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Abstract— To address the coordination issue of sensors com-
municating with a fusion center, we propose a spreading sequence
based non-coherent detection scheme for sensor networks to
reduce the coordination between sensors to the largest extent.
In this scheme, sensors employ independent spreading sequences
to transmit their measurements. Non-coherent detection is con-
ducted at the fusion center where only statistics regarding
channel gains and sensor measurement uncertainties are needed.
To evaluate the detector’s performance, we first derive the large
deviation exponents of detection error probabilities and then
compare them with the approaches assuming orthogonal channel
allocation (e.g.TDMA/FDMA). Numerical and simulation results
demonstrate the dependence of large deviation exponent on the
asymptotic number of sensors per chip (defined as c), as well
as the better performance of our proposed scheme than the one
using non-coherent detection with orthogonal link, for some c.

Keywords: Spreading Sequence, Large Deviation Exponents
and Non-coherent Detection.

I. INTRODUCTION

In this paper, we are mainly concerned with how to ef-
fectively send data from a set of sensor nodes to a fusion
center via a one-hop network. In particular, we are interested
in how to reduce the coordination among sensor nodes to
the minimum and how fusion performance in terms of binary
detection error probability varies with respect to the size of
sensornet as a consequence of such reduced coordinations.

In a one-hop sensor network for data fusion, the conven-
tional wisdom was the measured data from each sensor is
immediately available at the fusion center. This holds when
sensors are traditional radars and a wired link exists between
each front end radar and the fusion center. One step further
to a more realistic scenario for sensornet with large amount
of sensors is to allow orthogonal channel allocation such
that signals sent by each sensor go through independent and
orthogonal wireless links (e.g. TDMA, FDMA), where dis-
tortion and interference are possibly introduced, to the fusion
center[1], [2]. However, we can foresee that coordination and
resulting overheads are overwhelming in order to achieve exact
orthogonalization in large scale sensor networks.

Recently, A. Anandkumar and L. Tong [3] and K. Liu and
H. El Gamal and A. Sayeed [4] independently proposed type
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based transmission schemes, where each element of possible
quantized outputs is assigned an orthogonal spreading code.
At the fusion center, what matters to detector’s performance
is the superposed signals corresponding to each orthogonal
sequence. However, they have shown that when channel expe-
riences zero mean fading, the detection error no longer scales
exponentially with respect to the number of sensors.

When we use sensor net to facilitate a binary decision at a
fusion center, the ultimate objective is to distinguish between
two hypothesis corresponding to the presence or absence
of a target. Therefore, there is no necessity to faithfully
reconstruct the measurements taken at each sensor node as
long as the fusion/detection performance satisfies our need.
Inspired by such an observation, we propose a novel spreading
sequence based non-coherent data fusion scheme. Sensors
multiply independent random spreading sequences with their
measurements. There is no need to make these spreading
sequences orthogonal with each other. The fusion center does
not need to know what sequences sensors have used and what
is the channel gain for each sensor-fusion center link. All
information required to conduct non-coherent detection/fusion
is the statistics of spreading sequences and channel gains, as
well as the distributions of measurement error at each sensor.
Large system analysis is then invoked to analyze the detector’s
performance by making the number of users K and the length
of spreading sequences N grow to infinity while satisfying
K/N → c > 0.

The paper is organized as follows. System model is firstly
described in Section II. Then in Section III, a non-coherent
data fusion without orthogonal channel allocation is proposed
based on a Gaussian approximation. Detection error proba-
bilities of the proposed non-coherent detector are analyzed in
terms of large deviation exponents in Section IV. A special
case study is conducted in Section V. Finally, conclusions are
made in Section VI.

II. SYSTEM MODEL

In this section, we describe the system model of a sensor
net to assist a binary hypothesis testing at a fusion center.
The binary hypothesis testing problem can be formulated as
H0 : θ = θ0 vs. H1 : θ = θ1, with prior probability
P (H0) = π0 and P (H1) = π1 = 1 − π0, respectively. We
assume K sensors provide measurement to the fusion center.



Each sensor has a local observation of Zk, k = 1, · · · ,K
distributed as: H1 : Zk = mS + Wk and H0 : ZK = Wk,
where mS > 0 is a known constant and {Wk, k = 1, · · · ,K}
are independent Gaussian noise distributed as N(0, σ2

w,k). Let
Xk, k = 1, · · · ,K denote the processed data output from
sensor k to the fusion center, where an aggregated decision is
made. The channels between each sensor and the fusion center
are assumed to experience independent channel variations hk,
with mean µk and variance σ2

h,k. Due to the large amount of
sensors, channel fading variables hk are assumed not available
at the receiver end (fusion center), i.e. we are interested in the
non-coherent detection.

No orthogonal channel allocation is assumed in the sen-
sor net. Instead, we assume each sensor employs a random
spreading code/sequence to carry its transmitted data Xk in
order to average out the influence of channel uncertainties, as
well as local measurement errors. Let {ci,j , i = 1, · · · ,K, j =
1, · · · , N} denote the spreading sequence of length N used
by sensor i. In this paper, we assume ci,j independently
distributed as N (0, 1). Gaussian assumption will simplify our
large deviation analysis below. For more general cases of
non-Gaussian distributions on ci,j , the approaches are more
involved and the results will be presented in our future
publications [5]. In the sequel, we adopt the matrix C to
represent {ci,j}. At the fusion center, the received signals over
N slots can be expressed as Yj = 1√

N

∑K
k=1 hkck,jXk+nj for

j = 1, · · · , N , where nj ∼ N (0, σ2
n) are identically and in-

dependently distributed (i.i.d) Gaussian random variables, and
1/

√
N is a normalization factor such that 1

N

∑N
j=1 E|ck,j |2 =

1, for k = 1, · · · ,K. Throughout this paper, we assume
K/N → c where 0 < c < ∞, as K → ∞, in order to
apply large system analysis.

We are interested in two scenarios regarding the contents
associated with Xk. The first one is an analog transmission
scheme in which Xk is a scaled version of Zk, i.e. Xk =
βA,kZk, where

Case A(nalog): βA,k =
√

Ps/(σ2
w,k + π1m2

S)

is the scaling factor introduced to normalize E|Xk|2 = Ps.
The second approach is to allow each sensor to make local

decisions. In this binary detection problem, we have Xk = 0
if the local decision θ̂k = θ0 is in favor of H0 and Xk = βB,k,
otherwise. The scaling factor is

Case B(inary): βB,k =

√

Ps/(π0P̂F,k + π1P̂D,k),

where P̂F,k = Pr
[

θ̂k = θ1|H0

]

is the false alarm probability

and 1 − P̂D,k = Pr
[

θ̂k = θ0|H1

]

is the missing error proba-
bility.

III. NON-COHERENT DETECTION: A GAUSSIAN
APPROXIMATION

In this section, we invoke a Gaussian approximation
to propose a non-coherent detector assuming hk and ci,j
are not available to the fusion center. Denote Sj,K =

1√
N

∑K
k=1 hkck,jXk. It can be shown using Linderberg The-

orem [6, pp. 359] that Sj,K converges to a Gaussian random
variable with zero mean and variance σ2

j,E under Hj and case
E ∈ {A,B}:

σ2
j,E = lim

K,N→∞

1

N

K
∑

k=1

σ2
h,kE

[

X2
k |Hj , E

]

(1)

where the limit exits when the distribution of σ2
h,k and

E
[

X2
k |Hj

]

satisfies certain probability law across space (e.g.
sensors are distributed in a given area based on Poisson
distribution.) For a special case when hj , j = 1, · · · ,K are
i.i.d and Wj , j = 1, · · · ,K are i.i.d, we have

σ2
1,A = cσ2

hβ
2
A

(

σ2
w +m2

S

)

σ2
0,A = cσ2

hβ
2
Aσ

2
w

σ2
1,B = cσ2

hβ
2
BP̂D σ2

0,B = cσ2
hβ

2
BP̂F (2)

where σ2
j,A and σ2

j,B are limits of σ2
j in (1) when sensors

employ analog and binary transmissions, respectively, under
hypothesis Hj , j = 0, 1. For all other parameters in (2),
sensor indexes k are removed to be consistent with the i.i.d
assumption on hk and Wk.

To develop a non-coherent detector, we need to characterize
not only the distribution functions of each Yj , but also the joint
distributions of vector [Y1, · · · , YN ]. We should be aware that
as N and K grow simultaneously to infinity, we cannot apply
the Linderberg Central Limit Theorem for fixed dimension
random vectors to our problem. However, since our purpose
is to come up with a feasible non-coherent detector, we can
still argue that when ci,j are i.i.d standard Gaussian random
variables, it is a good approximation that {Sj} are i.i.d
Gaussian random variables with zero mean and variance σ2

i,A

and σ2
i,B for case A and B, respectively, under hypothesis Hi.

As a result, for large N and K, Yj can be approximated as
i.i.d Gaussian random variables under hypothesis Hi, i = 0, 1
with distribution Yj ∼ N (0, σ2

Y,i,E), where σ2
Y,i,E = σ2

n +σ2
i,E

for E ∈ {A,B}. This approximation can therefore lead us to
a non-coherent detector for large N and K: when

∑N
j=1 |Yj |2
N

≥
σ2

Y,1,Eσ
2
Y,0,E

σ2
Y,1,E − σ2

Y,0,E
ln
σ2

Y,1,E
σ2

Y,0,E

∆
= η (3)

the decision at the fusion center is θ̃ = θ1; and θ̃ = θ0,
otherwise.

IV. ERROR EXPONENT OF DETECTION ERROR
PROBABILITY

In this section, we study the asymptotic scaling law of
detection error probability PF (N,K) = Pr

[

θ̃ = θ1|H0

]

and

PM (N,K) = Pr
[

θ̃ = θ0|H1

]

using decision rule in (3). In
particular, we study the limit of − (lnPF (N,K)) /K and
− (lnPM (N,K)) /K as N, K → ∞ while maintaining
lim(K/N) = c > 0. All results obtained in this Section apply
to both Case A and Case B as defined in Section II.

Define moment generating function (MGF) of the pro-
posed non-coherent detection statistic under Hi, i = 0, 1



as ϕN,i(t) = Ei

[

exp(t
∑N

j=1 |Yj |2)
]

, where expectation is
taken over joint distributions of Xk, hk, nj and ck,j for
k = 1, · · · ,K and j = 1, · · · , N . We first investigate the
limit of limN,K→∞

1
N lnϕN,i(t). If the limit exists, which is

denoted by φY,i(t), we then compute the Legendre-Fenchel
transform of φY,i(t) under Hi [7]:

IY,i(z) = sup
t∈R

{tz − φY,i(t)}, (4)

for z ∈ R. Gärtner-Ellis Theorem [8] is then employed
to derive the large deviation exponent of detection error
probability under each hypothesis:

lim
N,K→∞

1

K
lnPE(N,K) = −IY,i(η)

c
, (5)

where i = 0 for E = F and i = 1 for E = M .
Our approach to calculate ϕN,i(t) is to first compute the

average over the join distributions of independent Gaussian
noise nj and spreading sequences while conditioning over
given hk and Xk.

Lemma 1: Given hk and Xk, k = 1, · · · ,K, the condi-
tional MGF of ϕN,0(t) is

ϕN,i (t|{hk, Xk}) = (1 − 2tσ2
n)(−N/2)·

(

1 − 2t

N(1 − 2tσ2
n)

K
∑

k=1

|hkXk|2
)−N/2

(6)

Proof:
Due to the space limitation, we only provide a brief outline

of the proof here. The entire proof of Lemma 1 contains two
steps [5]. We first compute the conditional mean of ϕN,i(t)
given ck,j , hk and Xk, which can be done by exploiting the
characteristic function of Chi-square random variables [9].
In the second step, the condition on the random spreading
sequences {ck,j} is taken away by utilizing the characteristic
function of Wishart distribution [10, pp. 258].

The last step to calculate ϕN,i(t) is to integrate the
RHS term in (6) over the joint distribution of hk, Xk, k =
1, · · · ,K. Since our ultimate objective is to compute the
free energy function φY,i(t), i.e. the limit of 1

N lnϕN,i(t) as
N,K → ∞, we can use the similar argument in proving
Varadhan’s Theorem [7] to compute this asymptotic inte-
gral. Denote z̃ =

∑K
k=1 |hkXk|2/K. The expectation of

(

1 − 2t
N(1−2tσ2

n
)

∑K
k=1 |hkXk|2

)−N/2

over the joint distribu-
tion of (hk, Xk) in (6) can be expressed as

E





(

1 − 2t

N(1 − 2tσ2
n)

K
∑

k=1

|hkXk|2
)−N/2



 =

∫ 1/at

0

exp

[

−N
2

ln(1 − atz̃)

]

QN (dz̃) =

≈
∫ 1/at

0

exp

[

N

(

−1

2
ln(1 − atz̃) − cIρ,i(z̃)

)]

dz̃ (7)

where at = 2tc/(1−2tσ2
n), QN (z̃) is the distribution of z̃ and

Iρ,i(z̃) is the Legendre-Fenchel transform of the free energy

function ψ
(i)
h,X(γ) of

∑

k |hkXk|2, i.e. Iρ,i(z̃) = supγ{z̃γ −
ψ

(i)
h,X(γ)}, where

ψ
(i)
h,X(γ) = lim

K→∞

1

K
lnEHi

[

exp

(

γ

K
∑

k=1

|hkXk|2
)]

. (8)

Unfortunately, Varadhan’s Theorem cannot be applied here
due to the unboundedness of ln(1 − atz̃) for z̃ ∈ [0, 1/at]
[7]. Actually, we have to employ the asymptotic expansion of
integrals [11] to expand (7) [5] for large N to obtain

ςi(t) =

lim
N→∞

1

N
ln

∫ 1/at

0

exp

[

N

(

−1

2
ln(1 − atz̃) − cIρ,i(z̃)

)]

dz̃

(9)

As a consequence, φY,i(t) = − 1
2 ln(1−2tσ2

n)+ ςi(t). Hav-
ing obtained φY,i(t), we can thereafter calculate the conjugate
function IY,i(z) of the free energy function φY,i(t) in (4),
which enables us to obtain the scaling law of detection error
probabilities as shown in (5).

V. LARGE DEVIATION EXPONENTS FOR CASE A WITH
I.I.D Xk AND CONSTANT hk

In this section, we solve one special case to obtain I (A)
Y,0 , the

large deviation exponent IY,0 in (4) for the false alarm error
probability when sensors transmit analog data using spreading
sequences. In particular, we assume i.i.d sensor measurement
uncertainties resulting in i.i.d Xk, for k = 1, · · · ,K. For
the purpose of simplicity, we further assume hk = 1, k =
1, · · · ,K. When hk are i.i.d, the approach is similar except
we need to count the statistics of channel gains in calculat-
ing related moment generating functions. Consequently, the
free energy function ψ

(i)
h,X(γ) in (8) becomes: ψ(i)

h,X(γ) =

lnEHi

[

exp
(

γ|X1|2
)]

.
Theorem 1: When sensors employ random spreading se-

quences to transmit analog data, the false alarm error proba-
bility has large deviation exponent

lim
K,N→∞

1

K
lnPF (N,K) ≈ −1

c
I
(A)
Y,0 (η) (10)

where

I
(A)
Y,0 (η) =

1

2

[

η

σ2
n + cbA

− ln
η

σ2
n + cbA

− 1

]

(11)

and bA = σ2
wβ

2
A.

Proof: The proof of Theorem 1 contains an approxima-
tion of z̃ = 1

K

∑K
j=1 |hjXj |2 in (6) by its mean value bA,

which results in

lim
N→∞

1

N
lnϕN,0(t) ≈ −1

2
ln
(

1 − 2tσ2
n − 2ctbA

)

(12)

We can then further attain an approximation of

IY,0(η) = sup
t

{

tη +
1

2
ln
(

1 − 2tσ2
n − 2ctbA

)

}

. (13)

The supremum is achieved by making t = 1
2(σ2

n
+cbA) − 1

2η ,
which then yields (11).



We should make a remark here that although Theorem 1
is based upon a first order approximation, the error exponent
in (10) provide a good indicator as to how the false alarm
probability varies with respect to c, as shown in numerical
results below.

For comparison purpose, we also provide the large deviation
exponent of false alarm error probability when orthogonal
channel allocations are available (e.g. TDMA, FDMA). Under
such an assumption, each sensor sends its measurements
through an assigned individual channel to the fusion cen-
ter where non-coherent detection is conducted. The received
signal over the kth channel is thus: Ỹk = hkXk + nk, for
k = 1, · · · ,K, where hk, Xk and nk have the same definition
as that in Section II. At the fusion center, a similar decision
rule as in (3) is employed, i.e.

∑K
k=1 |Ŷk|2/K ≥ η̂, θ = θ1;

otherwise, θ = θ0, where η̂ = η(c = 1) is obtained by letting
c = 1 in (2) and (3).

Theorem 2: For orthogonal transmission, the missing error
probability for analog transmission using non-coherent detec-
tor has large deviation exponent Î(A)

0 (η̂), i.e.

lim
K→∞

− 1

K
ln Pr

[

K
∑

k=1

|Ŷk|2/K ≥ η̂|H0, A

]

= Î
(A)
0 (η̂) (14)

where

Î
(A)
0 (η̂) =

1

2

[

η̂

σ2
n + β2

Aσ
2
w

− ln
η̂

σ2
n + β2

Aσ
2
w

− 1

]

(15)
Proof: The proof is straightforward using Cramer The-

orem [5], [7].
In Figure 1(b), we present numerical results for Î(A)

Y,0 in
(15) and I

(A)
Y,0 /c in (11) , respectively. In Figure 1(a) are the

simulation results on false alarm probability (PF ) versus K for
different coefficients c. We can see there exists an optimal c,
the number of users/per degree of freedom, to maximize I (A)

Y,0 .
More importantly, non-coherent detection using spreading
sequences to transmit analog data could yield even smaller
PF than that for the non-coherent detection with complete
orthogonalization for some c > 1.

VI. CONCLUSION

We have proposed a novel spreading sequence based non-
coherent data fusion scheme for one-hop wireless sensor net-
works. Large deviation exponents are derived for the detection
error probabilities as the number of sensors K and the length
of spreading sequences N grow to infinity. Numerical results
demonstrate the relationship between error exponent and c =
limK,N→∞K/N .

Due to the space limitation, we restrict ourselves in this
paper to the case where Gaussian spreading sequences are
used for each sensor’s transmission. More general results
regarding cases with non-Gaussian random sequences are also
available in [5]. We also have investigated the fundamental
difference between analog transmission (Case A) and local-
binary transmission (Case B) in terms of error exponent, as
well as the performance loss as a consequence of non-coherent
detection as compared with the coherent case, which will be
presented in our future work [5].
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