Jamming and Counter-Measure Strategies in Paralle
Gaussian Fading Channels with Channel State
Information

Shuangqging Wei and Rajgopal Kannan

Abstract— Consider a parallel Gaussian channel with jamming attacks [2]. The rationale underlying frequency
M subchannels each of which experiences independenthopping is to let a legitimate transmitter randomly pick
flat fadlng There exists a smart jammer which is Capable a frequency band to communicate with its receiver such
of intercepting the feedback channel message such thatinat the probability of getting jammed by a power-
channel state information (CSI) measured and sent back limited partial-band jammer will be reduced. Usually

by a receiver can be perfectly known to the jammer, as . o .
well. We formulate a novel two-layer two-person zero-sum the ransmitter will pick one band out @i bands with

game. Under this zero-sum game framework, the following & Uniform distribution determined by a pseudo-random
three fundamental questions are addressed. The first one Sequence which is known at receiver and not known to

is about whether to hop or to spread power overM the jammer.

frequency bands given the full CSI at both transmitter and The recent advances in communication and informa-

jammer sides. We prove that spreading versus spreading tion theory have revealed the importance of exploiting

is the Nash equilibrium point. The second question is channel state information in improving throughput, re-

?ht;gt:t ghet 'Tp?Ctd%f sliendmgtbtac]lc( %i' okn the %ve_rall liability and efficiency of wireless communications sys-
ghput, to feedback o NOt 1o Teedback, consIdenng yomg [3]. Channel state information (CSI) about fading

the presence of a smart jammer capable to exploit CSI o .
for its malicious purpose. We show that possessing the full realizations are measured and sent back by the legitimate

CSl enables a better means to defend against the jammer's "€C€IVer 10 its transmitter. This immediately poses a po-
attacks. The last question is about whether the amount of tential problem at the presence of a smart jammer which
feedback information can be reduced given the mutual IS able to eavesdrop the feedback channel and obtain
restrictions between transmitter and jammer. We prove the exact CSl, the same information as what transmitter
that the receiver should also get involved by adaptively possesses. Consequently, the jammer can further exploit
sending CSI without compromising the sum rate at the jis knowledge about CSI to produce more damages to
equilibrium point. the legitimate communication link. A natural question to
ask immediately is what will transmitter respond given
|. INTRODUCTION its knowledge about CSI when it has several frequency
Security issues in wireless systems and networkgnds to consider? Will the transmitter still hop as the
have attracted significant interests lately because of t@nventional wisdom implies? In [2], it was presumed
tendency of nearly ubiquitous deployment of wirelegbe best response for the transmitter is to hop aver
devices and networks in our society, as well as tHgnds with non-uniform distribution which is a function
susceptibility of wireless systems to malicious attackd channel states, while the jammer spreads its power
and eavesdropping as a result of the broadcasting natogg-uniformly over all frequency bands based on CSI.
of wireless transmissions. One of the prominent securife are going to show this is not an optimal strategy.
problems is denial of service which includes one of the This paper is motivated by the questions raised above
oldest strategies in electronic warfare systems, nameid intended to address these questions by formulating
jamming of legitimate transmissions in physical laygproblems within the framework of a novel two-layer two-
[1]. person zero-sum game. More specifically, we address the
Spread spectrum using frequency hopping has befetiowing three questions using the proposed two-person
historically adopted as a viable solution to defend agairgstro-sum game framework: (1) To hop or to spread
powers for transmitter and jammer, given the complete
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restraints imposed by each player on its opponent? Quounter-jamming problems under short-term and long-
contributions can be summarized as follows: term average power constraints [4].

« A novel two-layer two-person zero-sum game is foiShort-term average power constraint:
mulated to provide us a means to analyze whether M N4
to hop or to spread for jammer and transmitter, lz Z 1 X;[n]|? < Ps,
respectively. N~ (DN 1 -
« We prove that both spreading is the Nash equilib- LM
rium point as compared with the other combina- * 112
fons. v, . |l <Pn 1<I<L ()
« We prove that the possessing of complete CSI )
for transmitter makes it more powerful in fighting-ONg-term average power constraint:

i=1 n=(1—1)N+1

against the smart jammer. | M IN+1 L

« We provide an adaptive feedback protocol for the AN >y |X;[n])? < Ps,
receiver. We show that it is not always necessary for i=1 n=(1—1)N+1 I=1
the receiver to send back the exact CSI. The inter- | Moo L
restraints between jammer and transmitter makes N Y Dzl <p (3)
them reach the same Nash equilibrium point even i=1 n=(1—1)N+1 l=1

under the partial knowledge about CSI. _ _
Th . ived foll In Secii | In the sequel, without delay constraint, we let the
€ Paper IS organized as folows. fn >ection lnumber of independent blocKsgrow to infinity so that

we present the system model and formulate a tWWe only need to be concerned with the average sum rate

person two-layer zero-sum game. In Section I!I’ W6 transmission from S to D under the jammer’s attacks.
. . . We are interested in the following two problems. Firstly,
the game formulated in Section I. In Section IV, We,sqme channel state information (CSI) abbjt] can
prove that feedback always helps transmitter to mitig & measured and sent back perfectly via an error free
the impact of jamming on the throughput. In Section feedback channel from D to S, and moreover, this CSI

we prove that without compromising the total sum rate, o<sumed to be eavesdropped by the jammer to be

the receiver does not need FO send back the exact §E)Ioited for smart jamming attacks, what jamming and
aI_I the time unc_ier an adaptive C.:SI fee_dback Iorotoc%()unter-measure strategies should be taken/fand S,
Finally, conclusions are reached in Section Vi respectively? Secondly, given the presence of a smart
jammer which exploits CSI for its “evil" purpose, is it
Il. SYSTEM MODEL AND PROBLEM FORMULATIONS  stjl| always effective and efficient to send back full CSI?

Consider a system of three nodes: source (S), destiin this paper, we adopt the average transmission rate
nation (D) and jammer (J), where S sends data to 4% a metric and employ game theory to answer the
under the jammer’s attacks. A parallel flat fading channgio questions raised above. In particular, we model
model is assumed in this paper, where each fading blogle jamming and counter-measures as a novel two-
has M parallel subchannels defined as follows: person zero-sum game. The novelty of this game is

T . : 4 reflected by the two-layers of strategy spaces involved.

Yilnl = Hilnl Xiln] + Wiln] + Ziln], @) The first layer of strategy spaces is defined @s=
fori=1,---,M,andn =1,2,--- , LN, where channel {Hp, Sg, wherei < {S,J}, and Hp and Sp rep-
fading coefficientdd;[n] remain constant ovéf—1)N+ resent hopping ove bands and spreading over an
1<n<IN,1<I[<L,and varies independently overentire frequency band, respectively. After each player
different blocks (of N channel uses) and sub-channelslecides on hopping or spreading, it needs to further
satisfying the distribution:H;[n] ~ CAN(0,0?), where decide what is the associated hopping pattern or power
CN (i, %) denotes the complex circular Gaussian distrallocation function given CSI, which thus forms the
bution with meanu and variancer®. The M subchannels second layer of game for a given selected option
model the)M parallel frequency bands. Each codeworth {(Shp, Jnp), (Shps Jsp), (Ssps Jsp), (Ssp, Jnp) . Each
spans overM x N x L channel uses. Channel additivgplayer (jammer or source) chooses hopping or spreading,
white Gaussian noise sequend®gn| are assumed i.i.d as well as the associated hopping patterns or power
acrossM N L channel uses with distributio\ (0, Ny). functions, accordingly. The two player over the first layer
Jamming signalsZ;[n] are independent across all chanean be characterized by the matrix in Table I, wheye
nel uses. In this paper, we investigate the jamming addnotes the utility function over the first layer, which



Jhp | Jsp M channel statistics. As only one slot is picked by each
Shp | U1 | U1 player, the mutual information rate over that particular
Ssp | ug1 | u22 slot 4 is
P;h; P;h;
TABLE | R; ;= log <1+ e >, or Rm:log< >
TWO-PERSON ZERO SUM GAME OVER HOPPING OR SPREADING JZ + NO N

(7)
where R; ; is the rate when jammer is present, while
R; o is the rate when jammer is absent.
is the rate determined below, for each joint strategy
(csi,cyj) With cs; € Cs andCy; € Cy, respectively. Tx hopping (S,) versus Jx spreading {p):
We focus herein on the Gaussian jamming [5], where Gjven full channel state information (CSI), the jammer
the jamming sequencéZ;[n|} is assumed to be i.i.d can unilaterally change to spread its power avérslots
Gaussian random variables with mearand variance without hopping while the transmitter sticks with its hop-
Ji, i.e Ziln] ~ CN(0,;), for i = 1,---,M. The ping strategy. This is the strategy suggested in [2] in the
transmitter encodes using Gaussian codebook such e scenario. The resulting pay-off function in terms of

the transmitted sequendeX;[n]} is i.i.d and distributed average sum rate is therefof®, , = 2, E i Ri.j].
asCN (0, P,) and independent of Z;[n]} and {X;[n]}, - ’

for j # . Tx spreading (S,,) versus Jx hopping (/5,):

Note: P andJ; are in general two functions of channel - gimilarly, if transmitter unilaterally alters to spreadin
statesh 2 {hy, -, hyr}. The power constraints in (2) while jammer keeps on hopping. The average sum rate
and (3) can be translated to is Ryp, = Ef‘{l E[(1 —5)Rio +viRi .

Short-term Power constraint: ’ a
M Tx spreading (Ss,) versus Jx spreading {,):
A A _ _
> Pi(h) < Ps, Ju(h) =) Ji(h)<Ps,  When the transmitter and jammer both spread power
= =1 over M channels without hopping, the resulting average
: @ sum rate is
Long-term Power constraint: M
Res=Y E[RiJ]. (8)
i=1

M M
Y E[P(h)] <Ps, Y E[Ji(h)] <Py, (5)
=1 =1 The power constraints specified in (4) and (5) are
Next, we provide the pay-off function of the secondctually for the case where both players adopt spreading
layer zero-sum game whetg ; in Table | is the maxmin strategy. For other cases where at least one of them
solution of the underlying zero-sum game, i.e. the robugtiopts hopping strategy, the power constraints will be
solution from transmitter's perspective. For some casefiodified as follows. Under the short-term power con-
we will show in next section that; ; is also the minimax straint, we haveP;(h) < Ps and P;(h) = 0 for
solution, and consequently a Nash Equilibrium point [6fransmitter andJ;(h) < P; and J;(h) = 0 for jammer,
Tx hopping (Sk,) versus Jx hopping () Vj # i, if the i-th frequency slot is picked up by either
When both players decide to hop ovef frequency the transmitter or jammer. While under the long-term
bands, each of them picks up one frequency slot g@wer constraint, the only non-zero power is the one
send/jam randomly, the resulting average sum f3tg, allocated over the pickeéth frequency slot by trans-
over M frequency slots, which is the pay-off function omitter (jammer) P;(h) (Jg )) with probability a;(h)
the two-person zero-sum game for this particular caS(eﬂ( )), wWhich Sat'Sf'eiz | E[a;(h)P;(h)] < Ps, and

can be computed as SM E[yi(h)Ji(h)] < Py, for transmitter and jammer,
respectively.
Ry = Z Eloi(1 =) Rio + aivilis]  (6)  The short term power constraints imply that whoever
selects hopping, the power used by it for that particular
whereo; > 0 and; > 0 for ¢ = 1,--- | M are the active frequency slot can not be greater tiianor P; for

probability that node S and nodg are active over the any given channel realizatidn. As a contrast, under the
i-th slot, respectively, with constralngl ,o; =1 and long term power constraint, the power averaged over all
ZM1 ~; = 1. Both of these distributions are functions othannel realizations and over all frequency slots cannot
h. The expectation is taken over the joint distribution afxceedPs or P;.



[1l. SPREADING ORHOPPING optimal power control functions is quite similar as the

We show next that when transmitter takes a robu@f€ ford/ = 1[7] and is omitted here. =
perspective in the sense to seek the maxmin solutigtfoof of Theorem 1
i.e. to maximize the minimum average sum rate when Proof: The proof of Theorem 1 consists of two
jammer knows completely the strategy space of tMeps We first demonstrate that givdd®*(h)} and
transmitter, none of these two players will select hopping/;"(h)}, when either jammer or transmitter deviates
strategy, but instead spreads power owérfrequency from spreading to hopping, it always ends up with the
slots optimally by taking the5, versus.J,, approach. beneficial effect for its opponent, and thus prove that
Given the transmitter's robustness perspective, theth spreading is Nash equilibrium point for the game
pay-off functions in the matrix game of Table | are  in Table I. Note that we cannot argue using the fact that
. — {Pr(h)} and{.J7(h)} is the Nash equilibrium point for
L (B P} (o () (1)) R (Ssp, Jsp) in the second layer to show that spreading and
- spreading is a Nash equilibrium point in the first layer

U9 = max min Ry, s, i
’ {a;(h),P (W)} {J;(h)} of the entire game.
U1 = max min  Rgp, uge = max min R,  Consider the strategy profileSs;, Ji,) where trans-
{Pu(h)} {7 (h), Ji(h)} {Pi(h)} {Js(h)} mitter selects spreading and jammer selects hopping. We
have the following inequalities hold:

Theorem 1: The Nash equilibrium of the game in M
Table | is (Ssp, Jsp) When transmitter takes a robustu —  max min ZE [(1 — ~;) log <1 + h_>
perspective by taking the pay-off functiom ; of the {2:i(h)} {i(h),Ji(h)} ~— No
matrix game as the maximin solution of the game in the h; P;
second layer for each of these four cases. +7ilog <1 + T+ Noﬂ

The proof of Theorem 1 relies on the convexity of the M ' i}
function f(z) = log(1+1/x),x > 0, as well as the > min ZE [(1 — ;) log (1 + @)
following Lemma: {i(h), Ji(n)} = No

Lemma 1: When both players select spreading pow- P*
ers overM frequency slots, the power allocation profiles +7ilog < J ;Voﬂ
{P’(h),i = 1,--- ,M} and {J/(h),s = 1,--- ,M}
resulted from solving:, > is a Nash Equilibrium point, > min ZE [log ( h; PZ-* >]
ie. ~ {w(h),Ji(h)} Yidi + No

v22 = ) Gy e = O (e, e (0) = ZE [log <1 + Jhipﬂ = uz, (13)

=1

The optimal power control functions are given by
n where the first inequality is from a particularization of
(h) = (% - %) , hi < ﬂ}{,ﬁu . P;i(h) to P*(h), the second inequality is due to the

Fi(h) = A(ﬂ%/y)j he > 2 i=1---, M, convexity oflog(1+1/z) and the last equality is a result
’ (11) of treatlng%J as an equivalenf/ under the constraint
and of "M E[J/(h)] < P; (long-term) or>"M J/(h) <
L < N Py (short-term), as well as the condition th@P (h)}
Jr(h) = { 0, N i > IR ’M’and{J*( )} is a Nash equilibrium point ofS), Jsp).
W—No, hi > T Now The inequality us; > wugo shows that jammer’s

(12) unilateral deviation from spreading power to hopping
where A and v are two constants determined by th@pnjy penefits the transmitter. Jammer therefore will not
power constraints. Under the short-term one (4h) gayter its spreading strategy unilaterally when transmitte
andv(h) are functions of the given channel realizatiogpreads its power. Using the similar techniques, we can
vector h. Under the long-term one (5)\ and v are prove thatu; » < ug» [8]. Inequalitiesu; » < us, and
functions of channel statistics. ug1 > ugo together imply that(S,,,Js,) is a Nash

Proof: equilibrium point of the matrix game over the first layer
The existence of Nash equilibrium point is due to thgf the zero-sum game as characterized in Table I. The
convexity of log (1 + b ) with respect to.J; and only remaining question is wheth€by,,, J,), i.e. two
concavity of it with respect toP;,. The proof of the players both select hopping ovéd slots, is another




equilibrium point. Without the concern of the sign of; and J;, (15)
Using the similar method, we can prowg; > u;2 immediately implies
[8], which implies that jammer’s unilaterally deviation M
from hopping to spreading when the transmitter stays Zpi(h) _
with hopping further reduces the average sum rate, which
indicates that Sy, J»,) cannot be an equilibrium point
of the matrix game in Table I.
Putting all these inequalities together, we can come Pg
to the conclusion that the strategy of both spreading 3 P+ MN,’

(Ssp, Jsp) is the unique Nash equilibrium point of the
matrix game in Table I, which completes the proof ofNich is exactly the ratio of/(J; + No) when the only
Theorem 1. option for both transmitter and jammer is to divide their

m PowersPs and P; uniformly over M frequency slots,
ie. P, = Pg/M and J; = P;/M fori =1,--- , M,
V. FEEDBACK ORNO FEEDBACK if neither the CSI about exact channel coefficiefits
Without Jammers presence, it is a well known resulor CSI about channel statistics is sent to back to the

that power control based on channel state informatidf@nsmitter.®.

received perfectly at transmitter side helps in increasingHowever, since additional constraints @ > 0

the ergodic capacity of fading channels [9]. Howevegnd J; = 0 V1 < i < M have to be invoked, the

when we consider the counter-measure issues again§iPimal power control functions are in (11) and (12),

smart jammer who intercepts the feedback channelW&ich reflects such restrictions. We can therefore see

obtain the perfect channel state information also abdfit the constant ratio of/A as determined in (17)

{h} as we have assumed in the system model part, iti§s under an equivalent assumption that could be

not quite obvious at the first glimpse whether it remairi¥egative, which cannot hold in real systems. Conse-

a viable option for the legitimate transceiver to hav@uently, imposing non-negativeness fbris equivalently

{h} sent back considering the presence of such a sm&tconfining jammers jamming capability, which in

jammer. Notice that the jammer could also exploit th&!m favors the transmitter and hence the associated

CSl using the jamming power control function obtaineés,s at the equilibrium point must be greater than

in Lemma 1 for its malicious purpose. The question wg Zlelog 1+ Pﬁijo , the rate when no infor-

address in this section is to justify that even when theation is available to transmitter and jammer. In addi-

smart jammer has the capability to explore CSl, it is stitlon, it can be shown the true ratio of/\ in Lemma 1

better to feedback CSI than not from the transmitteris greater thanPs/(P; + MNo) [8].

perspective. We can thus conclude that even when jammer is able
To answer the question raised above, we need to fitstintercept the feedback CSI to conduct smart jamming,

examine how we attain the two power control functionge still need to inform transmitter of the currefih}

in (11) and (12), respectively. Define a concave functidor the sake of improving the legitimate user’'s counter-

g(z) =log(1 + x) for z > 0. Under the strategy profile measure capability.

(Ssps Jsp), the pay-off functionR, s in (8) can be re-

M
(Z Ji(h) + MN0> (16)
=1

Under the power constraints in either (4) or (5), we
Iways have

> B>

>

(17)

written asR,, = Y., E[g(z;)] wherex; = Jufe V. WHEN TO FEEDBACK AND WHEN NOT TO

Since g(z;) is a concave function of’;, and a convex FEEDBACK

function of J;, the KKT [10] condition yields We have noticed from the last section that although
dg  hi 5 dg  hP 0. (14 the transmission power of transmitter and jammer at
de; J; + Ny e dz; (J,+NO)2 =v>0, (14) the equilibrium point are both functions of channel

. coefficients{h} as shown in (11) and (12), the ratio

for i = 1,--- , M, where A and? are constants similar Pr/(JF + Np) is a constant and has nothing to do

as those in (11) and (12) to meet the power constraifigh the exacth; as long ash; > I holds, where

for transmitter and jammer, respectively. I' = No)\/(1— Ngv). The question we intend to address

From the conditions in (14), we can easily infer thgh this section is: Is it possible that the amount of
the following condition holds as long as both jammer

and transmitter are active in theth frequency slot: 'When only channel statistics is known to both jammer and
p . transmitter, we can reach a similar conclusion that nonehefmt
) ) : )
i _ P, >0, J; > 0. (15) shall adopt hopping as a strategy, but instead both of theeadp

powers based on channel statistics

J—l—No_X



information sent back by receiver regardifda} can tacks, the legitimate receiver measur@s,, -, ha}

be cut to some extent while the performance in ternasmd decide whether or not to send back its measurement
of the average sum rate remains the same, given thesed on the following conditions about: if i €
presence of such a smart jammer? The importance of thgh), no information is sent back to transmitter; if
answer to this question could be quite significant as wec I7 (h), full CSI abouth; is feedback. The power
have been ignoring the cost associated with sending backtrol functions of jammer and transmitter are altered
perfect CSi{h}. If we can show that receiver can deliveas follows: when: € If (h), the same power functions
channel state information back to transmitter in a smartas J;* and P specified in (11) and (12) are deployed,
way, instead of always sending back full CSI, withoute.

hurting the performance, it will imply the possibility P 1 No\" -

: ' : Py = -5 »Jir=0. (21)
of reducing the system complexity and cost as far as ' AL hy '

feedback is concerned. Wheni € Ir(h), the power control functions at Equi-

It turns out not only is transmitter involved in adaptiveiprium points are given by
power control in fighting against the jammer, the receiver _ L o
should also perform some kind of adaptive feedback Fir = Ps../Mr, Ji = Py/My, i € Ir(h).  (22)
mechanism. The exact adaptive feedback protocol de- Proof: The proof of Theorem 2 hinges upon the fact
pends on whether we have short-term or long-term powér (1) @and P (h) in (11) and (12) are Nash equilibrium
constraints. Due to the space limitation, we only preseP@ints under the strategy profilé®,, /) when {h} is
the case under the long term power constraint. TIKE@Mpletely known to both transmitter and jammer. In
protocol under the short-term power constraint can §ldition, theJ*(h) and P (h) result in the same ratio
treated in a similar way [8]. as that in (20) undePiL and Jz'*,g wheni € I, which
Definev;, and \;, as the multipliers under the long-implies that deploying?”; and J7, as specified above
term power constraint. We then accordingly defihe=  Yields the same average rate as if the full CSl is known.
L, as the threshold for power control functiond he details of the proof are in [8].
under the long-term power constraint. Consequently, _ _ u
define I, (h) A {j:h; >Tp,1<j< M} as the the Remarks: Theorem 2 essentially unveils to us that
set of indexes of channel coefficients over which boffH€ t0 the mutual restrictions between transmitter and

jammer and transmitter allocate positive powers, aﬂ\%‘Emer iﬂ this two-person zero sum ga;me, W_el,'_bc_an
T5(h) 2 [ hy < Tyl < j < MY, Let My (h) — |1, 2Chieve the same average sum rate at the equilibrium

denote the number of elements of the det under point when receiver sends back less amount of channel

the channel realization vectdh}, and M denote the state information.
average number of frequency slots where jammer is VI]. CONCLUSION
active, i.e My = SM Prh; > T;] = E[Mz(h)]. . . . .
. L= 2= Prihi = T My (h)l. In this paper, we have investigated issues related
Let Ps ;, denote the amount of average power available.

. with sending back channel state information in parallel
to spend over frequency slots whére> I';,, which can : . . .
: Gaussian fading channels to defend against Gaussian
be determined as

jamming attacks. With total sum rate as the pay-off

- 1 No\ ™" function, our results reveal how legitimate transceivers
Psp=Ps—E| ) (E - h_z> (18)  should collaborate to jointly handle CSI in the presence
ieli (h) of an intelligent jammer. Similar questions can be raised

As seen from (12) and (11), for aniyin I;,(h), we have when we adopt other metric as the pay-off function,
such as the error exponent, which might not have the

Pz‘,L(h) _ V_L’ (19) same functional feature as the total sum rate and thus
Jip(h)+No AL could lead to different conclusions. Interesting resudts a
from which we can deduce to other pay-off functions will be presented in our future

- work.
o TsL (20)
AL, Pr+MpNy’

Using the Nash equilibrium points argument, the adap] Richard Poisel, Modern Communications Jamming Principles

tive feedback protocols under the long-term power con-_ @nd TechniquesThe Artech House Publishers, 2003.
. E in the followi h 9 P [2] Marvin K. Simon, Jim K. Omura, Robert A. Scholtz, and
straint is stated in the following Theorem. Barry K. Levitt, Spread Spectrum Communications Handhook

Theorem 2: To counter-measure the jammers at-  McGraw-Hill, 1994, Revised Edition.
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