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On the Minimax Robustnessof the Uniform
TransmissionPower Strategy in MIMO Systems

ShuangqingWei, DennisGoeckel

Abstract— In this letter, it is shown that the uniform power
allocation across transmit antennas is optimal in the sense
that this strategy will maximize the minimum average mutual
information of a multiple-input-multiple-output (MIMO) system
acrossthe classof any arbitrary correlated fading channels,with
constraintson the the total fixed transmit power (

���
), total power

of the fadesat the transmitter side (
���

), and total power of the
fades at the receiver side (

���
), if the channel state information

(CSI) is perfectly known at the receiver side only.

I . INTRODUCTION

Employing multiple antennasat both the transmitterand
receiver of a communicationsystemoperatingover a nar-
rowband wireless communicationschannelcan significantly
increasetheShannoncapacityin thescenariowith independent
fading[1] [2], or correlatedfading[3] acrossdifferentantenna
pairs. Considera MIMO systemwith ��� transmit antennas
and ��	 receive antennas,andlet 
���
 � bethefadingcoefficient
betweenthe � th transmitantennaandthe � th receive antenna.
Assumethe receiver hasthe perfectchannelstateinformation
(CSI), while the transmitterdoesnot have CSI. If 
 ��
 � and
�� 
 � , for any disparatepairs � , � and � , � , are independent
complex Gaussianrandomvariables,it is shown in [2] that the
optimal strategy to maximizethe averagemutual information
of sucha MIMO systemis to transmitstatisticallyindependent
identically distributed complex Gaussiancodewords across� � antennaswith equal power ������� � , where ��� is the
total transmit power. If 
 ��
 � and 
�� 
 � are correlated,and
in addition to lacking CSI, the transmitter is also ignorant
of valuesof the correlations,it is assumedwithout rigorous
justification in [3]-[4] that in order to maximize the average
mutualinformationof a MIMO systemundercorrelatedfades,
the uniform power distribution acrosstransmitantennaswill
“naturally” beemployed[3]. In [5], assumingthatchannelcan
play the role of a maliciousnatureby altering fading values
 ��
 � to perform an inversewater-filling, it has beenshown
that the uniform power allocationstrategy can maximizethe
minimum averagemutual information of a MIMO system.
However, under the constraintsonly on the variancesof the
fading values, when the channel can only set correlation
propertiesof the fades,the optimality of the uniform power
allocation strategy is still an open problem. In this paper,
by following the line of the work [5], this strategy will be
demonstratedto be minimax robust [6], which maximizesthe
minimumaveragemutualinformationof aMIMO systemwith
arbitrarycorrelatedfadesundercertainpower constraints.

I I . SYSTEM MODEL

Throughoutthe paper, the following notationswill be used:�! 
for the "$#%" identity matrix, &(' for transposeconjugate

of the matrix & , &*) for conjugateof the matrix & , det+�&(, for
determinantof the squarematrix & , &(- for transposeof the
matrix & , and . for columnvector.

The discrete-timeequivalent system model is given by:/ 0 
1. 243 , where . is an ���5#76 column vectorwhose� th componentrepresentsthe signal transmittedby the � th
antenna.Similarly, the received signalandreceived noiseare
representedby � 	 #86 complex column vectors,

/
and 3 ,

respectively. Thenoisevector 3 is anadditive white Gaussian
randomvector, whose entries 9:3 �<; � 0 6 ;>=?=>=!; � 	�@ are i.i.d
circularly symmetriccomplex Gaussianrandomvariableswith
meanzeroandunit variance,thus 3 ��ACB"5+�D ; 6�, .

It is assumedhere that the total average power trans-
mitted across the � � transmit antennas is fixed, i.e.EGF�H  �!I�JLK .�� K M!N 0 ��� . Entriesof the channelfadingmatrix
 areassumedto be circularly symmetriccomplex Gaussian
randomvariableswith zeromean,andthusa Rayleighfading
channelis being assumed.Constraintson variancesof 
 ��
 �
will be describedbelow. Per above, it is assumedthat the
transmitter has neither knowledge of the entries of 
 nor
knowledgeof the correlationstatisticsof the entries,but that
the receiverhasperfectknowledgeof 
���
 � . Hence,as in [2],
if the input vector . is a propercomplex Gaussianrandom
vector, whosecovariancematrix is

EPO . Q�. 'SR 0UT , themutual
information VW+ T , of this MEA system(conditionedon 
 ) isVW+ T , 0YX[Z]\ M det ^ �?_]` 25
aQ T Qb
c'ed bps/Hz.

It is assumedthat the covariancematrix of the random
variables
���
 � hasthe following generalcovariancestructure,
as describedin [3]:

EPO 
���
 � 
f)�g
 � R 0ih �� 
 � h 	��
 � , where
h � andh 	 are ���W#j��� and ��	k#j��	 covariancematricesgeneratedby

the transmitandreceive antennas,respectively. As in [3], the

matrix 
 canbefactoredin theform 
ml0 ^ h 	 d�noqp ^ h � d - no ,
wheretheentriesof

p
arei.i.d with B"r+�D ; 6b, , and s l0Yt means

randomvariabless and
t

have the samedistribution.
Ourgoalhereis to find theminimaxrobust

T*u
[6], underthe

constraintof Tr + T , 0 ��� , Tr + h � , 0 � � andTr + h 	 , 0 � 	 ,
where Tr +�&W, is the trace of matrix & [7], to maximize the
infimum averagemutual information

EYO Vc+ T , R , i.e.,T u 0
arg v�w:x�Ly{z]| }[~��� ` y{z ` 
 ��� y{z � EYO Vf+ T , R (1)

where � � 0 9 T�� Tr + T , 0 � � @ , ��� 0� h � � Tr + h � , 0 ���q� and ��	 0 � h 	 � Tr + h 	 , 0 ��	�� , are
the setsof non-negative definite matriceswith the constraint
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of fixed trace,which areall convex sets.The expectation
EPO Q R

is over the statisticaldistribution of the fading entriesof 

under the given correlation matrices

h � ,
h 	 and

T
. The

traceconstraintsfor channelcorrelationmatrices
h � and

h 	
imply that the total power of the fadescausedby scatterings
around transmit and receive antennasare fixed as ��� and� 	 , respectively.

I I I . THEOREM AND PROOF

Theorem1: The minimax robust solution to (1) is
T*uf0��� �!_ � ��� � , andv�w:x�Ly{z | }[~��� ` y{z ` 
 ��� y{z � EYO Vf+ T , R 0�E���X[Z]\ Mk� 6q2�� � � 	 � �� � t���� ;

(2)
where

t
is an exponentiallydistributedrandomvariablewith

unit mean.
Proof:

By singularvaluedecomposition(SVD) [7], it canbeshown
that

T�0�� ����� � '� ,
h � 0�� � � � � '� , and

h 	 0�� 	 � 	 � '	 ,
where

� � ,
� � and

� � are unitary matrices,and ��� , � �
and � 	 arediagonalmatriceswhosediagonalentries ��� ��W� ,� � � � � and

� � 	 � � are the eigenvalues of
T

,
h � and

h 	 ,
respectively, in a decreasingorder.

By substituting 
 l0 ^ h 	 d�nojp ^ h � d - no into VW+ T , , and
recognizingthat for any unitary matrices

�
and � ,

� p ��'
hasthesamestatisticaldistribution as

p
[2], whereentriesofp

are independentlydistributedas B"r+�D ; 6b, , it can be shown
thatEYO VW+ T , R 0 EYO X Z{\ M det + � _ ` 2� no	 p � no� ���¡��� ' � no� p ' � no	£¢ N (3)0 EGF[X Z{\ M det ¤ � _ ` 25� no	 p�¥ M p ' � no	L¢ N0 E F X Z{\ M det ¤ � _ ` 25� no	 p ��¦ p ' � no	£¢ N ;(4)

where � 0§� -� � � is a unitary matrix,
¥ J 0 � no� ��� no� ,

and
¥ M 0 ¥ J ¥ 'J . ��¦ is the diagonalmatrix whosediagonal

entriesareeigenvaluesof
¥ M , � ¦ � , in a decreasingorder, withH _ ��¨I�J � ¦ � 0 Tr + ¥ M , 0 ��¦ .

Letting © � 0 � ¦ � �:��¦ ,E8O VW+ T , R«ª[¬!­® _ �¯�!I�J © � Em°±<X[Z]\ M³²´ 6q2���¦
_]`¯� I�J � 	� K µ �¶
 � K M!·¸�¹º

ª[»¼­0 E °±<X[Z]\ M ²´ 6q25� ¦
_]`¯� I�J � 	� K µ �g
 J K M ·¸ ¹ºª[½¾­® E F X[Z]\ M ¤ 6q25��¦j��	 K µ J 
 J K M ¢ Nª[¿e­® E F X[Z]\ M ¤ 6q25� � � 	 � �À � _ K µ J 
 J K M ¢ N ; (5)

where the inequality (a) is due to the concavity of the
function

X Z{\
det & on the convex set of non-negative Her-

mitian matrices [7, pp. 466], as well as the representation
of �¡¦ 0 ��¦ H _ ��¨I�J © �:Á � Á '� , where Á � is a column vector

with 1 as its � th componentand 0’s elsewhere.Equality (b)
is becausethe sum term is identically distributed. Inequality
(c) is due to the concavity of the function

X[Z]\ s over the
region s7Â�D , and

H _{`� I�J � 	� 0 ��	 . Inequality (d) is because��¦ 0 H _ �� I�J H _ �� I�J � �� � �� K Ã ��
 � K M ® ����� �À � _ , where the last

stepis due to � �� ® � �À � _ ;ÅÄ � , and
H _ �� I�JLK Ã ��
 � K M 0 6 , since �

is a unitary matrix. Therefore,for any covariancematrices
T

,h � and
h 	 ,

EYO VW+ T , R canbe lower boundedas that in (5).
For any given transmissionstrategy

T
, the lower boundin

(5) canbeachievedby settingtheeigenvalue � � J 0 ��� , � � � 0D ; � 0�Æ ;>=?=>=!; ��� , and � 	 J 0 ��	 , � 	� 0 D ; � 0UÆ ;?=>=?=!; ��	 , with� � 0�� )� and
� 	 any arbitraryunitarymatrix.Thus,theworst

caseof channelputsall of its energy at the transmissionside
in the direction of the weakest eigenvector of

T
, while the

energy of the channelat the receiver side is concentratedin
any eigen-direction.Thus,} ~��� ` y{z ` 
 � � y{z � EYO VW+ T , R 0UEGF[X Z{\ M ¤{6q2�� � � �À � _ � 	 K µ J 
 J K M ¢ N =

(6)
Our goal is in (1) to find the minimax robust

T
, andsinceH _ ��!I�J � � � 0 ��� , � �À � _ÈÇ ���É��� � (otherwise,theconditionof

the fixed total transmissionpower will be violated),the upper
bound of (6) can be achieved by setting

TÊ0 � � � _ � ����� ,
which is exactly the transmissionstrategy of the uniform
power distribution acrosstransmit antennas.Hence, (2) is
proven to be true.

It can be observed that if
T*u10 ��� �!_ � �:� � , an arbitrary

choiceof the eigenvectorsof
h �u and

h 	u will minimize the
mutual informationas long asonly oneeigenvalueof eachis
non-zero.This setof ^ T*u ; h �u ; h 	u d is not a saddlepoint [6],
sincegiven such ^ h �u ; h 	u d , the uniformly distributed power
allocationdoesnot achieve the maximumof

EYO VW+ T , R .
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