the speed of convergence, e.g., if an exponential
convergence speed is required, i.e., Ps,(N)

e ≤ e−�N for some

� > 0, then L(N) = O(N).

V. THE BRUTE FORCE METHOD

Given a randomly generated source codebook for the
source coding problem, here we propose a corresponding
channel coding scheme. In this scheme, the channel codebook
X is created by first collecting all partitions (or codewords)
in the source codebook; the decoder then checks each
partition (or source codeword) exhaustedly with the help of
the Boolean channel. More specifically, if the partition set
C is given as a source codebook, and T0 slots are needed to
check if a partition z ∈ C is a valid partition, then at most
T = T0 · |C| slots are needed to check all partitions in C. This
is the brute force method.

For a given L(N), we can find a source codebook {z�}L(N)
�=1

to represent the source under error probability Ps,(N)
e (using

Theorem 1). Thus if a matrix X is designed to check, one
by one, whether z� is the correct output, the average error
probability P(N)e will behave the same as Ps,(N)

e , and thus
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Fig. 4. Example of the generation of X in brute force method, where N = 6,
K = 3, and source codebook {z1, z2} of size L(N ) = 2 is chosen.

approaches zero when log L(N) − W I
N → ∞ as N → ∞. The

following holds for the brute force method:
1) Source Coding: For L(N), choose the codebook

{z�}L(N)
�=1 , and the source coding sequence

(L(N), f s
N , gs

N ) based on Theorem 1.
2) Joint Coding: Generate X by L(N) submatrices of

dimension N × K ,

X = [X1, . . . ,XL(N) ].
Thus, the dimension of X is N ×T , where T = K L(N)

(T0 = K to check each possible partition). Each X� is
an N × K matrix, so that ∀1 ≤ i ≤ N, 1 ≤ k ≤ K ,
the (i, k)-th element of X�, denoted by x�;i,k , satisfies:

x�;i,k =
{
1, if z�;i = k;
0, otherwise.

See Fig. 4 for an example.
3) Decoding: Now the outputs are separated into L(N)

blocks:

y = [y1; . . . ; yL(N)],
and

y� = X�
� ⊗ s

is a K × 1 column vector. If there exists y� = 1K×1,
where 1K×1 is a K ×1 column vector with all compo-
nents equal to 1, then the joint decoder is g(y) = z�; if
there exist more than one, we can select one of them,
e.g., the first one; otherwise there is decoding error.

Note that if y� = 1K×1, then there exists at least one active
user in each of k groups assigned by z�. And since we know
that there are exactly K active users, only one active user is
assigned to each group. Thus definitely d(s, z�) = 0 (based
on the following fact):

∀i �= j ∈ Gs, zi �= z j ⇐⇒
⋃

i∈Gs

{zi } = K.

Clearly, in the brute force method the number of channel
uses is TB F = K L(N). In addition, for this method there
exists z� in codebook {z�}L(N)

�=1 so that d(s, z�) = 0, if and
only if d(s, g(y)) = 0. Consequently, the average error of the
brute force method is the same as centralized source coding.
Based on the analysis of centralized source coding as in
Theorem 1, we have

Theorem 2 (Brute Force Method): For the brute force
method, if the size of centralized source codebook is L(N),
then TB F = K L(N), and the average error probability is

P(N)e ≤ e
−
(

TBF
K |dle/2W I

N

)

= e−2

(
log L(N)−W I

N

)

.
Although the brute force method is very simple and clearly

not optimal, it highlights some features of the partition
problem. First, if K is a fixed number, then as stated
in Remark 4 in the last section, only TB F = K K+1

K ! f (N) is
needed for the convergence of P(N)e (since P(N)e ≤ e− f (N)),
where K K+1

K ! is a constant and f (N) is any function satisfying
lim

N→∞ f (N) = ∞. In this case, the threshold effect of the

convergence doesn’t exist as in group testing or compressive
sensing [4], and the choice of f (N) is related to the speed
of convergence of P(N)e . However, when K is large, (e.g.
when 1 � K � N , 2W I

N → eK ), TB F should be larger
than K eK to guarantee the convergence of P(N)e ; here TB F

may be even larger than the time TG = O(K log N) needed
for group testing. This is to be expected as the brute force
method is not optimal. In particular, when K increases, the size
of the centralized source codebook increases exponentially,
and it becomes exceedingly inefficient to check each element
one by one.

VI. RANDOM CODING AND REFORMULATION

AS HYPERGRAPH

The brute force method was inspired by a centralized
source coding and it works well only for small K . To find
the achievable bound of T for general case, we design the
code from another approach, by randomly generating X and
then employing the optimal Bayesian decoding. However,
for a more insightful approach to derive an achievable rate,
a new angle from graph theory is proposed in this section,
which transforms the effect of the channel to a series of
operations on hypergraphs. It is shown that seeking an
acceptable partition is equivalent to obtaining a common
strong colorable hypergraph by all users, and then coloring
this hypergraph. Because we are only concerned about an
achievable rate, the computational cost associated with the
coloring is not relevant for our framework.

A. Random Coding and the Optimal Bayesian Decoding

Random coding is frequently used in the proof of achievabil-
ity in information theory, including for group testing [26]. The
binary matrix X is generated randomly, where each element
xi,t ∼ B(p) follows the i.i.d Bernoulli distribution with
p parameter (other distributions of X can also be considered,
but that is beyond the scope of this paper). Let the probability
of X be Q(X). Then the average probability of error over the
realization of X is given by:

P(N)e =
∑

X

Q(X)P(N)e (X)

=
∑

X

Q(X)
∑

s∈SK ;N

∑

y

p(s)py|s;X(y|s)�(d(s, g(y)) �=0)

(a)=
∑

X

Q(X)
∑

y

py|s;X(y|s0)�(d(s0, g(y)) �= 0) (16)
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Fig. 5. Reformulation from hypergraph.

Since we do not consider observation noise in this paper,

py|s;X(y|s) = �(y = X� ⊗ s).

The equality of Equation (16)(a) above follows from the
symmetry of the generation of X, so we can choose any given
s0 as input to analyze. We will choose Gs0 = {1, . . . , K } in
the rest of the paper. Since the derived achievable T (N)c for
random coding is O(log N), we define an achievable rate Sc,
so that for any T satisfying log(N)

T ≤ Sc − ξ (where ξ > 0

is an arbitrary constant), we have P(N)e
N→∞−−−−→ 0. Which also

implies there exists an X∗ such that P(N)e (X∗) N→∞−−−−→ 0. In this
section, we will derive such an Sc.

We employ the optimal Bayesian decoding, for which given
feedback y, we choose z∗ = g(y) so that ∀z �= z∗ ∈ ZK ;N ,
the following holds
∑

s∈SK ;N

�
(
d(s, z∗) = 0

)
py|s;X(y|s)

≥
∑

s∈SK ;N

� (d(s, z) = 0) py|s;X(y|s) (17)

If there is more than one z∗ with the maximum value, then
choose any one. Note that here we search all possible z∗ in all
possible z ∈ ZK ;N ; however, considering the source coding
results, we can just search z∗ ∈ ZK ;N (n∗

1, . . . , n∗
K ) without

loss of generality.
As seen in the definition of the optimal Bayesian decoding,

to find the output z, we should count all s ∈ S(z) satisfying
y = X� ⊗ s. Many s ∈ S(z) support the same set of active
users. Thus, it is extremely difficult to compare the posterior
probability for different z. This obstacle arises because in the
Bayesian decoding, few inherent structures of the problem are
found and utilized. To further reveal the inherent structure
of the problem, a novel formulation from the perspective of
hypergraph is proposed in the next section, which proves to be
helpful in reducing the complexity of performance analysis.

B. Reformulation as Hypergraph

The process of random coding is illustrated in the upper part

of Fig. 5. For an input s0, the channel output y =
∨

i∈Gs0

xi is

observed, and then a candidate subset of SK ;N that is capable
of generating y can be inferred as follows:

Sy =
{

s ∈ SK ;N : y = X� ⊗ s
}

the optimal Bayesian decoder tries to find z∗ with the largest
number of s ∈ Sy satisfying d(z∗, s) = 0.

This process can be viewed in terms of hypergraphs, as
shown in Fig. 5.

1) Source: Since all real sources s0 ∈ SK ;N are equiprob-
able, a complete K -uniform hypergraph H (V (H ), E(H ))
can be used to express the knowledge of the source before
observation, where the set of nodes V (H ) = N represents
N users, and the set of hyperedges E(H ) = {e ⊆ V (H ) :
|e| = K } represents all possible inputs [30], [31]. It means
every hyperedge in H could be s0. Actually the real input is
just an edge Gs0 ∈ E(H ), the objective of group testing is to
find exactly this edge to obtain every user’s state; while for
partition reservation system, the objective is to separate each
vertex of Gs0 .

2) Transmission and Observation: The transmission and cor-
responding observation can be seen as a series of edge deleting
operations on the hypergraphs. Because after observing each
feedback yt , 1 ≤ t ≤ T , some s could be determined to be
not possible, and the candidate set Sy could shrink. A sub-
hypergraph H ′(V (H ′), E(H ′)) ⊆ H (V (H ), E(H )) is used to
denote the candidate set Sy after observing the feedback y.
Note that we consider the node set V (H ′) = V (H ) to be
invariant, but actually there will be many isolated nodes in
V (H ′) with zero degree. The details of the operations will be
shown in the next subsection. Note that for the noiseless case
that we consider, we always have s0 ∈ Sy, so Gs0 ∈ H ′.

3) Partition: Finally, the partition z∗ should be decided
by observing H ′. First, we introduce the concept of strong
coloring. A strong coloring of a hypergraph H is a map
� : V (H ) → N+, such that for any vertices u, v ∈ e
for some e ∈ E(H ), �(u) �= �(v). The value of �(u) is
called the color of node u. In other words, all vertices of
any hyperedge should have different colors. The corresponding
strong chromatic number χs(H ) is the least number of colors
so that H has a proper strong coloring [32]. Obviously for a
K -uniform hypergraph, χs(H ) ≥ K . We call a strong coloring
with K colors to be K -strong coloring. If z∗

i is viewed as a
color of node i , then z∗ ∈ ZK ;N gives a coloring of V (H )
with K colors.

For the Bayesian decoding in (17), the method of
finding z∗ from Sy is equivalent to finding a hyper-
graph H ∗(V (H ∗), E(H ∗)) ⊆ H ′(V (H ), E(H ′)), such that
χs(H ∗) = K , i.e., H ∗ is K -strong colorable, and the number
of deleted edges |E(H ′)\E(H ∗)| is minimum. Then the output
z∗ can be any strong coloring of H ∗.

From the perspective of hypergraphs, the process generates
H → H ′ → (H ∗, z∗), corresponding to the expression from
vectors s0 → Sy → z∗. This process is shown in Fig. 5
through an example of N = 6, K = 2. Note that the
hypergraph becomes a graph when K = 2. Compared with
group testing, whose objective is to obtain H ∗ = H ′ with
only one edge Gs0 by deleting edges through transmissions
and observations, our partition problem allows H ′ and H ∗
to have more edges, so less effort is needed to delete edges,
which translates to higher achievable rate than that for group
testing. We observe that z∗ is correct iff Gs0 ∈ E(H ∗)
and H ∗ is K -strong colorable, we will use this equiv-
alence in our analysis to determine if the decoding is
correct.
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Fig. 6. Example of X effects on the operations of a graph. (Here N = 8,
K = 2, T = 4, and Gs0 = {1, 2}.)

From the view point of the algorithm, first all users obtain
a common “good” H ′ which will lead to a correct partition.
Second, we obtain H ∗ and choose a common consistent z∗.
The second step, to obtain H ∗ by deleting the minimum
number of edges from H ′ and finding the K -strong coloring,
does not influence the transmission time needed to arrive at a
“good” H ′. This is because once all users have the same copy
of H ′, the remaining computation, including removal of edges
and coloring, can be done locally without further expending
communication resources. A further explanation of operations
of the deleting edges is introduced in the next subsection.

C. Reduction Step: Obtaining H ′ From H

The effect of transmissions on the basis of matrix X and
observation of the channel feedback result in two hypergraph
operations: deleting vertices and deleting a clique. Assume at
time t , that the set of users transmitting 1 is GX(t) = {i ∈ N :
xi,t = 1}. The operation at time t can be classified based on
the feedback yt as follows.

1) If yt = 0, then none of the users in GX(t) is active,
so the corresponding vertices (and hyperedges) can be
deleted; i.e., all hyperedges containing these vertices can
be deleted.

2) If yt = 1, it implies that at least one active user is
transmitting 1 at time t . Here every hyperedge consisting
only of vertices from N \ GX(t) can be deleted.

The vertices and hyperedges removal are illustrated in an
example in Fig. 6 where K = 2 means the hypergraph is a
graph. There are 8 users and 4 slots are used for transmission.
We can see the edges removing process starting from a
complete graph at t = 0, to a graph of only 3 edges at time
t = 4. At t = 1, 4, when yt = 0, the corresponding vertices
are removed, while at time t = 2, 3 we have yt = 1 and
hypercliques are removed.

Now it is clear that our problem can be viewed as
a K -strong hypergraph coloring problem, and the objective

is to schedule a series of edge removing operations efficiently
to construct such a hypergraph so that all K active users could
be assigned a unique color (or partition group). In next section,
a special case of K = 2 is solved; even in this simple case,
the problem is nontrivial.

VII. RANDOM CODING FOR K = 2

For K = 2, two sub-optimal decoding methods inspired by
the Bayesian decoding are proposed to further simplify the
calculation.

A. Two Simplified Decoding Methods

In the optimal Bayesian decoding, the decoder will find
a K -strong colorable graph H ∗ from H ′ by deleting the
minimum number of edges, and the decoding result is correct
if Gs0 ∈ H ∗. For K = 2, hypergraph H ∗ is a graph and
2-strong colorability is equivalent to H ∗ being bipartite, or
equivalently, having no odd cycles. Without loss of generality,
assume Gs0 = {1, 2}. Odd cycles can be of three kinds:

Type 1) The cycle contains vertices 1 and 2; the cycle may
or may not contain edge {1, 2};

Type 2) The cycle contains only one of the vertices 1 and 2;
Type 3) The cycle contains neither vertex 1 nor 2.
For simplicity call any odd cycle that contains edge {1, 2}

(a kind of Type-1 odd cycle) an “odd1 cycle”. Since {1, 2}
always exists in H ′ for our channel model, it is easy to see H ′
contains no Type-1 cycles iff H ′ contains no odd1 cycles. Thus
in the rest of paper, we just consider the existence of odd1
cycles and Type-2 and 3 odd cycles. We can assert that if there
is no odd1 cycle in H ′, then the decoding result is correct.
The reason is that the optimal Bayesian decoding breaks all
odd cycles in H ′ to get H ∗ by deleting least edges. If there
is no odd1 cycle in H ′, set Gs0 will not be deleted during
this process. Thus, Gs0 ∈ H ∗, which implies correct decoding.
Thus, we have

P(N)e ≤ Podd1
e �

∑

X

Q(X)Pr(H ′ contains odd1 cycles|X, s0)

≤ Podd
e �

∑

X

Q(X)Pr(H ′ contains odd cycles|X, s0)

In the following, Podd
e and Podd1

e are both upper bounded
by their respective union bounds, and it is shown their upper
bounds are nearly the same when N → ∞, which points
to the possibility of using a suboptimal decoding method
to advantage: when H ′ is 2-colorable, find any z consistent
with it; otherwise announce an error. The reason is if the
optimal Bayesian decoding is used, it is necessary to obtain H ∗
by deleting the minimum number of edges of H ′, which is a
NP Hard problem [33]; however, it is easy to judge whether H ′
is a bipartite graph in a linear number of steps in N . So while
the suboptimal decoding method needs more channel use, it
is easier to compute.

B. Main Result: Achievable Bound of T for K = 2 Case

To upper bound P(N)e by Podd1
e , let

C(p) = −(1 − (1 − p)2) logϕ(p)− (1 − p)2 log(1 − p)
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where

ϕ(p) = p +√4 p − 3 p2

2
. (18)

We have the following lemma:
Lemma 2: For K = 2 and for any constant ξ > 0 such that

log N
T ≤ Sc − ξ and Sc � max

0≤p≤1
C(p), we have P(N)e ≤ Podd1

e ,

and limN→∞ Podd1
e = 0.

And similarly, by bounding P(N)e by Podd
e , we have the

following theorem:
Theorem 3: For K = 2 and for any constant ξ > 0

such that log N
T ≤ Sc − ξ , we will have P(N)e ≤ Podd

e , and
limN→∞ Podd

e = 0.
The proofs of Lemma 2 and Theorem 3 are given in Appen-

dix C. In fact, if the elements of X are generated i.i.d. by a
Bernoulli distribution of parameter p, then Podd1

e and Podd
e

approach 0, if log N
T ≤ C(p)− ξ ; this implies Sc = max

p
C(p).

We can see the achievable bound that makes P(N)e → 0 is Sc

for both methods. The main idea in the proof is to calculate the
probability of existence of a particular odd cycle in H ′; this
calculation is similar for the three types of odd cycles. Observe
that ϕ(p) in Equation (18) is related to the solution of the
extended Fibonacci numbers; this observation could provide
additional insight.

A sketch of the proof of Lemma 2 is given below. The proof
of Theorem 3 follows the same structures:

1) Consider the problem conditioning on [x1, x2] in a
strong typical set A(T )

ε ; this will simplify the algebra. Assume
the probability of existence of a particular odd1 cycle of
M vertices in H ′ to be Pe;M ; there are

(N−2
M−2

)
(M−2)! ≤ N M−2

such odd cycles and all of them are equiprobable. Thus,

Podd1
e ≤

∑

M≥3,M is odd

2(M−2) log N Pe;M

+ Pr([x1, x2] ∈ A(T )
ε ) (19)

Since Pr([x1, x2] ∈ A(T )
ε )≤2−q(p,ε)T , and 2−q(p,ε)T T→∞−−−→ 0,

where q(p, ε) is some constant, according to the proper-
ties of strong typical set [34]. We will show that Pe;M ≤
2−(M−2)C(p)T. Thus when log N < (C(p) − ξ)T , we have
2(M−2) log N × Pe;M ≤ 2−(M−2)ξ ; this implies the Podd1

e → 0.
Note that specifically, Podd1

e goes to 0 exponentially with T ,
and polynomially with N ; specifically, Podd1

e ≤ 2−�1T =
1

N�2
, where �1 and �2 are constants.

3) Divide the T slots into four parts Tu,v = {t : (x1,t , x2,t ) =
(u, v)}, for the four different (u, v) ∈ {0, 1}2, according to the
codewords of the real input [x1, x2]. In the strong typical set,
we just need to consider when |Tu,v | ≈ px(u)px(v)T , where
px(u) � p · �(u = 1)+ (1 − p) · �(u = 0) is the probability
distribution of the Bernoulli variable. And due to symmetry
and independence of the generation of X, for any (u, v), we
just need to consider an arbitrary slot t ∈ Tu,v . 2) For t ∈ Tu,v ,
denote by μu,v;M the probability that an odd1 cycle of length
M will not be deleted by the operations. Then

Pe;M = �u,v
(
μu,v;M

)|Tu,v |

≈ �u,v
(
μu,v;M

)px (u)px (v)T (20)

Fig. 7. Random clique deletion while keeping particular odd cycle at a
particular t such that y(t) = 1. (Here the size of the odd cycle is M = 7,
K = 2, only the cliques of size 2 (edge) or 3 (triangle) consisting of non
consecutive vertices can be deleted. ((2, 4) and (2, 5, 7) for example.))

4) We have shown that for all t , where yt = 0,
(i.e., t ∈

⋃

(u,v) �=(0,0)
Tu,v , μu,v;M = (1 − p)M−2), and exponent

px(0)px(0) = (1 − p)2, thus
(
μ0,0;M

)px (0)px (0)T = (1 − p)(M−2)(1−p)2T

= 2(M−2)T (1−p)2 log(1−p) (21)

For yt = 1, (i.e., t ∈ Tu,v , (u, v) �= (0, 0)), we have shown
that μu,v;M = ϕM−2(p), and

∑
(u,v) �=(0,0) px(u)px(v) = 1 −

(1 − p)2. Thus,

�(u,v) �=0
(
μu,v;M

)px (u)px(v)T

= 2(M−2)T (1−(1−p))2 logϕ(p) (22)

Then, combining Equations (21) and (22), we obtain Pe;M ≤
2−(M−2)C(p)T, which completes the proof.

We now provide an intuitive explanation. The result in
Lemma 2 can be expressed as

∀p, T >
log N M−2

(M − 2)C(p)

Intuitively, we have at most N M−2 odd1 cycles of length M .
After ideally eliminating all of them, the error probability
becomes 0. Thus, log N M−2 can be viewed as an upper
bound on source information, that describes the uncertainty of
odd1 cycles; (M − 2)C(p) can be viewed as the information
transmitting rate of the channel, which represents the speed of
eliminating the uncertainty of odd cycles with M vertices.

To further explain the meaning of (M − 2)C(p), we should
use the effect of X on hypergraphs (see in Section VI-C).
If a given odd1 cycle He;M with M vertices exists in H ′,
for 1 ≤ t ≤ T , then none of the M vertices, or the cliques
containing the edges of He;M can be deleted. See an example
in Fig. 7, where He;M is the outer boundary. It will not be
removed if none of the edges are deleted; here the clique to
be deleted should not contain consecutive vertices on the outer
boundary.

At any slot t , vertices are deleted if yt = 0; the probability
of this happening is (1 − p)2. For a particular t with yt = 0,
an inactive vertex i is deleted, only if xi,t = 1, so the
probability that all M vertices are maintained at time t is
μ0,0;M = (1 − p)M−2.
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On the other hand, all the edges of the odd cycle He;M

cannot be deleted by the clique deleting operation. At any slot
t with yt = 1, whose probability is 1 − (1 − p)2, there are 3
different cases to consider, (x1,t , x2,t ) ∈ {(0, 0), (1, 0), (0, 1)},
whose analysis is similar. Consider (x1,t , x2,t ) = (1, 1).
Assume that odd cycle He;M = (1, 2, i1, . . . , iM−2), so at any
slot t , the probability that He;M is not removed by clique
deletion can be derived to be:

μ1,1;M = 1 − Pr(He;M is removed at slot t|t ∈ T1,1)

= 1 − Pr(∃w ∈ {1, . . . ,M − 3},
(xiw (t), xiw+1(t)) = (0, 0))

(a)= 1

p
F(M, p) ≤ ϕ(p)M−2

The derivation of Equation (a) is shown in Appendix C, with

F(k, p) =
� k−1

2 �∑

j=0

(
k − 1 − j

j

)
pk−1− j (1 − p) j

= ϕ(p)k − ψ(p)k

ϕ(p)− ψ(p)
,

and

ϕ(p) = p +√4 p − 3 p2

2
; ψ(p) = p −√4 p − 3 p2

2

as the solution to a generalized Fibonacci sequence [35].
In fact, 1

p F(k + 2, p) is the probability that there are no
two consecutive 0s in a p-Bernoulli sequence of length k.
This feature of Fibonacci sequences has also been used in
generating codes without consecutive 1s, known as Fibonacci
coding. The other probabilities μ1,0;M and μ0,1;M can be
derived similarly. Thus, we can see (M − 2)C(p) can be
explained as the rate of deleting vertices or cliques for an
odd1 cycle with M vertices from above.

Lemma 1 and Theorem 2 above reveal the internal structure
of the partition problem. Partitionability is related to the
absence of odd cycles, and X is constructed to remove odd
cycles by deleting vertices or cliques. The Fibonacci structure
is related to consecutive 0s in Bernoulli sequences; thus the
Fibonacci structures may be a key factor in the partition
problem and could be extended to more general cases with
K > 2. In the next section, the efficiency is compared with
random coding based group testing approach.

VIII. COMPARISON

As in introduction, our partition reservation has close rela-
tion to direct transmission and group testing. Since the average
error considered in direct transmission system is not the same
as that used in this paper (see Equation (2)), we compare our
result only with group testing.

Atia and Saligrama [26] have proved the achievable rate for
group testing with random coding, which shows that if for any
ξ > 0 and log N

T ≤ Scg − ξ , Scg � max
p

Cg(p), where

Cg(p) = min

{
(1 − p)H (p),

1

2
H ((1 − p)2)

}
,

Fig. 8. Comparison of C(p) and Cg(p).

the average error probability P(N)e → 0 (Also, they show Scg

to be a capacity). From Fig. 8, we can see Cg(p) < C(p) for
any 0 < p < 1. In particular, Sc = maxp C(p) = 0.5 <
0.5896 = maxp Cg(p) = Scg ; i.e., our achievable rate is
always larger than the capacity of group testing with random
coding in the noiseless case. Further, expressing the upper
bound of the error probability as only a function of N , the
diminishing speeds P(N)e → 0 of group testing and partition
reservation are both polynomial in N ; i.e., P(N)e ≤ 1

N� for
some constant � > 0.

Compared with the brute force method, (see Section V),
when K = 2, if TB F = K K+1

K ! f (N), where f (N) is

an arbitrary function satisfying f (N)
N→∞−−−−→ ∞, we have

P(N)e ≤e− f (N) and since limN→∞ e− f (N) = 0, we can say
that P(N)e → 0. This means that the threshold effect of the
convergence doesn’t exist as in group testing or compressive
sensing [4]; i.e., T = O(log N). However, the choice of f (N)
will influence the convergence speed. For the convergence
speed of the brute force method to be polynomial, f (N) =
O(log N) and thus, TB F = O(log N), which is of the same
order as for partition and group testing (using random coding).

The random coding method is not as efficient as the brute
force method when K = 2 on two counts: first, the result
derived by the random coding method has a threshold effect
for the convergence of P(N)e , namely, P(N)e → 0 only when
T = c log N ; while the result derived by brute force method
does not have such constraint. Second, even when T is
constrained to be T = c log N , and c ≥ 1/C(p), the upper
bound for error probability with the random coding approach
satisfies P(N)e;1 ≤ N−�1 , and P(N)e;2 ≤ N−�2 for the brute-
force method, where �1 < �2. This means that the error
probability under the brute-force approach decays faster than
that using the random coding method. The reason is because
intuitively in the brute force approach, we actually encode
the coloring information in the codebook, which is not the
case for random coding. The main point is if we use the
source codebook to construct channel codebook as done in
the brute force approach, we have to deliver the associated
coloring information. While for the random coding approach,
we actually only care about sending information enough for
the nodes to form a 2-colorable graph. However, the random
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coding approach shows the internal structure of the problem,
and the possibility to attain consistent partition for general-
ized K > 2.

IX. CONCLUSION

In this paper, we study a new partition reservation problem
that focuses on the coordination overhead in the multi-access
conflict resolution. The partition information is related to
the relationship between active users. Two codebook design
methods, source coding based and random coding based are
proposed and analyzed to estimate the achievable bound of
partitioning overhead in non-adaptive (0, 1)-channel. It should
be observed that the adopted hypergraph coloring approach
and the Fibonacci structure found in the attained bound
are important. They could provide much insight into under-
standing partition reservation and constructing distributed
algorithms for the problem.

In this paper, we attain an achievable rate for the simple
K = 2 case. Work on the converse bound and more general
K > 2 case is ongoing. In addition, the effect of noise present
in multiple access channels requires different machinery in
the corresponding achievability analysis for the random coding
approach [36].

APPENDIX A
PROOF OF LEMMA 1

Proof: The following derivation is subject to p(z|s)∈Pz|s .
Since I (s; z) = H (s) − H (s|z) and H (s) = log

(N
K

)
, H (s|z)

is derived as follows. To simplify the notation, we use n �
(n1, . . . , nK ) to represent the number of users in each group.

−H (s|z)
=

∑

z∈ZK ;N

∑

s∈SK ;N (z)

p(z|s)p(s) log
p(z|s)ps(s)∑

s̃∈SK ;N (z) p(z|s̃)ps(s̃)

(a)= p(s)
∑

z∈ZK ;N

∑

s∈SK ;N (z)

p(z|s) log
p(z|s)∑

s̃∈SK ;N (z) p(z|s̃)
(b)= p(s)

∑

n

∑

z∈ZK ;N (n)

∑

s∈SK ;N (z)

p(z|s) log
p(z|s)∑

s̃∈SK ;N (z) p(z|s̃)

(c)≥ p(s)
∑

n

∑

z∈ZK ;N (n)

⎛

⎝
∑

s∈SK ;N (z)

p(z|s)
⎞

⎠

× log

⎛

⎝

[∑
s∈SK ;N (z) p(z|s)

]

∑
s∈SK ;N (z)

[∑
s̃∈SK ;N (z) p(z|s̃)

]

⎞

⎠

= p(s)
∑

n

∑

z∈ZK ;N (n)

⎛

⎝
∑

s∈SK ;N (z)

p(z|s)
⎞

⎠ log |SK ;N (z)|

(d)=
∑

n

Pr(ZK ;N (n)) log
K∏

k=1

nk

(e)≥ max
n

log
K∏

k=1

nk (23)

( f )≥ K log

(
N

K

)
, (24)

where Pr(ZK ;N (n)) = ∑
z∈ZK ;N (n) pz(z) and pz(z) is the

marginal distribution function with p(z|s) ∈ Pz|s . In the
derivation, line (a) is because of s ∼ U(SK ;N ); line (b)
is because set ZK ;N includes all partitions z of n; i.e.,
ZK ;N =

⋃

n

ZK ;N (n); line (c) is derived from the log sum

inequality; i.e., for non-negative sequence a1, . . . , an and
b1, . . . , bn ,

n∑

i=1

ai log
ai

bi
≥
(

n∑

i=1

ai

)
log

∑n
j=1 a j∑n
�=1 b�

(25)

with equality if and only if ai
bi

is a constant for all i .
And here, sequence [ai ] = [p(z|s)]s∈SK ;N (z), [bi ] =[∑

s̃∈SK ;N (z) p(z|s̃)]s∈SK ;N (z)
is a constant sequence. Line (d)

holds for any z ∈ ZK ;N (n), |SK ;N (z)| = ∏K
k=1 nk ; line (f)

is just an application of the inequality of arithmetic and
geometric means. For the equality in (23), line (c), (e) should
be equalities, which means by (b), ∀s ∈ SK ;N (z),

p(z|s)∑
s̃∈SK ;N (z) p(z|s̃) = p(s|z) = const., (26)

and by (e),

Pr(ZK ;N (n
∗)) =

{
1
A , n∗ = arg max

∏K
k=1 nk

0, otherwise
(27)

where A = ∑
Pr(ZK ;N (n∗)) is a normalized factor. We can

choose z|s ∼ U(ZK ;N (n∗)
⋂

ZK ;N (s)), and it is easy to see
under this condition, both (b) and (d) will be equality, then
so is (e). Thus the lower bound of Equation (23) is proved to
be achieved, and so is the lower bound of I (s; z) ≥ log

(N
K

)−
maxn log

∏K
k=1 nk .

It is worth noting the result will not change with a general-
ized z̃. Define z̃ ∈ {0, 1, . . . , N}N, such that z̃i = 0 indicates
an inactive i -th user, and z̃i = k indicates that the i -th user is
assigned to the k-th group. The definition of distortion can be
generalized as follows:

d̃(s, z̃) =

⎧
⎪⎨

⎪⎩

0, ∀i, j ∈ Gs,

(i �= j) �⇒ (z̃i , z̃ j �= 0 and z̃i �= z̃ j );
1, otherwise

i.e., active users are assigned different groups, and they cannot
be announced as inactive. The definition is consistent with
our earlier definition where z is restricted to ZK ;N . From the
proof above, it is easy to see with this generalization, the
lower bound is the same as in Equation (23). The equality
in line (e) can be achieved by choosing z̃|s uniformly in the
same way.

APPENDIX B
PROOF OF THEOREM 1

Proof: First, for n � (n1, . . . , nK ) satisfying
∑

nk = N
and nk ≥ 0, observe that

(
N

n1, . . . , nK

)
= N !
�knk !

is the number of possible partitions in ZK ;N (n).
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The proof is based on random coding; i.e., randomly
generate from pz(z) the source codebook C = {z�}L(N)

�=1 ,
which is the marginal distribution function based on p(z|s)
in Equation (11) in Lemma 1; ps(s) = 1/

(N
K

)
. Therefore,

p(z|s) = 1

K !( N−K
n∗

1−1,...,n∗
K −1

) , z ∈ ZK ;N (n
∗)
⋂

ZK ;N (s)

p(z) = 1
( N

n∗
1,...,n

∗
K

) , z ∈ ZK ;N (n∗)

Reveal this codebook to the source encoder and decoder.
For any s ∈ SK ;N , define the source encoding function
f s
N (s) = �, such that � = arg min

1≤�≤L(N)
d(s, z�). If there is more

than one such �, choose the least. Then define the source
decoding function gs

N (�) = z�. Thus, any source s will be
correctly reconstructed if and only if there exists � such that
d(s, z�) = 0. The average error probability over the codebook
C is

P̃s,(N)
e =

∑

C
p(C)

∑

s:∀z�∈C,d(s,z�) �=0

p(s)

=
∑

s

p(s)
∑

C:∀z�∈C,d(z�,s) �=0

p(C)

(a)=
∑

C:∀z�∈C,d(z�,s̃) �=0

p(C)

=
L(N)∏

�=1

∑

z�:d(z�,s̃) �=0

p(z�)

=
L(N)∏

�=1

⎛

⎝1 −
∑

z�:d(z�,s̃)=0

p(z�)

⎞

⎠

(b)=
⎛

⎝1 −
K !( N−K

n∗
1−1,...,n∗

K −1

)

( N
n∗

1,...,n
∗
K

)

⎞

⎠
L(N)

=
(

1 − 2−W I
N

)L(N)

The meaning of line (a) above is the probability of no
correct codewords in a randomly chosen C, for any given s̃,
that is derived by the symmetry of the random codebook.
Line (b) is derived using the fact that |{z� : d(z�, s̃) = 0}| =
|ZK ;N (n∗

1, . . . , n∗
K )
⋂

Z(s̃)| = K !( N−K
n∗

1−1,...,n∗
K −1

)
. Due to the

inequality (1 − xy)n ≤ 1 − x + e−yn, for 0 ≤ x, y ≤ 1 and
n > 0, we have

P̃s,(N)
e ≤ e−2

(
log L(N)−W I

N

)

Since this is the average error probability over all possible
codebooks C, there must exist a codebook to achieve the error
bound above. This completes the proof.

APPENDIX C
PROOF OF LEMMA 2 AND THEOREM 3

Proof: The proofs of Lemma 2 and Theorem 3 are similar,
so we put them together. In the proof, we will use the method
of strong typical set; a definition of strong typical set can

be found in Csiszar and Körner [34]. Recall that the T × 1
vectors x1, x2 represent the codewords of users 1 and 2, let
[x1, x2] denote the T × 2 matrix with x1 and x2 as its two
columns. A strong typical set A(T )

ε as defined in Equation (28)
is proposed at first, as in the following subsection.

A. Strong Typical Set

Note that the input is Gs0 = {1, 2}. Since the codewords
x1,t and x2,t are generated from B(p), it is very likely that
in the set

{
(x1,t , x2,t )

}T
t=1, there are p12(u, v)T pairs (u, v),

∀u, v ∈ {0, 1}, where p12(u, v) � px(u)px(v), and px(x̃) �
p�(x̃ = 1) + (1 − p)�(x̃ = 0) is the pdf of B(p). Define
N((u, v)|[x1, x2]) as the number of (u, v) in

{
(x1,t , x2,t )

}T
t=1,

for any given ε > 0, define the strong typical set as follows:

A(T )
ε =

{
[x̃1, x̃2] ∈ {0, 1}2T : ∀u, v ∈ {0, 1},
∣∣∣∣

1

T
N((u, v)|[x̃1, x̃2])− p12(u, v)

∣∣∣∣ <
ε

4

}
(28)

The parameter ε will be chosen at beginning to guarantee
some good features of the set A(T )

ε , we will describe the such
requirements on ε during the proof. The first requirement is
that

ε/4 < max
u,v

(max{p12(u, v), 1 − p12(u, v)}), (29)

so that 1 > p12(u, v) ± ε/4 > 0.
For a strong typical set, ∀ε > 0, Pr(X /∈ A(T )

ε ) → 0, as
T → ∞. It means that the strong typical set contains almost all

[x1, x2] and Pr
(
[x1, x2] ∈ A(T )

ε

)
T →∞−−−→ 1. In this typical set,

the probability of existence of any possible odd cycle (odd1
cycle) is calculated and Pe is bounded by using union bound.

To simplify notation, denote by E (w) with w = 1, 2 as
the event that H ′ contains the odd1 cycles or odd cycles
respectively, and P(1)e � Podd1

e � Pr(E (1)), P(2)e � Podd
e �

Pr(E (2)). Since we have:

P(w)e = Pr(E (w)[x1, x2] ∈ A(T )
ε )+ Pr(E (w), [x1, x2] /∈ A(T )

ε )

≤ Pr(E (w), [x1, x2] ∈ A(T )
ε )+ Pr([x1, x2] /∈ A(T )

ε ),

(30)

it suffices to show that for any 0 < p < 1, when log N
T <

C(p), both Pr([x1, x2] /∈ A(T )
ε ) and Pr(E (w), [x1, x2] ∈ A(T )

ε )
approach 0 as N → ∞. While the first one is directly from the
property of strong typical set, the key point is to estimate the
probability of E (w) in the typical set A(T )

ε . Thus let us show

that Pr(E (w), [x1, x2] ∈ A(T )
ε ) → 0 in the following parts.

B. Odd Cycles for Given A(T )
ε

Consider Pr(E (w), [x1, x2] ∈ A(T )
ε ). For simplicity, assume

N is an odd number; this is without loss of generality. Denote
by A(g)M , where g ∈ {1, 2, 3}, the event of existence of the
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type-g odd cycles with size M , thus:

E (1) =
(N−1)/2⋃

m=1

A(1)2m+1

E (2) =
(N−1)/2⋃

m=1

⋃

g=1,2,3

A(g)2m+1

For any given particular [x1, x2] ∈ A(T )
ε , let

P(g)2m+1|[x1,x2] � Pr
(

A(g)2m+1

∣∣[x1, x2]
)
,

as the probability that the type-g odd cycle of length 2m + 1
exists in H ′ for given [x1, x2]. Then by union bound, we
have:

Pr(E (1), [x1, x2] ∈ A(T )
ε )

≤
∑

[x1,x2]∈A(T )
ε

∑

M=3,5,...,N

P(1)M |[x1,x2]Q1,2(x1, x2)

≤
∑

M=3,5,...,N

max
[x1,x2]∈A(T )

ε

P(1)M |[x1,x2], (31)

where Q1,2(x1, x2) is the probability of the first two code-
words taking values x1, x2. Similarly,

Pr(E (2), [x1, x2] ∈ A(T )
ε )

≤
∑

M=3,5,...,N

∑

g=1,2,3

max
[x1,x2]∈A(T )

ε

P(g)M |[x1,x2] (32)

Thus, the key point is to determine P(g)M |[x1,x2] for any given

[x1, x2] ∈ A(T )
ε and upper bound it.

C. The Probability of Existence of Odd1 Cycles
of Length M: P(1)M |[x1,x2]

Consider any particular odd1 cycle of length M , denoted by
H (1)

e;M = (1, 2, i1, . . . , iM−2); there are at most
(N−2

M−2

)
(M −2)!

such odd cycles out of N nodes, and because of symmetry,
the existence of any of them is equiprobable. Let us now
see for a given [x1, x2], what values should the codewords
{xi1 , . . . , xiM−2 } of the remaining M − 2 vertices be to guar-
antee that H (1)

e;M ⊆ H ′.
Note that H ′ is obtained by a series of graph operations,

whose order is not important. Let us determine the probability
that H (1)

e;M is not deleted during any slot 1 ≤ t ≤ T . By the
symmetry of the generation of codewords, this probability
only depends on the values of (x1,t , x2,t ). Given [x1, x2],
let Tu,v = {t : (x1,t , x2,t ) = (u, v)}, and Tu,v � |Tu,v | =
N((u, v)|[x1, x2]). Thus, we just need to consider four situa-
tions for t ∈ Tu,v . Denote by μ(1)u,v;M the probability that H (1)

e;M
is not deleted at t ∈ Tu,v , so by union bound of all possible
H (1)

e;M , we have for all [x1, x2] ∈ A(T )
ε :

P(1)M |[x1,x2] ≤
(

N − 2

M − 2

)
(M − 2)!

∏

u,v

(
μ
(1)
u,v;M

)Tu,v

≤ N M−2
∏

u,v

(
μ
(1)
u,v;M

)(p12(u,v)−ε/4)T
(33)

Now μ
(1)
u,v;M is determined separately for cases of different

(u, v) as follows:

Fig. 9. An example illustrating the removal of an odd cycle by deletion of
edge (i1, i2).

1) Case t ∈ T0,0: For t ∈ T0,0 and yt = 0, the operation is
to delete vertices. Then all of the codewords of the other M−2
vertices are 0; otherwise these vertices would be deleted. Thus

μ
(1)
0,0;M = Pr(xiw,t = 0,∀w ∈ {1, . . . ,M − 2})

= (1 − p)M−2

2) Case t ∈ T1,1: In these slots yt = 1, and a clique
deletion operation is performed on H ′. At any slot t , H (1)

e;M
will be broken up if its edges are deleted; this is equivalent to
the existence of codewords of two consecutive vertices from
(1, 2, i1, . . . , iM−2, 1) that are both 0 at slots t ∈ T1,1, as
shown in Fig. 9. So we have:

μ
(1)
1,1;M � 1−Pr(∃(i, j) ∈ {(1, 2), (2, i1), . . . , (iM−3, iM−2),

(iM−2, 1)}, xi,t = x j,t = 0)
(a)= 1 − Pr

(∃w ∈ {1, . . . ,M − 3}, xiw,t = xiw+1,t = 0
)

(b)= 1 −
M−2∑

M1= M−3
2

Pr

(
M−2∑

w=1

xiw,t = M1, and

∃w ∈ {1, . . . ,M − 3},

xiw,t = xiw+1,t = 0

)

(c)=
M−2∑

M1= M−3
2

(
M1 + 1

M − 2 − M1

)
pM1(1 − p)M−2−M1 . (34)

Line (a) is because now x1,t = x2,t = 1. For line (b), we
change the sum by grouping items with different M1, where
M1 is the number of values of 1 ≤ w ≤ M − 2 for which
xiw,t = 1. It is easy to see there must be M1 ≥ � M−2

2 � = M−3
2 ,

otherwise there must exist a w such that xiw,t = xiw+1,t = 0.
In line (c), the sum of probabilities of the items with M1 is
determined, using the fact that the probability of each item is
pM1(1 − p)M−2−M1 ; the key point is to count the number of
sequences (xi1,t , . . . , xiM−2 ,t ) with M1 ones and M − 2 − M1
zeros. The counting method is to fix M1 ones, then count the
number of combinations for M − 2 − M1 zeros in M1 + 1
spots, as shown in Fig. 10.

For additional clarity, define a function JM (p) which
determines the probability of an M length random Bernoulli
sequence (x1, . . . , xM ), where xw ∼ B(p) without consecutive
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Fig. 10. Example of counting the number of sequence (xi1,t , . . . , xiM−2 ,t )
with M1 ones; here M − 2 = 5, M1 = 3.

zeros; i.e.,

JM (p) = 1 − Pr (∃w ∈ {1, . . . ,M − 1}, xw = xw+1 = 0)

=
M∑

M1=� M
2 �

(
M1 + 1

M − M1

)
pM1(1 − p)M−M1 . (35)

Thus, we can see μ(1)1,1;M = JM−2(p).
3) Case t ∈ T1,0 or t ∈ T0,1: The two cases are symmetric.

Let us consider t ∈ T1,0 first. It is similar to the case where
t ∈ T1,1, but since now x2,t = 0, the codeword of the vertices
that is connected to vertex 2 (i.e., vertex i1), is xi1,t = 1. For
the other M − 3 vertices, it is required that codewords of any
two consecutive vertices from (i2, . . . , iM−2) at those t ∈ T1,0
not be both 0. Thus,

μ
(1)
1,0;M = Pr(xi1t = 1)

× (1 − Pr (∃w ∈ {1, . . . ,M − 1}, xw = xw+1 = 0))

= p JM−3(p)

Similarly, for t ∈ T0,1, we have μ(1)1,0;M = p JM−3(p).

Then P(1)M |[x1,x2] can be bounded by Equation (33).

D. The Probability of Existence of Type-2 and Type-3
Cycles of Length M: P(2)M |[x1,x2] and P(3)M |[x1,x2]

For the Type-2 odd cycles, either 1 or 2 nodes are included.
Denote H (2),h to be a Type-2 odd cycle containing vertex
h ∈ {1, 2}. We can choose a particular pair of odd cycles

H (2),1
e;M = (1, i1, . . . , iM−1), H (2),2

e;M = (2, i1, . . . , iM−1), and a

particular Type-3 odd cycle H (3)
e;M = (i1, . . . , iM ). There are(N−2

M−1

) (M−1)!
2 such H (2),h

e;M , and
(N−2

M

) (M−1)!
2 such H (3)

e;M . Then

following the same analysis as for P(1)M |[x1,x2], we have for all

[x1, x2] ∈ A(T )
ε ,

P(2)M |[x1,x2] ≤
∑

h=1,2

(
N − 2

M − 1

)
(M − 1)!

2

∏

u,v

(
μ
(2),h
u,v;M

)Tu,v

≤ 1

2
N M−1

∑

h=1,2

∏

u,v

(
μ
(2),h
u,v;M

)(p12(u,v)−ε/4)T
, (36)

P(3)M |[x1,x2] ≤
(

N − 2

M

)
(M − 1)!

2
�u,v

(
μ
(3)
u,v;M

)Tu,v

≤ N M�u,v

(
μ
(3)
u,v;M

)(p12(u,v)−ε/4)T
, (37)

where μ(g),hu,v;M is the probability that H (g),h
e;M will not be deleted

at t ∈ Tu,v . Then similarly, we have:

1) For t ∈ T0,0, yt = 0, every vertex cannot be deleted,
thus:

μ
(2),h
0,0;M = (1 − p)M−1; μ

(3)
0,0;M = (1 − p)M

2) For g = 2, let us consider H (2),1
e;M first, when t ∈ T1,1 or

t ∈ T1,0, we have x1,t = 1. Thus,

μ
(2),1
1,0;M = μ

(2),1
1,1;M

= 1 − Pr
(∃w ∈ {1, . . . ,M − 2}, xiw,t = xiw+1,t = 0

)

= JM−1(p)

When t ∈ T0,1, we have x1,t = 0. Here the codewords of
vertices i1 and iM−1 (which are connected to Node 1) would
be 1, i.e.,

μ
(2),1
0,1;M = Pr(xi1,t = xiM−1,t =1)

×(1−Pr(∃w ∈ {2, . . . ,M−1}, xiw,t = xiw+1,t =0))

= p2 JM−3(p)

For H (2),2
e;M , due to symmetry, the result is easy to derive:

μ
(2),2
1,1;M = μ

(2),2
0,1;M = JM−1(p); μ

(2),2
1,0;M = p2 JM−3(p)

3) For g = 3, for t /∈ T0,0, we have yt = 1. Since neither
vertices 1 nor 2 are in H (3)

e;M , probabilities μ(3)u,v;M are the same
for any (u, v) �= (0, 0). Now we have:

μ
(3)
u,v;M = 1 − Pr(∃(i, j) ∈ {(i1, i2), . . . , (iM−1, iM ), (iM , i1)},

xi,t = x j,t = 0)

= 1 − Pr
(∃w ∈ {1, . . . ,M − 1}, xiw,t = xiw+1,t = 0

)

−Pr((xi1,t , xiM ,t ) = (0, 0); and

�w ∈ {1, . . . ,M − 1}, xiw,t = xiw+1,t = 0)

= JM (p)− p2(1 − p)2 JM−4(p)

Now we can bound P(g)M |[x1,x2]. In the next subsection, we

will obtain explicit expressions for JM (p) and μ(g)u,v;M . We can
see that they have a close relationship to extended Fibonacci
numbers.

E. Explicit Expressions for JM (p) and
Extended Fibonacci Numbers

We will show that expression for JM (p) has a close rela-
tionship to a certain class of extended Fibonacci numbers.
It is not surprising since Fibonacci numbers can be used
for determining the number of consecutive 0s in a Bernoulli
sequence [37].

Define extended Fibonacci numbers as:

F(k, p) =
� k−1

2 �∑

j=0

F(k, j)pk−1− j (1 − p) j ,

where

F(k, j) =
{(k−1− j

j

)
, 0 ≤ j ≤ � k−1

2 �
0, otherwise

The meaning of F(k, j) can be seen directly from the
Pascal triangle, as shown in Fig. 11. The quantity F(k, p)
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Fig. 11. F(k, j) in the Pascal triangle.

is a weighted sum of F(k, j) with weight pk−1− j (1 − p) j .
From Fig. 11 it can be shown that:

F(k, j) = F(k − 1, j)+ F(k − 1, j − 1),

so that

F(k, p)

=
� k−1

2 �∑

j=0

(F(k − 1, j)+ F(k − 1, j − 1)) pk−1− j (1 − p) j

= pF(k − 1, p)+ p(1 − p)F(k − 2, p).

Then we can get the general terms of F(k, p) by solving the
corresponding difference equation, which gives us:

F(k, p) = ϕ(p)k − ψ(p)k

ϕ(p)− ψ(p)
, (38)

where

ϕ(p) = p +√4 p − 3 p2

2
; ψ(p) = p −√4 p − 3 p2

2

It is not difficult to see that

1 ≥ ϕ(p) ≥ 0 ≥ ψ(p) ≥ −1, |ϕ(p)| ≥ |ψ(p)|

Given F(k, p) defined in Equation (38), it is straightforward
to see that:

J (M, p) = 1

p
F(M + 2, p) = 1

p

(ϕ(p))M+2 − (ψ(p))M+2

ϕ(p)− ψ(p)

Which further enables us to determine μ
(g)
u,v;M and upper

bound P(g)M |[x1,x2].

F. Bounds on P(g)M |[x1,x2]
By Equations (33), (36) and (37), we now have for any

[x1, x2] ∈ A(T )
ε and g ∈ {1, 2, 3},

P(g)M |[x1,x2] ≤ 2
−(M−3+g)T

((
h(g)−((1−p)2− ε

4 ) log(1−p)
)− log N

T

)

(39)

where

h(1) � − 1

M − 2

(
(p2 − ε

4
) log JM−2(p)

+ (2 p(1 − p)− ε

2
) log p JM−3(p)

)

h(2) � − 1

M − 1

(
(p − ε

2
) log JM−1(p)

+ (p(1 − p)− ε

4
) log p2 JM−3(p)

)

h(3) � − 1

M

(
1 − (1 − p)2 − 3ε

4

)

× log
(

JM (p)− p2(1 − p)2 JM−4(p)
)

Next we will give a concise lower bound for h(g), which can
be obtained by the monotonicity and concavity of log(·).

1) Bound on h(1): Define a normalizing factor

W = (p2 − ε

4
)+ (2 p(1 − p)− ε

2
) = 1 − (1 − p)2 − 3ε

4
.

If we choose ε so that

W − ϕ(p)2

= p

2

(
(2 − p)−

√
(2 − p)2 − 4(1 − p)2

)
− 3ε

4
> 0.

(40)

then when M is an odd number,

−h(1)
(a)≤ W log

(
p2 − ε/4

W
JM−2(p)

+ 2 p(1 − p)− ε/2

W
p JM−3(p)

)

(b)≤ W log

(
p2 JM−2(p)+ 2 p2(1 − p)JM−3(p)

W

)
(41)

= W log

(
p
√

4 − 3 p

W (ϕ(p)− ψ(p))

×
(√

4 − 3 p + √
p

2
ϕ(p)M−1

−
√

4 − 3 p − √
p

2
ψ(p)M−1

))

(c)≤ W log

(
p
√

4 − 3 p(
√

4 − 3 p + √
p)

2W (ϕ(p)− ψ(p))
ϕ(p)M−1

)

= W log

(
ϕ(p)M

W

)
(42)

= W log
(
ϕ(p)M−2

)
+ W log

(
ϕ(p)2

W

)

≤ W log
(
ϕ(p)M−2

)
(43)

Where line (a) is because of the concavity of log(·); inequali-
ties (b) and (c) are because of log(·) increasing monotonically.
Then

h(1) − ((1 − p)2 − ε

4
) log(1 − p) ≥ C(p)− g1(p)ε,
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where g1(p) � − 1
4 (3 log(ϕ(p))+ log(1 − p)) > 0, and

C(p) � −(1 − (1 − p)2) logϕ(p)− (1 − p)2 log(1 − p).

2) Bound of h(2): Similarly, if ε satisfies
Equations (29) and (40), we have

−h2 − (p(1 − p)− ε/4) log p
(a)≤ W log

(
p − ε/2

W
JM−1(p)+ p(1 − p)− ε/4

W
p JM−3(p)

)

+ (b)≤ W log

(
p

W
JM−1(p)+ p(1 − p)

W
p JM−3(p)

)

+ (c)≤ W log

(
ϕ(p)M

W

)

= W log
(
ϕ(p)M−1

)
+ W log

(
ϕ(p)

W

)

Thus,

−h2 ≤ W log
(
ϕ(p)M−1

)
− ε

4
log p. (44)

Inequalities (a) and (b) are because of the concavity and
monotonicity of log(·); line (c) is because p

W JM−1(p) +
p(1−p)

W p JM−3(p) = 1
W

(
p2 JM−2(p)+ 2 p2(1 − p)JM−3(p)

)
,

and then is identical to the expressions in
Equations (41) and (42); Equation (44) is derived from
Equation (40). Therefore,

W log

(
ϕ(p)

W

)
+ (p(1 − p)− ε/4) log p

= W

2
log(ϕ(p)2/W )− (2 p − p2) log

√
2 p − p2

+p(1 − p) log p + 3ε

8
log(1 − (1 − p)2)

+ W

2
log

(
1 − 3ε

4(2 p − p2)

)
− ε

4
log p

≤
(

−(2 p − p2) log
√

2 p − p2 + p(1 − p) log p

)
− ε

4
log p

= −p(1 − H (p/2))− ε

4
log p

≤ −ε
4

log p,

and thus,

h2 − ((1 − p)2 − ε

4
)

≥ −W logϕ(p)− ((1 − p)2 − ε

4
) log(1 − p)+ ε log p

4(M − 1)

= C(p)+ (3 log(ϕ(p))+ log(1 − p))
ε

4
+ ε log p

4(M − 1)
≥ C(p)− g2(p)ε,

where g2(p) = g1(p)− log p/8 > 0.
3) Bound of h(3): Similarly, we can bound h3, if ε satisfies

(29) and (40) and M is an odd number. Here,

h3 ≥ − 1

M

(
1 − (1 − p)2 − 3ε

4

)
log(ϕ(p)M + ψ(p)M )

(a)≥ 1

M

(
1 − (1 − p)2 − 3ε

4

)
log(ϕ(p)M ),

where Line (a) is because ψ(p) < 0 and M is odd. Thus,

h3 − ((1 − p)2 − ε

4
) log(1 − p) ≥ C(p)− g1(p)ε

Since g2(p) > g1(p), as shown above, we can say that
when ε satisfies Equations (29) and (40), we have

h(g) − ((1 − p)2 − ε

4
) log(1 − p) ≥ C(p)− g2(p)ε

Thus from Equation (39), we have

max
[x1,x2]∈A(T )

ε

P(g)M |[x1,x2] ≤ 2
−(M−3+g)T

(
C(p)−g2(p)ε− log N

T

)

. (45)

G. Completing the Proof

If log N
T ≤ C(p)− ξ for any constant ξ > 0, we can always

choose ε satisfying Equations (29) and (40), and

ε < (C(p)− δ)/g2(p)

so that C(p)− log N
T − g2(p)ε ≥ C(p)− δ− g2(p)ε � � > 0,

where � is a predetermined constant. Then by Equations (31),
(32) and (45), we have:

Pr(E (1), [x1, x2] ∈ A(T )
ε ) ≤

∑

M=3,5,...,N

max
[x1,x2]∈A(T )

ε

P(1)M |[x1,x2]

≤
∑

M=3,5,...,N

2−(M−2)�T

≤ 2−�T

1 − 2−2�T

and

Pr(E (2), [x1, x2] ∈ A(T )
ε )

≤
∑

g=1,2,3

∑

M=3,5,...,N

max
[x1,x2]∈A(T )

ε

P(g)M |[x1,x2]

≤
∑

g=1,2,3

∑

M=3,5,...,N

2−(M−3+g)�T

≤ 3 × 2−�T

1 − 2−2�T

Thus, when N → ∞, which also means T → ∞, we can
see Pr(E (w), [x1, x2] ∈ A(T )

ε ) approaches 0, ∀w = 1, 2. Since
Pr(E (w), [x1, x2] ∈ A(T )

ε ) → 0 as well, we have P(w)e → 0
when log N

T < C(p)− ξ . This completes the proof.
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