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Abstract—In the existing works on distributed detection in sen-
sor networks, local sensor nodes either quantize the observation
or directly scale the analog observation and then transmit the
processed information independently over wireless channels to a
fusion center. In this paper, we exploit the advantages of both
of these two approaches by constructing an equivalent Σ − ∆

ADC across space over wireless sensor networks. Sensors are
arranged in a mixing of parallel and serial topologies, enabling
each sensor to transmit binary information to the fusion center,
while in the meantime preserving the analog information through
collaborative processing. Comparison with existing approaches
demonstrates the superiority of our proposed scheme in both
AWGN and fading channels in terms of the resulting detection
error probability.

1. INTRODUCTION

Distributed detection with multiple sensors has received
great attentions over decades ( See [1], [2], [5] and references
therein). In a distributed sensor network, multiple sensors work
collaboratively to distinguish multiple hypothesis. Each local
sensor performs some preliminary data processing and may
send the information to other sensors. Ultimately the locally
processed information is collected by a fusion center where
an optimal or a suboptimal fusion algorithm is performed to
reach a final decision.

Unlike the traditional distributed detection works where
sensor output is assumed immediately available to the fusion
center, most of the recent works on distributed detection
explicitly take the wireless channels between sensors and the
fusion center into consideration [5], [3], [4]. Parallel topology
is usually adopted in these works, where sensors transmit
information to the fusion center via independent orthogonal
channels without exchanging any information between them.
The objective is to design optimal local processing rules with
([5]) or without using channel information, as well as asso-
ciated fusion algorithms under certain performance criterion
(e.g. Bayesian or Neyman-Pearson criterion). Analog trans-
mission (scale and forward scheme) has also been investigated
for additive white Gaussian noise(AWGN) channels [4].

In this paper, we propose a novel distributed detection
scheme for binary hypothesis test. Inspired by the concept
of analog to digital converter (ADC) which converts analog
signals to bit-stream, we propose a novel Σ − ∆ ADC-based
distributed detection scheme where wireless sensor nodes
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jointly process the analog observations using Σ−∆ modulation
without oversampling and decimation. Due to the limited
power budgets, each local sensor is only allowed to take one
sample of observation and send one bit message to the fusion
center. Furthermore, each sensor is allowed to communicate
to its next adjacent sensor. This novel combination of serial
and parallel topology [1] enables us to form an equivalent
Σ − ∆ loop across space within the wireless sensor network.
As shown in our simulation results, the ADC-based distributed
detection system outperforms both the binary and analog
approaches in both AWGN channels and fading channels
under certain conditions and it can be used to achieve better
performance in certain applications that a large number of
sensors are deployed closely together, so that the additional
power consumed for inter-sensor communication is relatively
small.

2. SYSTEM MODEL AND PROBLEM
FORMULATION

A. System Model
In this paper, we focus on a distributed binary hypothesis

testing problem. Suppose that there are N sensor nodes
observing a random phenomenon. Each sensor collects only
one noisy observation described by

H1 : xi = s + wi, i = 1, 2, · · · , N
H0 : xi = wi, i = 1, 2, · · · , N

where s is a known constant signal and {w1, w2, · · · , wN} are
measurement noises that are mutually independent and identi-
cally distributed as real Gaussian random variables with mean
zero and variance σ2

w. Different from distributed detection
systems with parallel topology [1], we also allow communica-
tion between adjacent sensor nodes. As a result, the N -sensor
actually follows a mixing of serial and parallel topology as
shown in Figure 2. For this topology, sensor node i maps its
local observation xi and the signal vi−1 sent by the adjacent
sensor node i−1 to its output yi = γi(xi, vi−1), which is then
transmitted to a fusion center over a unique assigned channel
(e.g. a time slot) that experiences independent flat fading with
respect to other orthogonal channels. The received signal at
the fusion center from the ith sensor node is given by

ŷi = hiyi + ni (1)

where ni is AWGN with variance σ2
n and hi is the fading

channel gain with Rayleigh distribution and E(|hi|2) = 1.
We also assume non-coherent detection at fusion center where
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Fig. 1. First order Σ − ∆ modulator ADC system

only channel fading statistics instead of global channel state
information (CSI) are available.

The fusion center receives {ŷ1, ŷ2, · · · , ŷN} and makes a
global decision θ based on an optimal or suboptimal fusion
rule which will be discussed in the next two sections. Denote
the prior probability by πi = P (Hi), i = 0, 1. The detection
performance is characterized by the detection error probability

Pe,N = π0P (θ = H1|H0) + π1P (θ = H0|H1) (2)

with respect to the sensor measurement SNR denoted as
Ps

∆
= s2/σ2

w and the inter-sensor-center channel SNR (with
normalized transmission power 1/σ2

n) denoted by Pt = 1/σ2
n.

The goal is to minimize the detection error probability by
designing the proper local transmission strategy {γi}N

i=1 and
the corresponding fusion rule γ0 at the fusion center. With the
statistic knowledge of wi, hi, ni, the optimal fusion rule at the
fusion center is the maximum a posteriori probability (MAP)
decision

γ0(ŷ1, · · · , ŷN ) =

{

H0, Λ ≥ π1

π0
,

H1, Λ < π1

π0
.

(3)

where Λ = f(ŷ1,···,ŷN |H0)
f(ŷ1,···,ŷN |H1)

is the likelihood ratio (LR) of the
joint probability density function (pdf) of {ŷi}N

i=1 under each
hypothesis.

B. Σ − ∆ modulation ADC
A block diagram of a conventional first order Σ−∆ ADC

system is shown in Fig. 1 which includes a Σ−∆ modulator,
followed by a digital decimator. The modulator consists of
an integrator, an internal AD converter or quantizer, and a
feedback path. The relationship between the input and output
of the Σ − ∆ modulator is given by

vi+1 = xi − yi + vi, yi+1 = q(vi+1). (4)

where

q(v) =

{

1, v ≥ 0,
−1, v < 0

(5)

assuming that the output of the one bit quantizer is either 1
or −1. Using a linear model [6], the Z domain relationship of
the Σ − ∆ modulator is:

Y (z) = X(z)z−1 + E(z)(1 − z−1)

where Y, X and E are the Z transforms of the output, input
signal and the quantization error process, respectively. The one
bit quantization error is shaped by a first order differentiator or

Fig. 2. Σ − ∆ ADC based distributed detection scheme

Fig. 3. Equivalent model for Σ−∆ ADC based distributed detection system

high-pass filter. For conventional Σ−∆ ADC, the continuous-
time signal is first oversampled before being fed into the
Σ − ∆ modulator. The oversampling process spreads the
fixed quantization noise power over a bandwidth that is much
larger than the signal band. The noise spectrum is further
shaped by the noise transfer function in order to push most
of the quantization noise power outside the signal bandwidth
[6]. Consequently, the quantization noise can be significantly
reduced by the low-pass filter with cut off frequency equal
to the signal bandwidth. The digitalized signal is effectively
downsampled to the signal Nyquist rate. The output of the
digital decimator thus becomes a multi-bit finite-valued digital
data reconstructing the analog input.

C. Σ − ∆ ADC based distributed detection system
We now consider integrating the Σ−∆ modulator into the

sensor node as a local quantizer with only 1 bit resolution. The
fusion center uses the output bit stream of the modulator that
represents the analog observation to make a binary decision.
For the detection purpose, we drop the oversampling block
in the Σ − ∆ modulator due to the following reason. Our
purpose is not to reconstruct the analog input signal xi, but
to distinguish between two hypothesis. Without oversampling,
the spectrum of the measurement noise in xi is spread in the
same way as the quantization noise spectrum, most of which
will be filtered by the subsequent decimator.

Fig. 2 shows the Σ − ∆ ADC based distributed detection
scheme and Fig. 3 shows its equivalent model. Assume each
sensor node takes only one sample of xi. Since the time
domain approach of the Σ−∆ modulation can be transformed
to space domain due to the invariance of the signal, we
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implement the Σ − ∆ modulation in the distributed sensor
network with a combination of serial and parallel topology
[1]. The ith sensor node transmits its vi to the i + 1th sensor
node over an inter-sensor AWGN channel with power PI and

PI =
E(v2

i )

σ2
η

(6)

where E(v2
i ) will be given in Section 3 and σ2

η is the
variance of AWGN ηi. We assume no fading in the inter-
sensor channels because of the close distance between adjacent
sensor nodes. At the i + 1th sensor node, vi + ηi is quantized
to obtain yi. The i + 1th sensor uses vi + ηi and yi as the
feedback to generate vi+1, meanwhile transmitting yi to the
fusion center and vi+1 to the next sensor node. Therefore
we form an equivalent Σ − ∆ modulator loop within the
sensor network. The fusion center will use {ŷ1, ŷ2, · · · , ŷN}
to perform detection.

3. DISTRIBUTED DETECTION IN AWGN CHANNELS

We first investigate our proposed scheme in AWGN chan-
nels and develop a sub-optimal detection algorithm. A closed-
form solution to the detection error probability is obtained for
this algorithm, which is compared with that for binary and
analog approaches under the parallel topology.

WLOG, we assume π0 = π1. The optimal MAP fusion
rule requires the joint pdf of yi and ŷi in order to compute the
likelihood ratio in Eq.(3). The computation of the joint density
function in Eq.(3) involves multiple integration and does
not yield any insight regarding the performance discrepancy
between different systems. We therefore adopt a suboptimal
fusion rule with close to optimal detection performance [9].
In [8], it was shown that averaging {yi}N

i=1 is an efficient
decoder that functions as a digital decimator for single loop
Σ−∆ modulators with i.i.d Gaussian input. This result inspires
us to employ Z := 1

N

∑N
i=1 ŷi as our detection statistics.

The averaging of {ŷi}N
i=1 is compared with a threshold which

will be shown to be s/2 later. Although the results in [8] are
obtained for traditional Σ−∆ ADC with i.i.d Gaussian inputs,
our simulation results demonstrate it is a good approximation
when inter-sensor SNR is reasonably high or even when the
measurement noise are correlated [9].

For AWGN channel with hi = 1 in (1), we thus have

Z =
1

N

N
∑

i=1

(yi + ni) (7)

where ni is the noise of channel from sensor node to the fusion
center with variance σ2

n = 1/Pt.
Applying the assumed input signal model, we rewrite (4)

and obtain
vi+1 = vi − q(vi) + m + wi (8)

where m = 0 under H0 and m = s under H1 and the desired
LR f(Z|H0)

f(Z|H1)
= f(Z|m=0)

f(Z|m=s) . Denote λ(v) := v − q(v) + m. We
can transform the quantization error by defining ēi := λ(vi).
Now (8) can be written as vi = ēi−1 + wi−1 that yields the
recursion: ēi+1 = λ(ēi + wi). It is also proved in [8] that
the process ē = {ēn−1|n = 0, 1, ...} is a real valued discrete-
time Markov process and it has a unique invariant probability

measure if and only if |m| < 1. Note for |m| ≥ 1, we can
alway scale accordingly the quantization level in (5) to make
the equivalent m < 1. WLOG, we assume |m| < 1 in the rest
of this paper.

Moreover, ēi can be split into two independent random
variables

ēi = gi + m + oi

The random variable gi is referred as“granular noise” which
is uniformly distributed over the interval [−1, +1], and oi

as “slope overload noise”. In the frequency domain, oi is
concentrated in the high-frequency end of the spectrum while
gi is concentrated in the low-frequency end, which is referred
as granular mode and slope overload mode respectively. We
now assume that the Σ−∆ modulation in distributed detection
is under granular mode when the subsequent decimator can
eliminate most of the quantization noise power.

For the distributed detection scheme in Fig. 2 and Fig. 3,
after including inter-sensor channels, we can modify (8) as

vi+1 = vi + ηi − q(vi + ηi) + m + wi (9)

where ηi is the white Gaussian noise in the inter-sensor chan-
nel with variance σ2

η = E(v2
i )/Pt and E(v2

i ) = E(ē2
i )+σ2

w =
1/3+ s2/2+σ2

w. The binary quantizer error ēi is modified as

ēi = vi + ηi − q(vi + ηi) + m. (10)

Since we are interested in the decimator output Z, combining
(7),(9) and (10) yields

n̄ =
1

N
[

N−1
∑

i=0

(wi + ηi + ni)] +
1

N
(ē0 − ēN ), (11)

where n̄ := Z − m is the detection statistics. The first
term in (11) is a zero-mean Gaussian random variable with
variance σ2 = 1

N (σ2
w + σ2

η + σ2
n) where σ2

w + σ2
η + σ2

n

is referred as the total noise power. Under granular mode
ē0− ēN can be replaced by g0−gN . When N is large enough
such that the correlation between g0 and gN is very weak,
E := 1

N (ē0 − ēN ) becomes the sum of two i.i.d random
variables uniformly distributed over [−1/N, 1/N ] and its pdf
is a triangular waveform given by [9]

fE(x) =

{

1
4N2x + N

2 , x ∈ [−2/N, 0],
− 1

4N2x + N
2 , x ∈ [0, 2/N ].

Since the noise wi, ηi, ni are mutually independent and are
all independent of ēi. The pdf of n̄ is thus the convolution of
a zero-mean Gaussian pdf with variance σ2, denoted as Ψ(x)
and the triangular waveform function fE(x),

fn̄(y) =

∫ ∞

−∞
Ψ(x)fE(y − x)dx

=
N2σ

4
√

2π

[

e
−(y−

2
N

)2

2σ2 + e
−(y+ 2

N
)2

2σ2 − 2e
−y2

2σ2

]

+
N2

4

[

2yQ(
y

σ
) − (y − 2

N
)Q(

(y − 2/N)

σ
)

]

−N2

4
(y +

2

N
)Q(

(y + 2/N)

σ
) (12)

where Q(x) = 1√
2π

∫∞
x

e−
t2

2 dt.
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It can be seen that fn̄(y) is an even function. Consequently,
the pdf of Z under each hypothesis is fn̄(Z − m), which is
concentrated over 0 or s. The standard LR test (LRT) rule
gives us the detection threshold y0 = s/2 and the detection
error probability Pe is

Pe =

∫ ∞

y0

fn̄(y)dy =

∫ ∞

y0

∫ ∞

−∞
Ψ(x)fE(y − x)dxdy.

The result of the integral yields [9]

Pe =
N2

8
A +

N2σ

8
√

2π
B (13)

where A = [(y0 − 2
N )2 + σ2]Q( (y0−2/N)

σ ) + [(y0 + 2
N )2 +

σ2]Q( (y0+2/N)
σ ) − 2(y2

0 + σ2)Q(y0

σ ) and B = 2y0e
−y2

0
2σ2 −

(y0 − 2
N )e

−(y0−

2
N

)2

2σ2 − (y0 + 2
N )e

−(y0+ 2
N

)2

2σ2 .
We next compare the detection performance of our proposed

scheme under the mixing topology with that of binary and
analog approaches under the parallel topology for sensor
nodes. In binary distributed detection systems under parallel
topology, each sensor node locally makes a binary decision by
comparing the measurement xi with the threshold of s/2 and
then transmits the binary message to the fusion center. The
LR of {ŷi}N

i=1 at the fusion center under two hypothesis can
be easily derived as,

Λ =

N
∏

i=1

f(yi|H0)

f(yi|H1)

=

N
∏

i=1

Pf e−
(ŷi−1)2

2σ2
n + (1 − Pf )e−

(ŷi+1)2

2σ2
n

Pf e−
(ŷi+1)

2σ2
n + (1 − Pf )e−

(ŷi−1)

2σ2
n

where Pf = Q(s/2σw) is the local detection error proba-
bility. The optimal LRT fusion rule is thus straightforward
to implement. Simulation results for binary system detection
performance will be provided in Section 5.

The second type of transmission mapping strategy at local
sensor is that each sensor node retransmits a scaled version of
its own analog observation. Detection error probability can be
written explicitly as [9],

Pe,A = Q

(

αs/2
√

(α2σ2
w + σ2

n)/N

)

(14)

where α =
√

2
s2+2σ2

w
is the scaling factor. Comparison of the

three schemes will be discussed in Section 5.

4. DISTRIBUTED DETECTION IN FADING CHANNELS

For non-coherent detection in fading channels, it is gen-
erally impossible to obtain a closed-form formula for the
detection error probability with finite number of sensors. We
will provide an outline of the LRT-based optimal fusion rule
for the three approaches and evaluate their performances by
simulations.

Binary case:

Assume hi is Rayleigh distributed with E(h2
i ) = 1. For

binary transmission, the desired LR is

Λ =

N
∏

i=1

Pf f(ŷi|yi = 1) + (1 − Pf )f(ŷi|yi = −1)

Pf f(ŷi|yi = −1) + (1 − Pf )f(ŷi|yi = 1)

where f(ŷi|yi = 1) =
∫∞
0

2xe−x2 1√
2πσn

e−
(x−y)2

2σn
2 dx

Analog case:
For analog system, yi = αxi, pdf of ŷi given αx is

f(ŷi|yi = αx) =

∫ ∞

0

2
z

αx
e−( z

αx
)2 1√

2πσn

e
− (z−y)2

2σn
2 dz

The pdf of ŷi given H0 is

f(ŷi|H0) =

∫ ∞

−∞

1√
2πσw

e−
(x−s)2

2σw
2 f(ŷi|yi = αx)dx

The rest of the procedure to obtain the LR is exactly the
same as the binary case.

Σ − ∆ case:
For simplicity, we only consider the suboptimal fusion rule

here where the received signals are demodulated first instead
of using the soft information. It is shown in [7] that the joint
probability of {yi}N

y=1 can be obtained from (4) by an iterative
computation of

pyi
=

∫ ∞

0

fvi
(v)dv (15)

and
fvi+1(v) = fxi

(v) ∗ fei
(−v) (16)

where ei = q(vi) − vi. fei
(−v) is obtained by,

fei
(−e) = u(e + 1)fvi

(e + 1) + u(−e + 1)fvi
(e − 1)

in which u(e) is the step function defined as 0 for e < 0 and
1 for e ≥ 0. We apply this approach as an approximation
since it does not consider inter-sensor channels. The com-
munication bit error probability over Rayleigh fading channel
p(ŷi 6= yi) = 1

2 (1−
√

Pt

1−Pt
). The LR at the fusion center can

be derived as,

Λ =

∑

y1,···,yN

∏N
i=1 p(ŷi|yi)p(y1, · · · , yN |H0)

∑

y1,···,yN

∏N
i=1 p(ŷi|yi)p(y1, · · · , yN |H1)

where p(y1, · · · , yN |Hi) can be calculated from the joint pdf
f(v1, · · · , vN |Hi), which can be found by working out the iter-
ative process in (16). The optimal detector using hard decision
information on {ŷi}N

i=1 can thus be derived straightforwardly
like the previous two cases.

5. NUMERICAL AND SIMULATION RESULTS

In this section we compare the performance of Σ−∆ ADC
based distributed detection system with that of binary and
analog system of same parameters (N , Ps, Pt) in terms of
the detection error probability.

Fig. 5 illustrates the detection performance of three dis-
tributed detection systems as a function of Ps in AWGN
channels. From this figure we can see that Σ − ∆ ADC
based distributed detection system can outperform the analog
distributed detection system. To better understand this, let us
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Fig. 4. Detection error probability versus Ps in AWGN channels
with N=99, Pt=0dB, PI=15dB, s=0.6

Fig. 5. Simulation results for detection error probability versus Ps

in Rayleigh fading channels with N=24, Pt=20dB, PI=15dB

neglect ē0− ēN and inter-sensor channel noise ηi in (11). This
is reasonable when σ2

n, σ2
w and N are large, while sensor nodes

are close to each other. Hence the detection symbol Z could
be approximated as m + 1

N [
∑N−1

i=0 (wi + ni)]. This is exactly
the detection statistics for analog system when scale factor
α = 1. Since detection error probability in (14) increases as α
decreases, it is easy to see that Σ−∆ system will outperform
the analog system when α < 1, i.e. s2/2 + σ2

w > 1. It can
also be intuitively explained from the fact that binary sensor
nodes would cause significant distortion during the 1-bit local
compression when Ps is low yet more robust than analog
system when Pt is low [3]. Σ − ∆ system reserve the raw
observations as analog sensors but transmit the message as
binary sensors, therefore combine the advantages of the two
traditional approaches.

Fig. 6 and Fig. 7 show the simulation results for detection
performance as a function of Ps and Pt respectively in
Rayleigh fading channels. Σ − ∆ ADC based distributed
detection appears to be more robust against fading because of
the correlations between {yi}N

i=1, especially in high channel
SNR case. Performance degradation in low channel SNR
region (in Fig. 7) is due to the hard decision we use in fusion
decision since communication bit error probability increases
rapidly as channel SNR falls. In [9], we have investigated
the LRT fusion rule based on soft decision for the Σ − ∆

Fig. 6. Simulation results for detection error probability versus Pt

in Rayleigh fading channels with N=24, Ps=-4dB, PI =15dB

modulation based distributed detection system. We need to
point out that although input signal statistics is assumed i.i.d
in this paper for simplicity purpose, the proposed approach
can be easily extended to non-i.i.d sources [9].

In addition, our proposed scheme improves the detection
performance at the cost of the extra communication links
between adjacent sensors which will increase the complexity,
power consumption and time delay of the system compared to
those of the existing parallel distributed detection schemes.
The question is that given the total power budget, how
much should we spend on the inter-sensor communication
to keep the overall performance still better than the analog
and binary systems with the same power budget spent solely
on the communication between sensors and fusion center?
We will investigate this in our future work. Nevertheless, our
preliminary study gives us motivating examples of the trade off
between performance and complexity in distributed detections,
as the Σ−∆ system is a special example of such systems in
which sensors collaboratively process the observations.
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