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Gaussian Jamming in Block-Fading Channels under
Long Term Power Constraints
George T. Amariucai and Shuangqing Wei and Rajgopal Kannan

Abstract— We formulate a Gaussian uncorrelated jamming
problem in block fading channels under long term power
constraints. Source aims at minimizing the outage probability
of its transmission under the presence of a malicious jammer,
while the jammer attempts to maximize the corresponding outage
probability under its average power constraint. Optimal power
control strategies for both source and jammer are obtained for
minimax and maxmin problems, respectively, for any arbitrary
finite number of blocks in block fading channels. Our results
demonstrate the non-existence of Nash-equilibria of this two-
person zero-sum game.

I. INTRODUCTION

The problem of jamming in wireless networks started to
attract interest in the ’80s [1], [2], and was focused on simple,
point-to point communication systems, affected by intelligent
jammer. The jammer was assumed to have access to either a
noise-distorted version of the transmitter’s output [1], or the
transmitter’s input message [2]. The mean-squared error was
considered as a performance indicator.

A saddlepoint for the jamming game of [1] consists of an
amplifying transmitter and a jammer that performs a linear
transformation of its available version of the transmitter’s out-
put signal. Similar results were obtained in [3], for correlated
jammers suffering from phase/time jitters at acquisition or
at transmission. Channel capacity was used as performance
indicator. Extensions to more complex, multi-user channels
with fading, were derived in [4], [5], [6], [7] and [8].

The general tendency seems to be in favor of an assumption
that jammer has access to either the transmitter’s output or
input and consequently is able to produce correlated jamming
signals. Uncorrelated jammers are often studied only as a
particular case. We, however, argue that correlation assumption
is sometimes inappropriate because of the effect of causality.

In addition, most recent works adopt ergodic capacity as a
common objective function over which transmitter and jammer
fight against each other [7], [5], which is not a suitable metric
if delay constraint is considered.

In this paper, we take a look at a constant-rate wireless
system with power and delay constraints, which is depicted
in Figure 1. This system model is similar to the one used
in [7]. However, the major difference is that we investigate
jamming in delay constrained block fading channels, and
therefore adopt outage probability [9] as an objective over
which jammer and transmitter fight against each other. In
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addition, in our formulation the jammer is assumed to possess
no knowledge about the output of or the codebook employed
by the transmitter.

Our problem is formulated as a two-player, zero-sum game,
where only pure strategies (no randomized strategies) are
considered. The power constraint in a block fading channel
can be manifested in terms of either short term or long term
[9]. In this paper, we only present the long-term case.

We have already solved the M = 1 case in [10]. In this
paper, we provide the extension to the more general case of
any finite M > 1. The extension is far from trivial. Not only
do the KKT conditions not yield a closed form solution, but
the methods used in [10] are no longer valid. Moreover, the
new problem of allocating power between blocks in a frame
arises.

II. CHANNEL MODEL AND NOTATIONS

The channel model is depicted in Figure 1. Each codeword
spans a concatenation of M blocks, each of which has N
channel uses. As assumed in [9], we let N → ∞ in order to
average out the impact of Gaussian noise.

Over a given frame, the transmitter (Tx) allocates power Pm

to block m, 0 ≤ m ≤ M − 1, while the jammer (Jx) invests
power Jm in jamming the same block with the worst possible
jamming signal which is uncorrelated with the transmitter’s
output, white and Gaussian distributed [11].

The channel squared fading coefficient hm is constant over
the length of one block. The vector h = [h0, h1, . . . , hM−1]
of channel coefficients over a whole frame is assumed to be
perfectly known to transmitter, receiver and jammer before
transmission begins. This condition does not imply non-
causality if we think of modeling a multicarrier system [9].

Then the mutual information over a subchannel m
when transmitter uses Gaussian codebook is given by
I(hm, Pm, Jm) = 1/2 log(1 + hmPm

σ2

N
+Jm

), where σ2
N is the

variance of the AWGN.
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Fig. 1. Channel model
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In the sequel, the following denotations will be repeatedly
used: (1) Power allocated by transmitter to a frame: PM =
1
M

∑M−1
m=0 Pm; (2) Power allocated by jammer to a frame:

JM = 1
M

∑M−1
m=0 Jm; (3) Instantaneous mutual information

for a frame:IM = 1
M

∑M−1
m=0 I(hm, Pm, Jm).

Also note that PM is a function of the channel realization
h, so we often write PM (h) when this relation needs to be
pointed out. This can be interpreted as the function giving the
power distribution between frames. We use PM (h) and JM (h)
to denote intra-frame power allocation for the case M = 1,
since in this case a frame only contains one block.

The notation P (h) and J(h) will denote the functions giving
the power distribution within a frame (between blocks).

The probability of outage will be the cost/reward function.
It is defined as [9] Pout = Pr(IM < R), with R denoting the
fixed rate of the system.

The power required for a player to achieve its objective
(reliable communication for transmitter, and outage for jam-
mer) over some frame, given a fixed opponent’s behavior, will
be denoted as ”required power”. Depending on its optimal
strategy, this power may or may not be matched by the player.

The long-term power constrained jamming game can be
described as:

Tx
{

Minimize Pr(IM (h, P (h), J(h)) < R)
Subject to E[PM (h)] ≤ P (1)

Jx
{

Maximize Pr(IM (h, P (h), J(h)) < R)
Subject to E[JM (h)] ≤ J (2)

where expectation is with respect to the vector of channel
coefficients h = (h0, h1, . . . , hM−1) ∈ R

M
+ , and P and J are

the upper-bounds on average transmission power of the source
and jammer, respectively.

The two players need to make decisions on whether or not
to transmit over a frame, given a fixed opponent’s strategy. In
the sequel, we look at both maximin and minimax solutions
to the above game and determine the associated power control
functions PM (h) and JM (h).

The maximin solution is defined as the set of optimal
strategies when jammer plays first. No matter what strategy
jammer uses, transmitter will take advantage of its weaknesses,
and aim at a minimum of the outage probability. The best
option for jammer is to maximize the minimum achievable by
the transmitter. On the other hand, the minimax solution is
defined as the set of optimal strategies when the transmitter
plays first. Jammer aims at a maximum outage probability.
The best option for transmitter is to minimize the maximum
achievable by jammer. In [10] we found these solutions for
the case M = 1.

Let m denote the probability measure introduced by the
probability density function (p.d.f.) of h, i.e., for a set A ⊆
R

M
+ , we have m(A ) =

∫

A
f(h)dh.

III. POWER ALLOCATION BETWEEN BLOCKS WITHIN A
FRAME FOR M > 1

If the number of blocks M in each frame is larger than 1,
the game between transmitter and jammer has two levels. The

first (coarser) level is about power allocation between frames,
and has the probability of outage as cost/reward function. The
case of M = 1 is only concerned with this level. The second
(finer) level is that of power allocation between blocks within
a frame.

The probability of outage is determined by the m-measure of
the set over which the transmitter is not present or transmission
is jammed. This set is established in the first level of power
control. In this subsection, we study the second level strategies.

In the maximin case (when jammer plays first), assume
that the jammer has already allocated power JM to a given
frame. Depending on the channel realization, the value of
JM , and its power constraints, the transmitter decides whether
it wants to achieve reliable communication over that frame.
If it decides to transmit, it needs to spend as little power
as possible (transmitter will be able to use the saved power
for achieving reliable communication over another set of
positive m-measure, and thus to decrease the probability of
outage). Therefore, the transmitter’s objective is to minimize
the power PM spent for achieving reliable communication.
The transmitter will adopt this strategy whether the jammer
is present over the frame, or not. The jammer’s objective is
then to allocate JM between the blocks such that the required
PM is maximized. Similar arguments apply for the minimax
scenario.

The two problems can be formulated as:
Problem 1 (for the maximin solution)

max
{Jm}

[

min
{Pm}

PM =
1

M

M−1
∑

m=0

Pm, s.t. IM ({Pm}, {Jm}) ≥ R
]

s.t. 1

M

M−1
∑

m=0

Jm ≤ JM ; (3)

Problem 2 (for the minimax solution)

max
{Pm}

[

min
{Jm}

JM =
1

M

M−1
∑

m=0

Jm, s.t. IM ({Pm}, {Jm}) ≤ R
]

s.t. 1

M

M−1
∑

m=0

Pm ≤ PM . (4)

Note that the first level power allocation strategies cannot
be derived before the second level strategies are available.
Due to the linearity of the cost function and convexity of the
constraints, the solutions of the above optimization problems
can be sought by solving the KKT conditions.

The following proposition provides a result that we shall
use in the sequel. Due to the intuitive nature of the proof, as
well as space limitations, we put the proof in [12].

Proposition 1: The optimal solution of either of the two
problems above satisfies both constraints with equality.

Denote xm = Jm + σ2
N . Without loss of generality,

throughout the sequel we assume that the ratios xm/hm, with
m = 0, 1, 2, . . . , M − 1 are always ordered increasingly, i.e.
x0/h0 ≤ x1/h1 ≤ . . . ≤ xM−1/hM−1 [9].

Solution of Problem 1
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The transmitter’s problem can be written as:

min
Pm

1

M

M−1
∑

m=0

Pm, s. t.
M−1
∑

m=0

log

(

1 +
hmPm

σ2
N + Jm

)

≥ 2RM.

(5)

With the notation c = exp(2RM), the KKT conditions
yield:

Pn =







c(1/M ′)
(

∏M ′−1
m=0 xm

)(1/M ′)

(

∏M−1
m=0 hm

)(1/M ′)
− xn

hn







+

, (6)

where [z]+ = max{z, 0}. We can now show that the solution
is unique.

Proposition 2: Problem 1 has a unique solution.
Proof: PM is a strictly concave function of the vector

X = (x0, x1, . . . , xM−1) (for a detailed proof see [12]). The
second part of Problem 1 can be written as

min
xm

(−PM (X))subject to
M−1
∑

m=0

xm = M(JM + σ2
N ), (7)

which is a nonlinear minimization problem, with convex cost
function and linear equality constraints, thus has a unique
solution.

The jammer’s problem can be written as:

Find max
xm

M ′

M





c
(

∏M ′−1
m=0 hm

)





1

M′





M ′−1
∏

m=0

xm





1

M′

−

− 1

M

M ′−1
∑

m=0

xm

hm
(8)

subject to 1

M

M−1
∑

m=0

xm = (JM + σ2
N ) (9)

and xm ≥ σ2
N , for m = 1, 2, . . . , M − 1. (10)

The new KKT conditions are given by




M ′−1
∏

m=0,m6=n

xm



A





M ′−1
∏

m=0

xm





1−M
′

M′

− 1

hn
+ µ = 0, (11)

along with (9) and (10). We used the notation A =
(

c
“

Q

M′
−1

m=0
hm

”

)(1/M ′)

for simplicity. The system given by

(11), (9) and (10) can be solved by checking the condition
in (10) while assuming the jammer is present on a number of
blocks which decreases from M ′ to 1.

An interesting situation occurs when both transmitter and
jammer are present over the same M ′ blocks. In this case, the
function PM (JM ) is linear (see [10] for a proof).

However, if jammer and transmitter are present over differ-
ent blocks linearity of PM (JM ) function no longer holds.

Solution of Problem 2

The minimax intra-frame power allocation problem can also
be solved by writing the KKT conditions. However, we were
not able to reach satisfying results by this method. Instead we
use the above solution of Problem 1 and show that for both
problems, the power allocation should be the same.

Theorem 1: If JM,1 is the value used for the second con-
straint in Problem 1 above, and PM,1 is the resulting solution,
then solving Problem 2 with PM = PM,1 yields the solution
JM = JM,1. Moreover, the power distributions should be the
same, in both problems.

Proof: Assume that the vectors P∗ =
(P ∗

0 , P ∗
1 , . . . , P ∗

M−1) and J∗ = (J∗
0 , J∗

1 , . . . , J∗
M−1) are

a solution of Problem 1. Then 1
M

∑M−1
m=0 Jm = JM,1 and

1
M

∑M−1
m=0 Pm = PM,1.

Since P∗ and J∗ form a solution, by Proposition 1, they
satisfy the first constraint in Problem 1 with equality, and so
they also satisfy the first constraint in Problem 2. Furthermore,
setting the second constraint of Problem 2 as PM = PM,1, we
note that P∗ and J∗ are in the feasible set of this problem.

If we evaluate the cost function at this point, we get JM =
JM,1.

Thus, keeping the power distribution given by P∗, in the
second problem, we can only obtain JM,2 ≤ JM,1, by
minimizing the cost function over (J0, J1, . . . , JM−1).

Now take any different power distribution P′ =
(P ′

0, P
′
1, . . . , P

′
M−1) 6= P∗, satisfying 1

M

∑M−1
m=0 P ′

m = PM,1.
The pair of vectors (P′, J∗) cannot satisfy the first constraint
in Problem 1, because if it did, it would make a second solution
of this problem, and the solution of Problem 1 is unique, as
specified by Proposition 2 above.

Thus, this pair has to satisfy the first constraint in Problem
2 (with strict inequality). We know this could not possibly be
a solution of the second problem, since the first constraint is
not tight, but it is a feasible point and, by evaluating the cost
function at this point, we get JM = JM,1.

Thus, any power distribution of PM,1 we pick, we should
always obtain JM ≤ JM,1 in Problem 2. But any solution of
Problem 2, with PM = PM,1 is also a solution of Problem 1,
and so we cannot have JM < JM,1.

Therefore, P∗ and J∗ are a solution of Problem 2.
We have shown that the second level optimal power alloca-

tion strategies for the maximin and minimax problems coin-
cide. We need to characterize a particular channel realization
in terms of this power allocation tehchnique. Considering the
maximin problem, we can map each channel vector h to a
unique curve in the plane PM (JM ). That is, for fixed h, we
increase the jammer’s power over the frame from 0 to ∞,
and compute the transmitter power PM (JM ,h) required for
achieving reliable communication. We have already mentioned
that PM (JM ) is a continuous, concave function.

In the remainder of this section we present the particular
case of M = 2 as an example of intra-frame power allocation.

Particular case: M=2
The case of M = 2 is the simplest and most intuitive

illustration of the second-level power control strategy. Since
we already showed that the minimax and maximin solutions
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coincide, the following considerations refer to the maximin
scenario only.

Particularizing (6) to M = 2, for n ∈ {1, 2} and taking the
average of the two quantities we get:

PM =

{ √

cx1

h1

x2

h2

− 1
2

(

x1

h1

+ x2

h2

)

, if cx1

h1

≥ x2

h2

(c − 1)x1

h1

, if cx1

h1

< x2

h2

.

This is the minimum required transmitter power PM , obtained
by optimally distributing transmitter power between the two
blocks.

If the transmitter is only present on the first block, i.e. c x1

h1

<
x2

h2

, then PM only depends on x1/h1. In order to maximize this
quantity, the jammer should allocate all its power to the first
block. Therefore, this situation is only possible if x2 = σ2

N .
The jammer’s strategy in this case is to decrease the ratio
r = (x2/h2)/(x1/h1) by increasing the denominator.

Next assume that the transmitter is present over both blocks
(as a result of either channel conditions or of jammer allocating
enough power over the first block). Using the ratio r defined
as above, and the fact that x1 +x2 = 2(JM +σ2

N ), we obtain:

PM =
(JM + σ2

N )(2
√

cr − r − 1)

h2r + h1
, if c

x1

h1
≥ x2

h2
. (12)

The ratio r that maximizes PM is found by setting the
derivative equal to zero, as:

ropt =

(

√

(h1 − h2)2 + 4h1h2c − (h1 − h2)

2h2
√

c

)2

, (13)

and is between 1 (for h1 = h2) and c (for h2 = 0).
Furthermore, PM (r) is strictly increasing for r ∈ [1, ropt) and
strictly decreasing for r ∈ (ropt, c].

This implies that the optimal jammer strategy is to allocate
its power such that the ratio r = (x2/h2)/(x1/h1) approaches
the optimal ratio ropt. If the optimal ratio is attained, jammer
should further maintain the ratio.

If JM increases from 0 to ∞, we can define the character-
istic curve PM (JM ). For instance, if (σ2

N/h2)/(σ2
N/h1) > c

the transmitter transmits on the first block only. As jammer
starts transmitting, it will concentrate its power over the first
block, until the ratio (σ2

N/h2)/[(2JM +σ2
N )/h1] reaches ropt.

Note that in doing so, the ratio passes through c, and that
is when the transmitter starts transmitting on both blocks.
After optimal ratio is attained, as JM increases the jammer
keeps allocating power over both blocks, while keeping the
ratio r constant and equal to ropt. Similar strategies apply if
(σ2

N/h2)/(σ2
N/h1) ∈ [ropt, c]. Note that h1/h2 ≥ ropt for any

channel realization (h1, h2), and so the two scenarios above
cover all possible situations.

IV. INTER-FRAME POWER ALLOCATION FOR M > 1:
MAXIMIN SOLUTION

In this subsection we present the first level optimal power
allocation strategies for the maximin problem, in the general
case M ≥ 1. The jammer needs to find the best choice of the
set X ⊂ R

M
+ of channel realizations over which it should be

present, and the optimal way JM (h) to distribute its power
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Fig. 2. First level power allocation techniques for the maximin (left) and
minimax (right) solutions

over X , such that when the transmitter employs its optimal
strategy, the probability of outage is maximized.

The solution of this problem is presented in the following
theorem.

Theorem 2: It is optimal for jammer to make JM (h) sat-
isfy the power constraint with equality. The optimal jammer
strategy for allocating power across frames is to increase the
required transmission power, starting with those frames whose
channel realizations exhibit the steepest instantaneous slope
of the characteristic PM (JM ) curve. This increase should
be done such that the required transmitter power over each
channel realization where the jammer is present does not
exceed a pre-defined level K.

A description of the technique is given in Figure 2.
The optimal value for K that maximizes the outage proba-

bility can be found numerically.
Proof: Let S , X ⊂ R

M
+ denote the sets of channel

realizations over which the transmitter and the jammer are
present, respectively.

Let jammer pick a certain strategy JM (h). Since the trans-
mitter’s strategy is predictable, the jammer knows the set S

as well as the maximum level of required power that will
be matched by the transmitter. Denote this level by K. The
required transmitter power should be equal to K over X \S ,
since otherwise either the jammer (if larger) or the transmitter
(if smaller) would be wasting power.

Assume there exist two sets A , B ⊂ S
⋂

X of non-zero
m-measure such that dPM (h1)

dJM

> dPM (h2)
dJM

∀ h1 ∈ A and h2 ∈
B, and such that the required PM is less than K on A and
JM > 0 on B.

Consider a small enough amount of jamming power δJM ,
such that, for any channel realization h ∈ A

⋃

B, we can
modify the jamming power by δJM without changing the slope
of the PM (JM ) curve. Subtracting δJM from all frames in B,
the jammer obtains the excess power δJMm(B), which it can
allocate uniformly over A . This way, the jammer improves its
strategy by forcing the transmitter to allocate more power to
the set A

⋃

B, and hence increases the probability of outage.
Note that the optimal pre-defined constant K should be the

limit of at lest one sequence of power levels PM (h) matched
by the transmitter.

V. INTER-FRAME POWER ALLOCATION FOR M > 1:
MINIMAX SOLUTION

In Theorem 1, we showed that, for the minimax problem,
the power allocation within a frame, as well as the relationship
between the total powers used by transmitter and receiver
over a particular frame, are identical to the maximin problem.
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Hence, by rotating the PM (JM ) plane, we get the character-
istic JM (PM ) curves for the minimax problem.

The main result of this section is presented in the following
theorem.

Theorem 3: It is optimal for transmitter to make PM (h)
satisfy the long-term power constraint with equality. The op-
timal transmitter power allocation across frames is to increase
the required jamming power up to some pre-defined level K,
starting with those frames on which the required transmitter
power to achieve this goal is least.

A description of the technique is given in Figure 2.
The optimal value for K that minimizes the outage proba-

bility can be found numerically.
Proof: Let S and X denote the sets over which

the transmitter and the jammer are present, respectively. Let
transmitter pick a certain strategy PM (h). Since jammer’s
strategy is predictable, the transmitter knows the maximum
level of required power that will be matched by jammer.
Denote this level by K and note that the required jamming
power over S \ X should be equal to K (otherwise either
the jammer - if smaller than K - or the transmitter - if larger
- would be wasting power).

Assume there exist two sets A , B ⊂ S
⋂

X of non-
zero m-measure such that K

PM (h1,K) > K
PM (h2,K) ∀ h1 ∈

A and h2 ∈ B, and such that the required JM is less than
K on A and JM > 0 on B. Denote the original transmitter
power allocations by P A

M,0(h) and P B
M,0(h) respectively.

We know that JM (PM ) is convex, and hence
K − JM,1

PM (h1, K) − PM (h1, JM,1)
≥ K

PM (h1, K)
>

>
K

PM (h2, K)
≥ J2

M

PM (h2, JM,2)

∀ h1 ∈ A ,h2 ∈ B and JM,1, JM,2 < K. (14)

If the transmitter cuts off transmission over a subset B′ ⊂
B, it obtains the excess power

∫

B′
PM (h)dm(h), which it

can allocate to a subset A ′ ⊂ A such that the required JM

is equal to K over A ′, i.e.
∫

B′

P B
M,0(h)dm(h) =

∫

A ′

[

PM (h, K) − P A
M,0(h)

]

dm(h)

(15)

Replacing PM (h1, JM,1) by P A
M,0(h) and PM (h2, JM,2) by

P B
M,0(h) in (14), we see the transmitter improves its strategy

by forcing the jammer to allocate more power to the set
A
⋃

B, and hence decreases the probability of outage.
Note that since B′ ⊂ S

⋂

X , the set B′ is in outage,
regardless of whether the transmitter is present or not. Thus,
transmitter does not increase Pout by cutting off transmission
on B′.

VI. NUMERICAL RESULTS

We have computed the outage probabilities for both min-
imax and maximin problems when M = 2. The channel
coefficients are assumed i.i.d. exponentially distributed with
parameter λ = 1/6. Figure 3 shows the outage probability
vs. the maximum allowable average transmitter power P for
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Fig. 3. Outage probability vs. P for M = 1 and M = 2 when J = 10 -
minimax and maximin cases - and when J = 0

fixed J = 10 when R = 1. For comparison purposes, we
also provide results for the cases when M = 1 and when the
jammer is not present (J = 0).

The numerical results demonstrate a sharp difference be-
tween minimax solutions and maxmin solutions, which implies
the non-existence of Nash-equilibria of this two-person zero-
sum game.

In addition, note that increasing M from 1 to 2 produces
an increase in the outage probability for the minimax, and
a decrease for the maximin. This can be explained by the
fact that the first player is always at a disadvantage, and this
disadvantage increases as the second player gains degrees of
freedom.
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