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Jamming and Counter-Measure Strategies in Parallel
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Abstract— Consider a parallel Gaussian channel with
M subchannels each of which experiences independent
flat fading. There exists a smart jammer which is capable
of intercepting the feedback channel message such that
channel state information (CSI) measured and sent back
by a receiver can be perfectly known to the jammer, as
well. We formulate a novel two-layer two-person zero-sum
game. Under this zero-sum game framework, the following
three fundamental questions are addressed. The first one
is about whether to hop or to spread power overM
frequency bands given the full CSI at both transmitter and
jammer sides. We prove that spreading versus spreading
is the Nash equilibrium point. The second question is
about the impact of sending back CSI on the overall
throughput, to feedback or not to feedback, considering
the presence of a smart jammer capable to exploit CSI
for its malicious purpose. We show that possessing the full
CSI enables a better means to defend against the jammer’s
attacks. The last question is about whether the amount of
feedback information can be reduced given the mutual
restrictions between transmitter and jammer. We prove
that the receiver should also get involved by adaptively
sending CSI without compromising the sum rate at the
equilibrium point.

I. INTRODUCTION

Security issues in wireless systems and networks
have attracted significant interests lately because of the
tendency of nearly ubiquitous deployment of wireless
devices and networks in our society, as well as the
susceptibility of wireless systems to malicious attacks
and eavesdropping as a result of the broadcasting nature
of wireless transmissions. One of the prominent security
problems is denial of service which includes one of the
oldest strategies in electronic warfare systems, namely,
jamming of legitimate transmissions in physical layer
[1].

Spread spectrum using frequency hopping has been
historically adopted as a viable solution to defend against
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jamming attacks [2]. The rationale underlying frequency
hopping is to let a legitimate transmitter randomly pick
a frequency band to communicate with its receiver such
that the probability of getting jammed by a power-
limited partial-band jammer will be reduced. Usually
the transmitter will pick one band out ofM bands with
a uniform distribution determined by a pseudo-random
sequence which is known at receiver and not known to
the jammer.

The recent advances in communication and informa-
tion theory have revealed the importance of exploiting
channel state information in improving throughput, re-
liability and efficiency of wireless communications sys-
tems [3]. Channel state information (CSI) about fading
realizations are measured and sent back by the legitimate
receiver to its transmitter. This immediately poses a po-
tential problem at the presence of a smart jammer which
is able to eavesdrop the feedback channel and obtain
the exact CSI, the same information as what transmitter
possesses. Consequently, the jammer can further exploit
its knowledge about CSI to produce more damages to
the legitimate communication link. A natural question to
ask immediately is what will transmitter respond given
its knowledge about CSI when it has several frequency
bands to consider? Will the transmitter still hop as the
conventional wisdom implies? In [2], it was presumed
the best response for the transmitter is to hop overM
bands with non-uniform distribution which is a function
of channel states, while the jammer spreads its power
non-uniformly over all frequency bands based on CSI.
We are going to show this is not an optimal strategy.

This paper is motivated by the questions raised above
and intended to address these questions by formulating
problems within the framework of a novel two-layer two-
person zero-sum game. More specifically, we address the
following three questions using the proposed two-person
zero-sum game framework: (1) To hop or to spread
powers for transmitter and jammer, given the complete
CSI? (2) Will the feedback of CSI really help considering
the malicious use of CSI by the jammer? (3) If feedback
helps, should we always send back CSI given the mutual
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restraints imposed by each player on its opponent? Our
contributions can be summarized as follows:

• A novel two-layer two-person zero-sum game is for-
mulated to provide us a means to analyze whether
to hop or to spread for jammer and transmitter,
respectively.

• We prove that both spreading is the Nash equilib-
rium point as compared with the other combina-
tions.

• We prove that the possessing of complete CSI
for transmitter makes it more powerful in fighting
against the smart jammer.

• We provide an adaptive feedback protocol for the
receiver. We show that it is not always necessary for
the receiver to send back the exact CSI. The inter-
restraints between jammer and transmitter makes
them reach the same Nash equilibrium point even
under the partial knowledge about CSI.

The paper is organized as follows. In Section II,
we present the system model and formulate a two-
person two-layer zero-sum game. In Section III, we
prove both spreading is the Nash equilibrium point for
the game formulated in Section II. In Section IV, we
prove that feedback always helps transmitter to mitigate
the impact of jamming on the throughput. In Section V,
we prove that without compromising the total sum rate,
the receiver does not need to send back the exact CSI
all the time under an adaptive CSI feedback protocol.
Finally, conclusions are reached in Section VI

II. SYSTEM MODEL AND PROBLEM FORMULATIONS

Consider a system of three nodes: source (S), desti-
nation (D) and jammer (J), where S sends data to D
under the jammer’s attacks. A parallel flat fading channel
model is assumed in this paper, where each fading block
hasM parallel subchannels defined as follows:

Yi[n] = Hi[n]Xi[n] + Wi[n] + Zi[n], (1)

for i = 1, · · · ,M , andn = 1, 2, · · · , LN , where channel
fading coefficientsHi[n] remain constant over(l−1)N+
1 ≤ n ≤ lN , 1 ≤ l ≤ L, and varies independently over
different blocks (ofN channel uses) and sub-channels,
satisfying the distribution:Hi[n] ∼ CN (0, σ2

i ), where
CN (µ, σ2) denotes the complex circular Gaussian distri-
bution with meanµ and varianceσ2. TheM subchannels
model theM parallel frequency bands. Each codeword
spans overM × N × L channel uses. Channel additive
white Gaussian noise sequencesWi[n] are assumed i.i.d
acrossMNL channel uses with distributionCN (0,N0).
Jamming signalsZi[n] are independent across all chan-
nel uses. In this paper, we investigate the jamming and

counter-jamming problems under short-term and long-
term average power constraints [4].

Short-term average power constraint:

1

N

M
∑

i=1

lN+1
∑

n=(l−1)N+1

|Xi[n]|2 ≤ PS ,

1

N

M
∑

i=1

lN+1
∑

n=(l−1)N+1

|Zi[n]|2 ≤ PJ , 1 ≤ l ≤ L, (2)

Long-term average power constraint:

1

LN

M
∑

i=1

lN+1
∑

n=(l−1)N+1

L
∑

l=1

|Xi[n]|2 ≤ PS ,

1

LN

M
∑

i=1

lN+1
∑

n=(l−1)N+1

L
∑

l=1

|Zi[n]|2 ≤ PJ (3)

In the sequel, without delay constraint, we let the
number of independent blocksL grow to infinity so that
we only need to be concerned with the average sum rate
of transmission from S to D under the jammer’s attacks.
We are interested in the following two problems. Firstly,
assume channel state information (CSI) aboutHi[n] can
be measured and sent back perfectly via an error free
feedback channel from D to S, and moreover, this CSI
is assumed to be eavesdropped by the jammer to be
exploited for smart jamming attacks, what jamming and
counter-measure strategies should be taken forJ andS,
respectively? Secondly, given the presence of a smart
jammer which exploits CSI for its “evil" purpose, is it
still always effective and efficient to send back full CSI?

In this paper, we adopt the average transmission rate
as a metric and employ game theory to answer the
two questions raised above. In particular, we model
the jamming and counter-measures as a novel two-
person zero-sum game. The novelty of this game is
reflected by the two-layers of strategy spaces involved.
The first layer of strategy spaces is defined asCi =
{Hp, Sp}, where i ∈ {S, J}, and Hp and Sp rep-
resent hopping overM bands and spreading over an
entire frequency band, respectively. After each player
decides on hopping or spreading, it needs to further
decide what is the associated hopping pattern or power
allocation function given CSI, which thus forms the
second layer of game for a given selected option
in {(Shp, Jhp), (Shp, Jsp), (Ssp, Jsp), (Ssp, Jhp)}. Each
player (jammer or source) chooses hopping or spreading,
as well as the associated hopping patterns or power
functions, accordingly. The two player over the first layer
can be characterized by the matrix in Table I, whereui,j

denotes the utility function over the first layer, which
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Jhp Jsp

Shp u1,1 u1,2

Ssp u2,1 u2,2

TABLE I

TWO-PERSON ZERO SUM GAME OVER HOPPING OR SPREADING

is the rate determined below, for each joint strategy
(cS,i, cJ,j) with cS,i ∈ CS and CJ,j ∈ CJ , respectively.
We focus herein on the Gaussian jamming [5], where
the jamming sequence{Zi[n]} is assumed to be i.i.d
Gaussian random variables with mean0 and variance
Ji, i.e Zi[n] ∼ CN (0, Ji), for i = 1, · · · ,M . The
transmitter encodes using Gaussian codebook such that
the transmitted sequence{Xi[n]} is i.i.d and distributed
asCN (0, Pi) and independent of{Zi[n]} and{Xj [n]},
for j 6= i.

Note:Pi andJi are in general two functions of channel
statesh

∆
= {h1, · · · , hM}. The power constraints in (2)

and (3) can be translated to
Short-term Power constraint:

PM (h)
∆
=

M
∑

i=1

Pi(h) ≤ PS , JM (h)
∆
=

M
∑

i=1

Ji(h) ≤ PJ ,

(4)
Long-term Power constraint:

M
∑

i=1

E [Pi(h)] ≤ PS ,
M
∑

i=1

E [Ji(h)] ≤ PJ , (5)

Next, we provide the pay-off function of the second
layer zero-sum game whereui,j in Table I is the maxmin
solution of the underlying zero-sum game, i.e. the robust
solution from transmitter’s perspective. For some cases,
we will show in next section thatui,j is also the minimax
solution, and consequently a Nash Equilibrium point [6].
Tx hopping (Shp) versus Jx hopping (Jhp):

When both players decide to hop overM frequency
bands, each of them picks up one frequency slot to
send/jam randomly, the resulting average sum rateRh,h

overM frequency slots, which is the pay-off function of
the two-person zero-sum game for this particular case,
can be computed as

Rh,h =
M
∑

i=1

E [αi(1 − γi)Ri,0 + αiγiRi,J ] (6)

where αi ≥ 0 and γi ≥ 0 for i = 1, · · · ,M are the
probability that node S and nodeJ are active over the
i-th slot, respectively, with constraints

∑M
i=1 αi = 1 and

∑M
i=1 γi = 1. Both of these distributions are functions of

h. The expectation is taken over the joint distribution of

M channel statistics. As only one slot is picked by each
player, the mutual information rate over that particular
slot i is

Ri,J = log

(

1 +
Pihi

Ji + N0

)

, or Ri,0 = log

(

1 +
Pihi

N0
,

)

(7)

where Ri,J is the rate when jammer is present, while
Ri,0 is the rate when jammer is absent.

Tx hopping (Shp) versus Jx spreading (Jsp):

Given full channel state information (CSI), the jammer
can unilaterally change to spread its power overM slots
without hopping while the transmitter sticks with its hop-
ping strategy. This is the strategy suggested in [2] in the
same scenario. The resulting pay-off function in terms of
average sum rate is thereforeRh,s =

∑M
i=1 E [αiRi,J ].

Tx spreading (Ssp) versus Jx hopping (Jhp):

Similarly, if transmitter unilaterally alters to spreading
while jammer keeps on hopping. The average sum rate
is Rs,h =

∑M
i=1 E [(1 − γi)Ri,0 + γiRi,J ].

Tx spreading (Ssp) versus Jx spreading (Jsp):

When the transmitter and jammer both spread power
overM channels without hopping, the resulting average
sum rate is

Rs,s =

M
∑

i=1

E [Ri,J ] . (8)

The power constraints specified in (4) and (5) are
actually for the case where both players adopt spreading
strategy. For other cases where at least one of them
adopts hopping strategy, the power constraints will be
modified as follows. Under the short-term power con-
straint, we havePi(h) ≤ PS and Pj(h) = 0 for
transmitter andJi(h) ≤ PJ andJj(h) = 0 for jammer,
∀j 6= i, if the i-th frequency slot is picked up by either
the transmitter or jammer. While under the long-term
power constraint, the only non-zero power is the one
allocated over the pickedi-th frequency slot by trans-
mitter (jammer)Pi(h) (Ji(h)) with probability αi(h)
(γi(h)), which satisfies

∑M
i=1 E [αi(h)Pi(h)] ≤ PS , and

∑M
i=1 E [γi(h)Ji(h)] ≤ PJ , for transmitter and jammer,

respectively.

The short term power constraints imply that whoever
selects hopping, the power used by it for that particular
active frequency slot can not be greater thanPS or PJ for
any given channel realizationh. As a contrast, under the
long term power constraint, the power averaged over all
channel realizations and over all frequency slots cannot
exceedPS or PJ .
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III. SPREADING ORHOPPING

We show next that when transmitter takes a robust
perspective in the sense to seek the maxmin solution,
i.e. to maximize the minimum average sum rate when
jammer knows completely the strategy space of the
transmitter, none of these two players will select hopping
strategy, but instead spreads power overM frequency
slots optimally by taking theSsp versusJsp approach.

Given the transmitter’s robustness perspective, the
pay-off functions in the matrix game of Table I are

u1,1 = max
{αi(h),Pi(h)}

min
{γi(h),Ji(h)}

Rh,h,

u1,2 = max
{αi(h),Pi(h)}

min
{Ji(h)}

Rh,s,

u2,1 = max
{Pi(h)}

min
{γi(h),Ji(h)}

Rs,h, u2,2 = max
{Pi(h)}

min
{Ji(h)}

Rs,s

(9)

Theorem 1: The Nash equilibrium of the game in
Table I is (Ssp, Jsp) when transmitter takes a robust
perspective by taking the pay-off functionui,j of the
matrix game as the maximin solution of the game in the
second layer for each of these four cases.

The proof of Theorem 1 relies on the convexity of the
function f(x) = log (1 + 1/x) , x ≥ 0, as well as the
following Lemma:

Lemma 1: When both players select spreading pow-
ers overM frequency slots, the power allocation profiles
{P ∗

i (h), i = 1, · · · ,M} and {J∗
i (h), i = 1, · · · ,M}

resulted from solvingu2,2 is a Nash Equilibrium point,
i.e.

u2,2 = max
{Pi(h)}

min
{Ji(h)}

Rs,s = min
{Ji(h)}

max
{Pi(h)}

Rs,s (10)

The optimal power control functions are given by

P ∗
i (h) =







(

1
λ − N0

hi

)+
, hi ≤

N0λ
1−N0ν

hi

λ(hi+λ/ν) , hi > N0λ
1−N0ν

, i = 1 · · · ,M,

(11)
and

J∗
i (h) =

{

0, hi ≤
N0λ

1−N0ν
hi

ν(hi+λ/ν) − N0, hi > N0λ
1−N0ν

, i = 1 · · · ,M,

(12)
where λ and ν are two constants determined by the
power constraints. Under the short-term one (4),λ(h)
andν(h) are functions of the given channel realization
vector h. Under the long-term one (5),λ and ν are
functions of channel statistics.

Proof:
The existence of Nash equilibrium point is due to the

convexity of log
(

1 + hiPi

Ji+N0

)

with respect toJi and
concavity of it with respect toPi. The proof of the

optimal power control functions is quite similar as the
one forM = 1 [7] and is omitted here.
Proof of Theorem 1

Proof: The proof of Theorem 1 consists of two
steps. We first demonstrate that given{P ∗

i (h)} and
{J∗

i (h)}, when either jammer or transmitter deviates
from spreading to hopping, it always ends up with the
beneficial effect for its opponent, and thus prove that
both spreading isa Nash equilibrium point for the game
in Table I. Note that we cannot argue using the fact that
{P ∗

i (h)} and{J∗
i (h)} is the Nash equilibrium point for

(Ssp, Jsp) in the second layer to show that spreading and
spreading is a Nash equilibrium point in the first layer
of the entire game.

Consider the strategy profile(Ssp, Jhp) where trans-
mitter selects spreading and jammer selects hopping. We
have the following inequalities hold:

u2,1 = max
{Pi(h)}

min
{γi(h),Ji(h)}

M
∑

i=1

E

[

(1 − γi) log

(

1 +
hiPi

N0

)

+γi log

(

1 +
hiPi

Ji + N0

)]

≥ min
{γi(h),Ji(h)}

M
∑

i=1

E

[

(1 − γi) log

(

1 +
hiP

∗
i

N0

)

+γi log

(

1 +
hiP

∗
i

Ji + N0

)]

≥ min
{γi(h),Ji(h)}

M
∑

i=1

E

[

log

(

1 +
hiP

∗
i

γiJi + N0

)]

=
M
∑

i=1

E

[

log

(

1 +
hiP

∗
i

J∗
i + N0

)]

= u2,2, (13)

where the first inequality is from a particularization of
Pi(h) to P ∗

i (h), the second inequality is due to the
convexity oflog(1+1/x) and the last equality is a result
of treatingγiJi as an equivalentJ ′

i under the constraint
of
∑M

i=1 E[J ′
i(h)] ≤ PJ (long-term) or

∑M
i=1 J ′

i(h) ≤
PJ (short-term), as well as the condition that{P ∗

i (h)}
and{J∗

i (h)} is a Nash equilibrium point of(Ssp, Jsp).
The inequality u2,1 ≥ u2,2 shows that jammer’s

unilateral deviation from spreading power to hopping
only benefits the transmitter. Jammer therefore will not
alter its spreading strategy unilaterally when transmitter
spreads its power. Using the similar techniques, we can
prove thatu1,2 ≤ u2,2 [8]. Inequalitiesu1,2 ≤ u2,2 and
u2,1 ≥ u2,2 together imply that(Ssp, Jsp) is a Nash
equilibrium point of the matrix game over the first layer
of the zero-sum game as characterized in Table I. The
only remaining question is whether(Shp, Jhp), i.e. two
players both select hopping overM slots, is another
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equilibrium point.
Using the similar method, we can proveu1,1 ≥ u1,2

[8], which implies that jammer’s unilaterally deviation
from hopping to spreading when the transmitter stays
with hopping further reduces the average sum rate, which
indicates that(Shp, Jhp) cannot be an equilibrium point
of the matrix game in Table I.

Putting all these inequalities together, we can come
to the conclusion that the strategy of both spreading
(Ssp, Jsp) is the unique Nash equilibrium point of the
matrix game in Table I, which completes the proof of
Theorem 1.

IV. FEEDBACK OR NO FEEDBACK

Without jammer’s presence, it is a well known result
that power control based on channel state information
received perfectly at transmitter side helps in increasing
the ergodic capacity of fading channels [9]. However,
when we consider the counter-measure issues against a
smart jammer who intercepts the feedback channel to
obtain the perfect channel state information also about
{h} as we have assumed in the system model part, it is
not quite obvious at the first glimpse whether it remains
a viable option for the legitimate transceiver to have
{h} sent back considering the presence of such a smart
jammer. Notice that the jammer could also exploit the
CSI using the jamming power control function obtained
in Lemma 1 for its malicious purpose. The question we
address in this section is to justify that even when the
smart jammer has the capability to explore CSI, it is still
better to feedback CSI than not from the transmitter’s
perspective.

To answer the question raised above, we need to first
examine how we attain the two power control functions
in (11) and (12), respectively. Define a concave function
g(x) = log(1 + x) for x ≥ 0. Under the strategy profile
(Ssp, Jsp), the pay-off functionRs,s in (8) can be re-
written asRs,s =

∑M
i=1 E [g(xi)] where xi = hiPi

Ji+N0

.
Since g(xi) is a concave function ofPi and a convex
function of Ji, the KKT [10] condition yields

dg

dxi

hi

Ji + N0
= λ̂ > 0,

dg

dxi

hiPi

(Ji + N0)
2 = ν̂ > 0, (14)

for i = 1, · · · ,M , whereλ̂ and ν̂ are constants similar
as those in (11) and (12) to meet the power constraints
for transmitter and jammer, respectively.

From the conditions in (14), we can easily infer that
the following condition holds as long as both jammer
and transmitter are active in thei-th frequency slot:

Pi

Ji + N0
=

ν̂

λ̂
, Pi > 0, Ji > 0. (15)

Without the concern of the sign ofPi and Ji, (15)
immediately implies

M
∑

i=1

Pi(h) =
ν̂

λ̂

(

M
∑

i=1

Ji(h) + MN0

)

(16)

Under the power constraints in either (4) or (5), we
always have

ν̂

λ̂
=

PS

PJ + MN0
, (17)

which is exactly the ratio ofPi/(Ji +N0) when the only
option for both transmitter and jammer is to divide their
powersPS and PJ uniformly over M frequency slots,
i.e. Pi = PS/M and Ji = PJ/M for i = 1, · · · ,M ,
if neither the CSI about exact channel coefficients{h}
nor CSI about channel statistics is sent to back to the
transmitter.1.

However, since additional constraints ofPi ≥ 0
and Ji ≥ 0 ∀1 ≤ i ≤ M have to be invoked, the
optimal power control functions are in (11) and (12),
which reflects such restrictions. We can therefore see
that the constant ratio of̂ν/λ̂ as determined in (17)
is under an equivalent assumption thatJi could be
negative, which cannot hold in real systems. Conse-
quently, imposing non-negativeness forJi is equivalently
to confining jammer’s jamming capability, which in
turn favors the transmitter and hence the associated
Rs,s at the equilibrium point must be greater than

E
[

∑M
i=1 log

(

1 + hiPS

PJ+MN0

)]

, the rate when no infor-
mation is available to transmitter and jammer. In addi-
tion, it can be shown the true ratio ofν/λ in Lemma 1
is greater thanPS/(PJ + MN0) [8].

We can thus conclude that even when jammer is able
to intercept the feedback CSI to conduct smart jamming,
we still need to inform transmitter of the current{h}
for the sake of improving the legitimate user’s counter-
measure capability.

V. WHEN TO FEEDBACK AND WHEN NOT TO

FEEDBACK

We have noticed from the last section that although
the transmission power of transmitter and jammer at
the equilibrium point are both functions of channel
coefficients{h} as shown in (11) and (12), the ratio
P ∗

i /(J∗
i + N0) is a constant and has nothing to do

with the exacthi as long ashi ≥ Γ holds, where
Γ = N0λ/(1−N0ν). The question we intend to address
in this section is: Is it possible that the amount of

1When only channel statistics is known to both jammer and
transmitter, we can reach a similar conclusion that none of them
shall adopt hopping as a strategy, but instead both of them spread
powers based on channel statistics
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information sent back by receiver regarding{h} can
be cut to some extent while the performance in terms
of the average sum rate remains the same, given the
presence of such a smart jammer? The importance of the
answer to this question could be quite significant as we
have been ignoring the cost associated with sending back
perfect CSI{h}. If we can show that receiver can deliver
channel state information back to transmitter in a smarter
way, instead of always sending back full CSI, without
hurting the performance, it will imply the possibility
of reducing the system complexity and cost as far as
feedback is concerned.

It turns out not only is transmitter involved in adaptive
power control in fighting against the jammer, the receiver
should also perform some kind of adaptive feedback
mechanism. The exact adaptive feedback protocol de-
pends on whether we have short-term or long-term power
constraints. Due to the space limitation, we only present
the case under the long term power constraint. The
protocol under the short-term power constraint can be
treated in a similar way [8].

Define νL and λL as the multipliers under the long-
term power constraint. We then accordingly defineΓL =

N0λL

1−N0νL

, as the threshold for power control functions
under the long-term power constraint. Consequently,
defineIL(h)

∆
= {j : hj > ΓL, 1 ≤ j ≤ M} as the the

set of indexes of channel coefficients over which both
jammer and transmitter allocate positive powers, and
Ic
L(h)

∆
= {j : hj ≤ ΓL, 1 ≤ j ≤ M}. Let ML(h) = |IL|

denote the number of elements of the setIL under
the channel realization vector{h}, andML denote the
average number of frequency slots where jammer is
active, i.e.ML =

∑M
i=1 Pr[hi ≥ ΓL] = E [ML(h)].

Let P̃S,L denote the amount of average power available
to spend over frequency slots wherehi ≥ ΓL, which can
be determined as

P̃S,L = PS − E





∑

i∈Ic

L
(h)

(

1

λL
−

N0

hi

)+


 . (18)

As seen from (12) and (11), for anyi in IL(h), we have

P ∗
i,L(h)

J∗
i,L(h) + N0

=
νL

λL
, (19)

from which we can deduce

νL

λL
=

P̃S,L

PJ + MLN0

., (20)

Using the Nash equilibrium points argument, the adap-
tive feedback protocols under the long-term power con-
straint is stated in the following Theorem.

Theorem 2: To counter-measure the jammer’s at-

tacks, the legitimate receiver measures{h1, · · · , hM}
and decide whether or not to send back its measurement
based on the following conditions abouthi: if i ∈
IL(h), no information is sent back to transmitter; if
i ∈ Ic

L(h), full CSI abouthi is feedback. The power
control functions of jammer and transmitter are altered
as follows: wheni ∈ Ic

L(h), the same power functions
as J∗

i and P ∗
i specified in (11) and (12) are deployed,

i.e.

P̃ ∗
i,L =

(

1

λL
−

N0

hi

)+

, J̃∗
i,L = 0. (21)

When i ∈ IL(h), the power control functions at Equi-
librium points are given by

P̃ ∗
i,L = P̃S,L/ML, J̃∗

i = PJ/ML, i ∈ IL(h). (22)
Proof: The proof of Theorem 2 hinges upon the fact

J∗
i (h) andP ∗

i (h) in (11) and (12) are Nash equilibrium
points under the strategy profile(Psp, Jsp) when{h} is
completely known to both transmitter and jammer. In
addition, theJ∗

i (h) and P ∗
i (h) result in the same ratio

as that in (20) under̃P ∗
i,L and J̃∗

i,L when i ∈ IL, which
implies that deployingP̃ ∗

i,L and J̃∗
i,L as specified above

yields the same average rate as if the full CSI is known.
The details of the proof are in [8].

Remarks: Theorem 2 essentially unveils to us that
due to the mutual restrictions between transmitter and
jammer in this two-person zero sum game, we can
achieve the same average sum rate at the equilibrium
point when receiver sends back less amount of channel
state information.

VI. CONCLUSION

In this paper, we have investigated issues related
with sending back channel state information in parallel
Gaussian fading channels to defend against Gaussian
jamming attacks. With total sum rate as the pay-off
function, our results reveal how legitimate transceivers
should collaborate to jointly handle CSI in the presence
of an intelligent jammer. Similar questions can be raised
when we adopt other metric as the pay-off function,
such as the error exponent, which might not have the
same functional feature as the total sum rate and thus
could lead to different conclusions. Interesting results as
to other pay-off functions will be presented in our future
work.
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