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Abstract—Extensive works have been undertaken to develop
efficient statistical inference algorithms based on graphical mod-
els. However, there still lacks sufficient understanding about how
topological properties affect certain information related metrics
for certain graphs. In this paper, we are particularly interested
in finding out how topological properties of rooted polytrees for
Gaussian random variables determine its security robustness,
which is measured by our proposed max-min information (MaMI)
metric. MaMI is defined as the maximin value of the conditional
mutual information between any two random variables (nodes) in
a given DAG, conditioned on the value of a third random variable,
which is at full disposal of an eavesdropper, under a constraint
of a given fixed joint entropy. We show some general topological
properties which the desired max-min solutions satisfy. Under
such properties, we prove the superior max-min feature of the
linear topology for a simple but non-trivial case. The results not
only help us understand the security strength of different rooted
polytree type DAGs, which is critical when we evaluate the in-
formation leakage issues for various jointly Gaussian distributed
measurements in networks, but also provide us another algebraic
and analysis perspective in grasping some fundamental properties
of such DAGs.

I. INTRODUCTION
Graphical models have been extensively studied and em-

ployed for statistical inferences. Their applications span over
a vast amount of fields and topics including biology, social
networks, computer science (such as network tomography
methods), etc., to characterize the dependency relationships
among multiple random variables [1]. In order to facilitate the
representation of such relationships among random variables,
special types of graphical models such as Directed Acyclic
Graphs (DAGs) (Bayesian networks), and Markov Random
Fields (MRFs) have been widely used. These models are
essentially reflecting conditional independence relationships
using directed or undirected graphs [2]. In order to characterize
such relationships, one should have the knowledge of joint
behavior of the users. The joint density P (x) can be used to
characterize such joint behavior, where x = {x1, x2, ..., xn}
is a vector of size n consisting all random variables. Given
a DAG G = (V,E), where V = {x1, x2, · · · , xn} denotes
the set of variables, and E is a set of directed edges, we can
therefore factorize the joint density P (x). The presence or ab-
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sence of edges indicates the statistical dependency relationship
among the associated vertices (random variables). In particular,
E = (i, j) is a directed edge if xi is a direct cause of xj [3].

Recently, some fundamental properties of Gaussian graph-
ical models have drawn more attention and have been tackled
using algebraic methods [4], [5]. In [4] the author shows that
when the underlying random variables are Gaussian, condi-
tional independence statements can be interpreted as algebraic
constraints on the parameter space of the global model.

In this paper, we also attempt to study some salient prop-
erties of certain classes of DAGs related to security or privacy
metrics. More specifically, we would like to evaluate a specific
security metric defined as the maximin value of the conditional
mutual information between any two random variables (nodes)
in a given DAG, conditioned on the value of a third random
variable. We assume that the third node is at full disposal of
a passive eavesdropper who can select this variable from the
remaining ones in the DAG. We could coin this metric as
max-min information (MaMI) metric. Our goal is to seek and
find certain topological properties for rooted polytree DAGs,
representing joint distribution of Gaussian random variables
so that we could infer the security robustness of each DAG
in terms of the resulting max-min values under a constraint
of a given fixed joint entropy. Such constraint provides a
common ground on which we could fairly compare different
topologies. With MaMI metric, we essentially provide a binary
relationship to establish partial ordering among the same sized
Gaussian rooted polytree models sharing the same determinant,
i.e., fixed joint entropy.

We anticipate that our results will be specifically useful
in wireless sensor networks (WSNs) applications, in which
given a particular topology of sensors, we want to choose
the most informative set of sensors [6]. Under the attack by
an eavesdropper, this in turn results in choosing sensors that
are the most secure. Also, using our approach one can select
the most secure polytree structures: by dividing a given set
of DAGs into Partially Ordered Sets (POSETs) so that each
subset contains a particular structure that is most secure in
comparison with other structures in the same subset.

Our main contributions can be summarized as follows.
First, we formulate a new problem that captures the security
and privacy characteristics of polytree DAGs using the MaMI
metric. Also, we prove in Lemma 1 that in order to solve
the max-min problem, the triplets consisting of two random
variables and an eavesdropper should follow a special struc-
ture. Next, for a simple but not a trivial case we prove that
linear topology is most favorable in terms of our MaMI metric,
and further demonstrate its validity using numerical results.
Lastly, we provide a general principle on ordering the polytree



structures.
The paper is organized as follows. Section II presents the

system model. The main results of the paper are provided in
Section III. We analyze the performance of 4-node polytree
models in section IV. Section V gives the concluding remarks,
and possible future works.

II. SYSTEM MODEL
In order to find a valid representation, the joint density

P and the underlying DAG G = (V,E) should satisfy the
Markov and faithfulness conditions, whose definition can be
found in many existing works, e.g., [7].

Before describing the system model we will provide a
definition for d-separation between nodes in DAGs [2].

Definition 1. In the DAG G, a path between the two nodes x
and y is open(active), given the set of vertices Z ⊆ E\{x, y},
if:
• Every non-collider node on the path is not in Z
• Every collider node on the path is either in Z or it is an

ancestor of the specific node that is the member of Z.
Two nodes x and y are d-separated by Z if there are no

active paths between them.

In the above definition, the node v is said to be collider,
if it is the outcome of at least two distinct parents: (→ v ←).
Otherwise, v is a non-collider node: (→ v →) or (← v →).

Note that there is a significant difference between the
collider and non-collider nodes. In particular, suppose that c
is a non-collider, which is on the path of the nodes a and b:
(a→ c→ b) or (a← c→ b). First, observe that a and b are
jointly dependent through their path. Second, it can be seen
that conditioning on c blocks the path between a and b. In other
words, learning b has no effect on the probability of a, given
c [2]. On the other hand, suppose that c is a collider node that
is the common outcome of the nodes a and b: (a → c ← b).
In this case, the nodes a and b are marginally independent.
However, if we condition on the node c, then they become
conditionally dependent. This is also the case, if we condition
on one of the possible descendants of the node c.

DAGs are the general models, which represent any joint
density that satisfies both Markov and faithfulness conditions.
In this paper, we consider a subset of DAGs known as
rooted polytree models. In a rooted polytree, we have a single
node that is the ancestor for all other nodes(the root node).
Moreover, the polytree structures do not contain any cycles
(either directed or undirected). Hence, polytree model can be
seen as a tree structure with directed edges. As a result, there
is exactly one path between any two different nodes. Note that
since we have a single root, our model does not contain any
colliders.

We will observe in section III that the polytree models
include some nice structural properties that can be easily
translated to our primary security question. Here, we use
the conditional mutual information metric to measure the
connection security between any pair of users, which is similar
to the metric used in [8]. In particular, we model our scenario
as a specific max-min problem.

Definition 2. suppose we have an active connection between
the users Alice and Bob. Also, we have the node Eve, which
plays the eavesdropper role. In this problem the endpoint users,
i.e., a and b choose their connecting path first. The node z
picks its favorite position second. The endpoint users want

to choose a path based on the pessimistic assumption that
the eavesdropper chooses the best possible node, in terms
of security: max{a,b}minz I(a; b|z). On the other hand, the
eavesdropper wants to make the connection more insecure. The
higher values for the conditional mutual information I(a; b|z)
increases the security.

A. Joint probability of the nodes: The Gaussian model
In this study, we consider the Gaussian joint density

define the joint probability of users in a network, i.e.,
Pζ(ζ1, ζ2, ..., ζn) ∼ N(µ,Σ), where µ is the mean vector and
Σ is the symmetric, positive-definite covariance matrix of n
random variables. We believe that analyzing the connections’
privacy given the general joint density, is a complex problem
to solve. However, for the Gaussian joint density the analysis
becomes tractable. Also, the algebraic analysis of Gaussian
graphical models is considered in several papers [4], [5],
and [9], whose results could be leveraged to look into our
problems.

B. Independence relationships reflected in the covariance ma-
trix entries

Let a and b be distinct elements chosen from the set of all
nodes {1, ..., n} and Z be a subset of {1, ..., n}\{a, b}, then
we can easily show the following conclusions [9].
• The random variables ζa and ζb are independent (denoted

by ζa ⊥ ζb or ζa ⊥ ζb|∅) if and only if the (a, b)-th element
(and also b, a) of Σ is zero.
• The random variables ζa and ζb are conditionally inde-

pendent given ζZ (denoted by ζa ⊥ ζb|ζZ) if and only if both
determinant values, |ΣaZ,bZ | = |ΣbZ,aZ | equal to zero, where
|ΣaZ,bZ | is the submatrix of the covariance matrix Σ whose
rows and columns are chosen from the subsets a∪Z and b∪Z,
respectively.

The latter claim uses the fact that if ζa ⊥ ζb|ζZ then
(Σ−1)a,b = (Σ−1)b,a equals to zero. In other words, the
conditional independence relation ζa ⊥ ζb|ζZ holds if and
only if (Σ−1)a,b = (Σ−1)b,a equals to zero.

In the next sections we directly apply the results obtained
above to extract algebraic equalities of the conditional inde-
pendence relationships between random variables.

From now on for the simplicity of notations, instead of
writing random variables and vectors we use their index.
Hence, instead of using ζZ , we simply write Z to indicate
the subset random vectors.

In a general DAG, there are many possible situations that
every set of three nodes can have relation with each other.
However, In a rooted polytree model these numerous cases
will be reduced to a few general cases. In a rooted polytree,
there is exactly one path between any two nodes. Also, the
colliders do not appear in the structure.

In addition, for Gaussian random variables the conditional
mutual information I(a; b|z) can be directly related to the
partial correlation coefficient, which is defined as below [10],

ρ2ab|Z =
(σab − ΣaZΣ−1ZZΣbZ)2

(σaa − ΣaZΣ−1ZZΣaZ)(σbb − ΣbZΣ−1ZZΣbZ)

= 1− e−2I(a;b|Z) (1)

where σab = E[(a− µa)(b− µb)], the (a, b)-th element of Σ,
is the covariance value between variables a and b. Also, ΣaZ
denotes the a×Z submatrix of Σ and Σ−1ZZ = (ΣZZ)−1 is the
inverse of the Z × Z submatrix of the covariance matrix. We



can see that the conditional mutual information is a monotone
increasing function of the partial correlation coefficient. As we
are seeking ordering of I(a; b|Z), some results from [10] could
be leveraged.

III. MAIN RESULT
We provide a lemma that shows the structural correspon-

dence of the triplet (a, b, z) with respect to each other in the
max-min problem. Here, using the results shown in [10] we
will find an answer for the maximin problem. In particular, first
using the information theoretic inequalities we will simplify
the possible cases for minz I(a; b|z). Second, we suggest an
idea to simplify the possible cases for max{a,b} I(a; b|z).

Lemma 1. For any rooted polytree model with nodes
that have the joint Gaussian density, the answer for
max{a,b}minz I(a; b|z) is the set of triples that a and b are
adjacent, and the eavesdropper is neighbor to either a or b.

Proof: We will use the following theorems directly, whose
proofs can be found in [10].

Theorem 1. Suppose b′ ⊥ a|bZ, then ρ2ab′|Z ≤ ρ
2
ab|Z

Theorem 2. Suppose for some x, a ⊥ b|x and ab ⊥ z|x. Then
ρ2ab|Z ≤ ρ2ab. In addition, if ab ⊥ z′|z, then ρ2ab|Z ≤ ρ2ab|Z′ ≤
ρ2ab

Theorem 1 is a conditional version of the well-known
information inequality and holds in general for mutual infor-
mation of any distribution [11]. Intuitively, for the polytree
model the condition in Theorem 1 is satisfied when b lies
on the path between a and b′. In other words, the longer
path implies weaker dependence. On the other hand, Theorem
2 holds in general for the Gaussian joint density. The first
part of Theorem 2 shows that if a, b, and z are pairwise
separated given x, then conditioning always reduces the mutual
information between a and b. For the polytree models, the
second part of the theorem 2 shows that for the fixed correlates
a and b, the eavesdropper z wants to be closer to the path
between them.

Figure 1 shows all the possible cases that a particular
eavesdropper can take, in a fixed path between the nodes a
and b. Note that there might be several steps between any pair
of nodes. Also, we don’t show the arrows (cause and effect)
in the figure. Any arrow head is valid for this model, as long
as we do not produce any colliders.

From this figure we can see that there are totally four
possible locations for z: When z is connected to the path pab
through one of the nodes a or b; when z is connected to pab
through the node x; and when z lies on the path between a
and b.

Fig. 1: All the possible locations for the eavesdropper given
the fixed correlates

Recall that the objective is to find the value for z that mini-
mizes the mutual information between a and b: minz I(a; b|z).

Cases 1 and 2. When z is along the path pab, i.e., the
case z1 or z2: First, consider the case z1, the analysis for z2
is exactly the same. From Theorem 1 we know that because
a ⊥ z′1|z1 we have: I(b; z1) ≥ I(b; z′1). Now we want to
compare two values for the mutual information. First, observe
that b ⊥ z1|a. In other words, b and z1 are d-separated given
a. Therefore, knowing z1 does not change the probability for
b, given a. So we can conclude that I(b; a, z1) = I(b; a). The
same condition holds for z′1: I(b; a, z′1) = I(b; a).

I(b; z1) > I(b; z′1)→
I(b; a)− I(b; z1) < I(b; a)− I(b; z′1)→
I(b; a, z1)− I(b; z1) < I(b; a, z′1)− I(b; z′1)→
I(b; a|z1) < I(b; a|z′1) (2)

Eq. (2) shows that I(a; b|z1) ≤ I(a; b|z′1). In other words, the
eavesdropper wants to be as close as possible to the path pab.

Case 3. Now consider the case when z is a branch node,
i.e., it is connected to pab through the node x: It is obvious
that by replacing z3 with z and z′3 with z′ in the Theorem 2’s
conditions, we can satisfy all the constraints in this theorem.
Hence, we can conclude that I(a; b|z3) ≤ I(a; b|z′3). Again,
we conclude that z wants to be closer to the path pab.

Case 4. When z lies on the path pab: In this case it is
obvious that a ⊥ b|z4. In other words, z4 d-separates a and b.
As a result we have I(a; b|z4) = 0.

Before moving on to the next part of the proof, consider
the following remarks:
• In cases 1, 2 and 3, we concluded that the eavesdropper

wants to be as close as possible to the pab.
• Obviously, the case 4, where z lies on the path pab is

the worst case scenario, in which two endpoint nodes should
prevent it from happening.

Next, we find possible cases that maximizes the mutual
information between a and b, given the fixed node for z:
max(a,b) I(a; b|z). We want to show that to maximize the
conditional mutual information, a and b should be closer to
each other. Consider the case where a ⊥ b′|bZ, i.e., given the
subset of nodes bZ, a is independent of b′. Using the data
processing inequality [11], we have I(a; b|Z) ≥ I(a; b′|Z).

For the polytree models, we can develop an intuition for
this result. In a polytree model, if the node c is in the path
between a and c′, then conditioned on any subset of variables,
we have I(a; c|Z) ≥ I(a; c′|Z). Hence, we can immediately
pick the pair of nodes that are adjacent. Also, it can be argued
that if a and b are not adjacent, then the eavesdropper wants
to pick the best node: z picks any node on the path pab. As a
result I(a; b|z) becomes zero.

Fig. 2: The Final Set of Triplets in a Maximin Scenario

Figure 2 shows the final set of candidates for any maximin
scenario in a rooted polytee models. The edges in the figure
can have any direction, as long as they don’t produce any
colliders.



While the result stated in Lemma 1 might seem intuitive,
we will provide an example to show that this result does not
hold in structures that have colliders.

Example 1. Consider the structure shown in figure 3. Note
that in this structure, the node a is the only collider. We
want to compare the cases that eavesdropper picks either
z1 or z2. From the figure, we have z2 ⊥ b|z1a. Hence,
from Theorem 1 we conclude that I(b; z2|a) < I(b; z1|a).
We simply have I(b; a, z2) < I(b; a, z1). Since the node a
is collider, we have I(b; z1) = I(b; z2) = 0. As a result
I(b; a, z2) − I(b; z2) < I(b; a, z1) − I(b; z1). Finally, we can
attain the result I(b; a|z2) < I(b; a|z1). In other words, in
this case the eavesdropper picks a farther node to reduce the
mutual information between a and b.

Fig. 3: Counter Intuitive Example: The Collider Case

We can simply, generalize this result and show that
I(a; b|z1) > I(a; b|z2) > ... > I(a; b|zn). Hence, the
eavesdropper picks the farthest node to the path pab.

Obviously, since the rooted polytrees do not contain the
colliders, the situations like the case shown in Example 1 do
not happen in our model of interest.

IV. SECURITY COMPARISON: 4-NODE CASE
Recall that our goal is to find certain topological properties

for rooted polytree structures, representing joint distribution of
Gaussian random variables so that we could infer the strength
of each topology in terms of the resulting max-min values
under a constraint of a given fixed determinant. Determinant
of Σ affects the entropy of the users. In particular, for a model
with joint Gaussian density we have H = 1/2 log |2πeΣ|.
Roughly speaking, this condition makes the users in both
models to have the same joint randomness.

Definition 3. Suppose we are given two rooted polytrees Tn
and T ′n, with the same joint entropy for their variables. Given
the same covariance values between all the adjacent nodes on
both structures, we say that Tn is more secure than T ′n shown
by a binary relationship Tn � T ′n, whenever the resulting max-
min value for Tn is always larger (or equal) than the max-min
value for the polytree T ′n.

The problem of comparing the security of any general
polytree model is computationally complex. In particular, the
number of variables involving in a covariance matrix of Tn
is n(n + 1)/2. In other words we have n(n + 1)/2 degrees
of freedom (DoF) for this graph. As n grows, the number of
DoF becomes very large, and makes the analysis complicated.
Hence, we will provide the analysis for simpler case, i.e., the
polytrees consisting of 4 nodes. The analysis for the indepen-
dence models that are Gaussian representable is done in [9].
Even for a four node tree, the covariance matrix consists of
4(4 + 1)/2 = 10 variables. To better understand the impact of
correlations between users and also observing the influence of

tree structure on security, we would rather decrease the number
of DoFs by introducing more constraints on the covariance
matrix. Similar to [9], by normalizing the diagonal entries in
the covariance matrix we will obtain 10 − 4 = 6 variables.
As we will see, the security analysis for this special case
is not trivial. In contrast, it has some nice intuitions behind
it, which becomes the basis for the performance analysis of
more general cases. Moreover, the normalization of diagonal
entries does not change the dependency relations in graph.
We can always change the diagonal entries by multiplying the
covariance matrix Σ, with the diagonal matrix J : Σ′ = JΣJ .
The diagonal entries of J are 1/

√
σvv, ∀v ∈ V , where V is

the set of users. Note that because Σ is positive definite, all
the off-diagonal elements in the covariance matrix are in the
range (−1, 1). The corresponding covariance matrix follows
the form below,

Σ =


1 a b c

a 1 d e

b d 1 f

c e f 1

 (3)

We used [5] to find all the possible isomorphism classes of
rooted polytree models on 4 nodes. The results are shown
in figure 4. Note that in a rooted polytree model we are not
allowed to use colliders.

In [5], the authors show that the two models A→ B → C
and B ← A→ C are isomorphic. In other words, after some
appropriate relabeling of the nodes, both models describe the
same collection of joint distributions P (A,B,C). As a result,
if we change the direction of the edge between nodes 1 and 2
in any structure shown in figure 4, we will obtain the same set
of (conditional) independence relationships as before. Thus,
we are facing two possible structures for the polytree models
including 4 nodes: the linear (string) and star structures.

(a) Linear (b) Star

Fig. 4: The isomorphism classes of rooted polytrees on four
nodes

In order to make a fair comparison between these two
models, we fix the determinant of Σ. In other words, for both
structures we have: |Σ| = k.

Next, we can compute σij , i.e., the covariance between the
users i and j. We will simplify the Eq. (1) for the triplet a, b
and the eavesdropper z:

ρ2ab|z =
σ2
ab(1− σ2

bz)

1− σ2
abσ

2
bz

(4)

A. Linear structure: The max-min table
Consider the linear topology on 4 nodes. Through the

analysis of conditional independences between different nodes
in this network, we know that 1 ⊥ 3|2, 1 ⊥ 4|2, and 2 ⊥ 4|3.
These conditions make the covariance matrix Σ to have some



TABLE I: Maximin table for the string model

{a; b} z ρ2ab|z

{1; 2} 3
A(1−D)

1− AD
{2; 3} 1 or 4

D(1− A)

1− AD
or
D(1− F )

1−DF
{3; 4} 2

F (1−D)

1−DF

TABLE II: Maximin values and their corresponding regions in
linear model

ρ2ab|z Boundries Region Number
ρ212|3 A > D, A > F R1

ρ223|1 D > A > F R2

ρ223|4 D > F > A R3

ρ234|2 F > A, F > D R4

restrictions on its elements. In particular, we have a× d = b,
a × e = c, and d × f = e. Using these constraints, we can
conclude the expression for |Σ|:

|Σ| = −(a2 − 1)(d2 − 1)(f2 − 1) = k (5)

where, using Eq. (3) we conclude that σ12 = a, σ23 = d, and
σ34 = f .

Using Lemma 1, we can conclude Table I for the max-
min table of the linear structure. The last column shows the
expressions for different partial correlation coefficients.

Next, we want to consider all the possible relations between
a, d, and f to find the maximin value.

Let us define A = a2, D = d2, and F = f2. Note that
F = 1 − k/(1−A)(1−D), where k = |Σ|. Let’s Consider
the following case:

Region 1. A > D and A > F : Then using table I it is
easy to show that ρ223|1 < ρ223|4. Hence, we can simplify the
corresponding row. Now, we should find the maximin value.
As a result we want to find the maximum value for the partial
correlation coefficient. Again, it is straightforward to show that
ρ212|3 > ρ223|1 and ρ212|3 > ρ234|2. Hence, the maximin value in
this case is ρ212|3.

Similarly using Table I we can find the regions for all the
maximin values. Table II shows these results.

B. Star structure: The max-min table
Consider the star topology on 4 nodes. For the conditional

independence relations we have: 1 ⊥ 3|2, 1 ⊥ 4|2, and 3 ⊥
4|2. As a result we conclude that a × d = b, a × e = c, and
e × d = f . Similarly, in this case the determinant expression
becomes as follows:

|Σ| = −(a2 − 1)(d2 − 1)(e2 − 1) = k (6)

Similarly, using the results for the previous section, we can
conclude table III for the max-min table of star structure.

Next, we want to consider all the possible relations between
a, d, and e to find the maximin value of table III. Again, let
us define A = a2, D = d2, and E = e2. Here, E in the star
structure has the same value as the F in the linear structure.
Similar to the linear case, we can obtain Table IV for this case.

TABLE III: Maximin table for the star model

{a; b} z ρ2ab|z

{1; 2} 3 or 4
A(1−D)

1− AD
or
A(1− E)

1− AE
{2; 3} 1 or 4

D(1− A)

1− (AD
or
D(1− E)

1−DE

{2; 4} 1 or 3
E(1− A)

1− AE
or
E(1−D)

1− ED

TABLE IV: Maximin values and their corresponding regions
in star model

ρ2ab|z Boundries Region Number
ρ212|3 A > D > E R1

ρ212|4 A > E > D R2

ρ223|1 D > A > E R3

ρ223|4 D > E > A R4

ρ224|1 E > A > D R5

ρ224|3 E > D > A R6

C. Plotting the max-min values for both structures
Here, we want to plot the answers for all of the cases

above, for both linear and star structures. Recall that in both
models we have two degrees of freedom. Let us choose A and
D as DoFs. We want to compute ρ2ab|z for all the values of A
and D. Note that both A and D are in the interval (0, 1− k),
where k = |Σ|. Also, we have the Eqs. (5) and (6) as the
constraints. Figure 5 shows the heatmap for both models. From
this model we can observe that in some regions the string
structure have larger values for the mutual information. We
prove this observation in the next lemma.

Fig. 5: The heatmap for different values of correlation coeffi-
cient ρ2ab|z in both structures (k = 0.6)

Lemma 2. We always have Linear � Star: the linear
structure always produces larger maximin values than the star
structure. Therefore, the linear model is more secure than the
star model.

Proof: By considering tables I and III it is easy to observe
that in several regions the partial correlation is exactly the same
in both models, i.e., in regions R1, R3, R4, and R6 of the
star model and their corresponding areas in the linear model
heatmap. In two regions the linear structure outperforms the
star structure. We will prove this conclusion for one of the
regions. The proof for the other case is exactly the same.

Case 1. In region R5 (E > A > D) the maximin value for



the star model is computed using the triplet (2, 4, 1). Hence,
the maximin value is computed using ρ224|1. We can see from
the figures that R4 is the only region in linear model that has
an intersection with R5 in the star model. The intersection
happens in F > A > D region. The maximin value for the
linear model is computed using ρ234|2. Thus, We need to show

that
E(1−A)

1− EA
<

F (1−D)

1− FD
. Observe that E = F . Since

A > D, the result follows.

The proof for the other case is similar.

D. Ordering rooted polytrees: the general principle
Next, using the insight we obtained from the 4-node

polytree models, we want to prove the similar results for
more general cases. By comparing linear and star structures
on 4 nodes, we can see that the only difference between two
structures is that in linear case the node 2 is adjacent to nodes
1 and 3; However in the star model the node 2 is adjacent to
nodes 1, 3, and 4. Loosely speaking, in linear model by moving
node 4 and connecting it to node 2 we obtain the star model.
In the following lemma, we show that this operation always
reduces the security of the polytree models. In particular, we
consider two polytrees Tn and T ′n. The polytree Tn might have
any structure with n vertices. On the other hand, T ′n is obtained
from Tn by cutting a special edge and connecting it to its
grandparent. The following lemma shows the result.

Lemma 3. Consider a general rooted polytree model Tn
having n nodes. Let’s assume that Tn has at least one leaf
node (v) that has a parent with no other child, i.e., v has no
siblings. Now, if we remove v and connect it to its grandparent
(the parent of the parent of v), we obtain the polytree T ′n. We
always obtain Tn � T ′n.

Proof: Because of the space limit we only provide an
outline of the proof.

First, by induction we show that the number of DoFs is
the same for any polytree structure with n nodes. For any
general model with n nodes, and given a fixed value for the
determinant of covariance matrix, the number of DoFs is n−2.

Second, by induction we prove that for any rooted polytree
model, the determinant of the covariance matrix with nor-
malized diagonal entries has the following form: |Σn×n| =∏n−1
i=1 (1−σ2

ei) = k. Here, σei is the covariance value between
two adjacent nodes that are connected by ei. Using this part
of the proof we can conclude that if we cut a single leaf node
and connect it to any other node, the covariance between this
node, and its new parent remains the same as before.

Finally, we should write the max-min table for both poly-
trees. Both tables have the same entries in most parts. The only
differences happen around the rows that relate to the old and
new parents. In other words, under the same values for DoFs
of both structures, we can show that the operation changes
the local elements in the covariance matrix, and also in the
max-min tables. The idea is to compare these special cases
and show that if the maximin value occurs in these parts, we

can always show that Tn � T ′n. Otherwise the max-min value
for both structures is equal.

V. CONCLUSION
In this paper, we have studied the impact of changing the

topology of DAGs on connections’ security. We have used
rooted polytree structures to model the network topology.
under the joint Gaussian density we have proposed the max-
min strategy over all the possible triplets (a, b, z) to measure
the security of connections. The analysis has shown that in the
final set of triplets the nodes a and b should be neighbors, and
the eavesdropper is adjacent to one of them. We have used
this general criterion to find the best possible structure in a
rooted polytree model with 4 nodes, where we have proved
that the linear polytree always dominates the star structure.
Finally, we have introduced an operation that can be applied
to any rooted polytree structure. We have shown in Lemma 3
that this operation always decreases the maximin value of the
resulting polytree. Using this operation, we can also fully order
all rooted polytrees with 5 nodes for those identified equivalent
isomorphic classes in [5], and further show that linear topology
is still the most favorable one using the MaMI metric, as in
the case of 4 nodes in this paper. Also, by using this operation
repeatedly, we can construct all equivalence classes of rooted
polytrees that are partially ordered using the binary operation
introduced in this paper, which further helps us to compare
different topologies in terms of security robustness. The results
will be presented in our future works [12].
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