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Abstract—We consider a constrained energy optimization
problem for wireless networks, where the constraints arise
because of interference between wireless nodes that limits their
transmission rates along with load and duty-cycle (on-off) re-
strictions. Since traditional optimization methods using Lagrange
multipliers do not work well and are computationally expensive
given the non-convex constraints, we develop fully polynomial
approximation schemes (FPAS) for finding the optimal (minimum
energy) transmission schedule by discretizing power levels over
the interference channel. For any ε > 0, we develop an algorithm
for computing the optimal number of discrete power levels
per time slot (O(1/ε)), and use this to design a (1, 1 + ε)-
FPAS that consumes no more energy than the optimal while
violating each rate constraint by at most a 1 + ε factor. For
wireless networks with low-cost transmitters, where nodes are
restricted to transmitting at a fixed power over active time slots,
we develop a 2-factor approximation for finding the optimal
fixed transmission power value Popt that results in the minimum
energy schedule.

I. INTRODUCTION

Energy-efficiency is a critical concern in many wireless
networks, such as cellular networks, ad-hoc networks or wire-
less sensor networks (WSNs) that consist of large number of
sensor nodes equipped with unreplenishable and limited power
resources. Since wireless communication accounts for a sig-
nificant portion of node energy consumption, network lifetime
and utility are dependent on the design of energy-efficient
communication schemes including low-power signaling and
energy-efficient multiple access protocols.

Delay is also an important constraint in many wireless
network applications, for example battlefield surveillance or
target tracking in which data with finite lifetime-information
must be delivered before a deadline. Delay constraints in
wireless networks can also be examined in terms of node
operation under periodic duty cycles, in which time is divided
into active (awake) and inactive (asleep) periods. [1], [2], [3]
establish the idea of duty cycles in WSNs as a practical means
of conserving node energy. Minimizing transmission energy
subject to latency constraints has been studied [4], [5] while
[6] studies energy-latency tradeoffs for data gathering. Several
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approaches for maximizing information transmission over a
shared channel subject to average power constraints have been
proposed [7], [8], [9], [10], [11]. [12] addresses the issue of
minimizing transmission power, subject to a given amount of
information being successfully transmitted and derives power
control multiple access (PCMA) algorithms for autonomous
channel access.

In this paper, we consider a constrained energy optimization
problem for wireless networks, where the constraints arise
because of interference between wireless nodes that limits
their transmission rates along with load and duty-cycle (on-off)
restrictions. We consider N wireless nodes transmitting to their
destinations over a typical Additive White Gaussian Noise
(AWGN) interference channel over a time period T . These
nodes could represent reasonably close neighbors communi-
cating as part of some MAC protocol. Their receivers could
be distinct or identical, representing the case when all nodes
are transmitting to the same basestation or clusterhead. We
assume that time T is divided into M slots of equal duration.
Let Pit be the transmit power used by node i during time slot
t, 1 ≤ t ≤ M . Let Rit represent the achievable transmission
rate for node i during time slot t over this N -node interference
channel. Single user decoding is assumed at each receiver to
decode the information from its own transmitter while treating
the remaining information as Gaussian interference. Thus we
have,

Rit =
1
2

log2

(
1 +

αt
iiPit

N t
i +

∑
j 6=i αt

jiPjt

)
,

1 ≤ i ≤ N, 1 ≤ t ≤ M (1)

where αt
ji represent the channel attenuation at i’s receiver

due to transmitter j, which captures the effects of path-
loss, shadowing and frequency nonselective fading, and N t

i

represents the background interference (usually N t
i = N0),

during time slot t. We assume these parameters remain fixed
over a (short) time slot of duration T/M but can vary from
slot to slot.

We are interested in the following scheduling and en-
ergy minimization problem (labeled MESP: minimum energy



scheduling problem)

minimize f :
N∑

i=1

M∑
t=1

Pit (2)

s.t
M∑

t=1

AitRit ≥ R̃i i = 1, 2, . . . , N (3)

0 ≤ Pit ≤ P (4)

Ait =
{

0 if Pit = 0
1 otherwise (5)

M∑
t=1

Ait ≤ µi i = 1, 2, . . . , N (6)

The objective function in MESP is to determine the schedule
which minimizes the total energy. Since all slots are assumed
to be of fixed duration, this is equivalent to minimizing the
total transmitted power. Each node must maintain an average
rate constraint R̃i over the M slots. Further, we assume that
nodes operate under duty-cycles where time T is divided
into active and idle time slots, wireless sensor networks for
example, operate under such constraints [2], [1]. The duty-
cycle constraint of node i is given by µi: the maximum number
of time slots it can remain active, 1 ≤ µi ≤ M , i = 1, 2, . . . N .
Ait ∈ {0, 1} depending on whether the node is idle or active
during slot t, 1 ≤ t ≤ M . Finally, we also assume a maximum
available transmit power per time slot denoted by P . Initially,
we assume that P is known apriori but later we develop
algorithms for finding the optimal value of P .

Note that in our model we are assuming N transmitters
transmitting over time T to a disjoint set of K ≤ N
receivers. When K = 1, transmitters share one receiver,
e.g. a cluster head which is receiving during the time
interval T . Similarly if K = N , each user has its distinct
receiver during T . The accessing mechanism is not a
traditional TDMA scheme in which each accessing node
is assigned a unique time slot where no other nodes can
be transmitters. Rather we model the interference channel
and allow multiple transmitting nodes to co-exist over a
time slot by choosing optimal transmit powers. In general,
duplex transmissions are not required as the receivers
(cluster-heads) are merely receiving. This model of half-
duplex transmissions is well used, for example [13], [14],
[15], where transmitters are sending to a separate set of
receivers or cluster heads in half-duplex mode over a time
period. Thus henceforth we use the term node/user to refer
to a transmitter-receiver pair.

The number of time slots M over which transmission
is optimized represents a given delay constraint for the
set of N nodes and is given as a system parameter. M
is determined by the deadline T of the N transmitting
nodes as well the channel coherence time ∆T [16] during
which the channel coefficients (αij’s) of each node remain
unchanged. The coefficients vary independently for each
user and from user to user across subsequent ∆T co-
herence times. For slowly varying channels, we assume

that the time slot interval represented by ∆T remains the
same over the deadline period. Thus M = T/∆T and
we solve the scheduling and energy minimization for this
prescribed M . The idea of optimizing transmission over a
given set of time slots is well-modeled, for example [17].
We also note that the scope of this model and solutions is
not limited to delay constrained transmissions. The system
model described above can be easily translated from the
time domain to the frequency domain for multi-carrier,
e.g. Orthogonal Frequency Division Multiplexing (OFDM),
communication systems, where M is the set of available
sub-carrier frequencies, a given resource constraint [14],
[18]. Each of the M slots in the time domain now becomes
a frequency sub-band over which a subset of the N users
transmit to a basestation. The duty cycle constraint for
each user in the time domain now changes to the number of
frequency bands each user can use at maximum. Each users
information transmitted through its assigned sub-bands is de-
coded by treating other users’ information as pure interference,
i.e single-user decoding [19] is deployed. Therefore, without
loss of generality, we focus on the time domain model in the
rest of this paper. We assume at the beginning of each duty
cycle, all channel coefficients can be obtained through training
sequences [20], [21]. The measured channel coefficients are
then fedback by the basestation/receivers to the transmitters
and used to develop the optimal energy schedule in Eq. 2. As
typically assumed (for example, [14], [18]), measurements and
feedback of channel fading variables are assumed perfect.

It can be seen that the rate constraints above are non-
convex in the power variables Pit, even for the restricted
version of MESP with two users (N = 2). Unfortunately this
implies that traditional analytical optimization methods such as
Lagrange multipliers [22] will not work well, since convexity
of the constraints is a necessary condition for obtaining the
global minimum using the Lagrangian H = f + λkgk (where
gk are the constraints), and computing 5Pit,λk

= 0. More-
over finding the global minimum through exhaustive search
of all possible solutions of ∂h/∂Pit = 0 is likely to be
computationally expensive. Alternately computing the optimal
dual maxλ minx h() introduces a duality gap which vanishes
only under certain conditions on the number of constraints
and parameters N and M [22], [23]. As an example of this
technique, the authors in [14], [18], consider the problem of
maximizing the sum transmission rate of a group of users with
maximum power constraints using OFDM. The objective func-
tion could be non-concave. They consider the dual problem
(whose solution has a duality gap with respect to the optimal
primal) and provide an iterative search based algorithm that
searches over the entire range of Lagrange multiplier values.
They do not analyze the complexity of their algorithm (which
appears to be exponential) but indicate correctness by showing
that there are conditions under which the duality gap vanishes
for large number of frequencies.

In this paper, rather than solve the objective function exactly
by analytical techniques (with hard to evaluate complexity),
we develop an algorithmic methodology based on power



discretization and rounding. We provide a fully-polynomial
approximation scheme that will solve the rate and duty-
cycle constrained energy objective while violating some of
the constraints, both within given arbitrarily small factors and
find the optimal number of power levels required for the
approximate optimal schedule.

From the algorithmic perspective, the MESP problem
can be related to the NP -hard generalized assignment
problem (GAP) [24], of which there are two versions: max
GAP and min GAP. Max Gap is more easily reducible to
the converse version of MESP, so we describe it first. Max
GAP can be stated as follows: We are given M items to
be assigned to N bins with profit pij on assigning item
i to bin j, where bin j has a total capacity constraint
Cj and the size of item i in bin j is sij . The objective
is to find the set of items that maximizes the total profit
while maintaining all capacity constraints (each item can
be assigned to at most one bin). Consider the converse
version of MESP where we want to maximize the sum
rates achieved by users over all M time slots (

∑
i

∑
t Rit)

subject to a maximum total power constraint for each user
i over M slots (

∑
t Pit ≤ Pi). Consider a special case of

this problem where all users maximally interfere with each
other (i.e αt

ij = ∞ for all i 6= j and thus at most one user
transmits per slot). Clearly this reduces to max GAP where
the M items correspond to M time slots, and the capacity
of the N bins correspond to the power constraints of the
users. Each item (slot) can be assigned to one bin (user)
with profit Rit and reduces the capacity of that bin by Pit.

The MESP problem that we consider is related to
min GAP since we are minimizing the objective function
(energy/power). It is easy to show that this version is also
NP-hard even for 2 users and M slots. Later (in section
5), we show a stronger result for MESP by demonstrating
the non-existence of any (r, r)-factor approximation, for
any r > 0, unless P = NP . We show this by finding
a gap preserving reduction from the graph clique cover
problem to MESP with N users. Given the hardness of
approximating MESP and similar related problems like
[14], [18], one approach is to use numerical methods for ar-
bitrary N . However the computational complexity of these
are dependent on the particular problem instance and
could be very high. In this paper, we take an alternative
approach and develop approximation schemes with known
complexity for a given value of N . Specifically, we develop
fully polynomial (1, 1 + ε) approximation schemes (FPAS)
for MESP with a given number of users N transmitting
over an arbitrary number of time slots M . Though the
algorithm is exponential in the worst case for an arbitrary
number of users N , given the hardness of approximating
the general problem and impossibility of any r-factor
approximation (unless P = NP ), our approach with small
approximation bounds ε provides a reasonable solution to
cases with a given, moderate number of users N .

We develop our FPAS for MESP using ideas related to bin-
packing and the knapsack problem [24]. We first show a simple

dynamic programming solution (of exponential complexity in
M ) that optimally solves the restricted problem. We then
develop an algorithm for computing the optimal number of
discrete power levels per time slot (O(1/ε)), and use this to
design a (1, 1 + ε)-FPAS for MESP with a given number of
users N transmitting over an arbitrary number of time slots
M . This (1, 1 + ε)-FPAS consumes no more energy than the
optimal while violating each rate constraint by at most a 1+ ε
factor. For two fixed transmit power levels, we then develop a
2-factor approximation for finding the optimal fixed transmit
power level per time slot, Popt, that generates the optimal
(minimum) energy schedule.

II. BASIC DYNAMIC PROGRAMMING SOLUTION

First, we consider a simplified version of the minimum
energy scheduling problem using two discrete transmit power
levels. In the restricted version, a node is allowed to be
either idle or transmit with a given (fixed) power P during
its active slot. We illustrate our schemes using two nodes
(N = 2) over M time slots. Even this restricted two node
case is not amenable to traditional optimization methods like
the Lagrangian and is also NP-hard. Later in section 6, we
extend the approximations to the N -node, M -time slot case.

The restricted optimization problem is described by:

minimize
2∑

i=1

M∑
t=1

Pit (7)

s.t
M∑

t=1

Rit ≥ R̃i i = 1, 2 (8)

Pit ∈ {0, P} (9)
i = 1, 2, t = 1, . . . ,M (10)

Ait =
{

0 if Pit = 0
1 otherwise (11)

M∑
t=1

Ait ≤ µi i = 1, 2 (12)

We assume that µ1 + µ2 ≥ M , i.e the two nodes have to
interleave during some of the slots. A more restricted version
of Eq. ( 7) with αt

ji = αji independent of t is analyzed in
[25].

Let R̄kP,a,b
i,j = {(R1, R2)} represent the set of rate vectors

(list of rate pairs) corresponding to cumulative transmission
rates for user 1 and user 2 from time slots i through j, 1 ≤
i ≤ j ≤ M , while using a total power (node 1 + node 2)
of kP and having a total of a and b active slots, respectively,
where 0 ≤ a, b ≤ j−i+1. Since a node uses fixed power P
during an active slot, a+b = k, in this case. For notational
simplicity, if i = j, we drop one of the redundant subscripts in
the rate vector. In the above definition, Rl =

∑j
t=i Rlt, where

Rlt, l = 1, 2, is the achievable rate for node l during time slot
t, depending on the actions of the other node i.e active/asleep.
Thus for a given time slot t, we have four different rate vectors
specified by,



R̄0,0,0
t = (0, 0)

R̄P,0,1
t = (0,

1
2

log2

(
1 +

αt
22P

N t
2

)
)

R̄P,1,0
t = (

1
2

log2

(
1 +

αt
11P

N t
1

)
, 0)

R̄2P,1,1
t = (

1
2

log2

(
1 +

αt
11P

N t
1 + αt

21P

)
,

1
2

log2

(
1 +

αt
22P

N t
2 + αt

12P

)
)

(13)

The restricted version of the problem consists of finding
a transmission schedule of minimum total energy in which
active nodes transmit at a fixed power during each active
time slot while also satisfying the given duty-cycle and rate
constraints. For fixed power level P , the optimal schedule
is easily specified by the following dynamic program which
maintains the current best-solution of rate vectors for each total
power level and duty-cycle value. The boundary conditions are
given by the rate vectors in Eq. 13. The recursive formula for
each power level kP and duty-cycles a, b, 1 ≤ k ≤ (µ1+µ2),
0 ≤ a ≤ µ1, 0 ≤ b ≤ µ2 is

R̄kP,a,b
i,j = vectormax

{
R̄kP,a,b

i,j−1⋃(
R̄

(k−1)P,a−1,b
i,j−1 + R̄P,1,0

j

)
⋃(

R̄
(k−1)P,a,b−1
i,j−1 + R̄P,0,1

j

)
⋃(

R̄
(k−2)P,a−1,b−1
i,j−1 + R̄2P,1,1

j

)}
(14)

where the rate vectors in each union operation above are com-
puted using pairwise addition of the individual vectors. The
vectormax operation eliminates all dominated vectors from
the set, i.e. ∀{(R1, R2), (R3, R4)} ∈ R̄kP,a,b

i,j either R1 > R3

and R2 ≤ R4 or vice versa. Using the recursive function,
the table of values is evaluated in increasing order of time
slots from i = 1, j = 1, 2, . . . M . There are O(Mµ1µ2) table
entries corresponding to all possible total power consumption
(kP )and duty-cycle solutions, 1 ≤ k ≤ 2M , 0 ≤ a ≤ µ1,
0 ≤ b ≤ µ2 The number of rate vectors corresponding to
each table entry can be exponential as described below. On
termination of the algorithm, the set of feasible schedules
correspond to those rate vectors ≥ (R̃1, R̃2) under the
usual meaning of vector comparison. The optimal schedule for
a given transmit power level P is the one whose rate vector
satisfies

R̄P
opt = argmin

k=1,2...,2M

{
(R1, R2) ∈ R̄kP,µ1,µ2

1,M |

(R1, R2) ≥ (R̃1, R̃2)
}

(15)

In practice, it is likely that many of the vectors in R̄kP,a,b
i,j

would be dominated and hence eliminated by the vectormax

operation. However in the worst-case, even after the vector-
max operation, the size of R̄kP,a,b

i,j can quadruple with each
additional slot. Thus the above dynamic program is clearly
exponential in terms of the slot parameter M , even though
each slot contains only four rate vectors. This motivates us to
consider a (1, 1+ ε) FPAS for the problem, as described next.

III. MINIMUM ENERGY SCHEDULE WITH MULTIPLE
POWER LEVELS

We now consider the scheduling problem with multiple
discretized power levels, where each node can choose from
a set of power levels per time slot. As shown below, if
the power levels are chosen appropriately, the cost of the
resulting minimum energy schedule approximates the cost of
the optimal schedule to within an ε-factor.

For the optimization problem with multiple power levels, let
P and Lt denote the maximum allowable transmit power and
the number of discrete power levels available per time slot,
respectively, with values as defined below. For this problem,
the constraint (9) of problem (7) is replaced with

Pit ∈ {P0 =0, P1, P2, . . . , PLt =P} where
Pl < Pl+1, l = 0, 1, . . . Lt − 1 (16)

Let AP∗
denote the optimal algorithm for the above re-

stricted version of MESP, i.e nodes select an optimal power
value 0 ≤ P ∗

it ≤ P in each slot, to satisfy their rate and duty-
cycle constraints. Let R∗

it denote the corresponding optimal
rate achieved per time slot, i = 1, 2, t = 1, 2, . . . M . Finally,
let P ∗ =

∑∑
P ∗

it and R∗
i =

∑
t R∗

it denote the overall
optimal power and rate allocations. In general, an (α, β)
approximation of the optimal minimum energy scheduling
problem is one which provides a feasible schedule with total
power P̂ ≤ αP ∗ and each rate constraint violated by at
most a β-factor i.e βR̂i ≥ R∗

i , for each node i. Note that
R∗

i ≥ R̃i and hence βR̂i ≥ R̃i. Given some ε > 0, we first
show the construction of a more computationally expensive
(1+ ε, 1+ ε)-approximation in order to illustrate our approach
and then describe a more efficient (1, 1 + ε)-approximation to
the optimal.

We first summarize our power discretization scheme and
then provide an intuitive explanation as to the parameters
involved. The optimal power discretization is obtained by
dividing the total available power P in each slot into the
following Lt = r0 + s0 + 2 discrete power levels.

Pr =

 rδ1, 0 ≤ r ≤ r0

(1 + kδ1)r−r0Pr0 , r0 + 1 ≤ r ≤ r0 + s0

P, r = r0 + s0 + 1
(17)

where r0 = d 2+kq)
εkq e and s0 = bln1+kδ1 P/r0δ1c, for non-

zero k. If k = 0, then r0 = b 2P
qε c and s0 = 0.

We divide the range of available power into two types
of intervals: the first r0 intervals of fixed size δ1 and the
remaining intervals of geometrically increasing size, with



scaling factor kδ1. Intuitively, since geometric intervals
are small in the beginning, the total number of power
levels would be much larger if we only used such intervals.
Therefore we use intervals of fixed size initially up to a
point r0δ1, after which it becomes more productive to use
geometrically increasing intervals. r0 is such that the size
of the first geometric interval, kδ2

1r0 is the same as the
size of the previous fixed interval δ1. The overall objective
is to find optimal values of scaling factors k and δ1 that
minimize the total number of power levels, yet allow us to
closely approximate the overall energy consumption and
rate constraints.

To maintain the energy approximation requirements (as
shown below in Theorem 1), we will get the constraint
δ1 = qε/(2+kq), where q (to be defined later) is a technical
term required for the energy and rate approximations.
Hence kδ1 < ε and thus for small ε, the total number of
levels Lt = r0+s0 = 1

kδ1
+ln1+kδ1 kP can be approximated

by 1+ln kP
kδ1

= 1
ε (1 + ln kP )(1 + 2

kq ). We find the optimal
value of k as the one that minimizes Lt subject to the
constraints

1/P < k ≤ 2(2εR̃i/M − 1)

q
(
1 + ε− 2εR̃i/M

) (18)

where the lower bound is because Pr0 = 1/k < P and
the upper bound on k is required to maintain the rate
approximation requirements as shown below in Theorem 1.
The minimum value of Lt is found among the values of
k representing the solutions to 2 ln kP = kq subject to
ln kP ≥ 1, or at the the boundary points above. However if
Lt is an increasing function of k within these intervals, then
having geometrically increasing intervals is not productive.
Thus we set k = s0 = 0. The range of transmit powers
[0, P ] is divided into fixed size intervals of size δ1 = qε/2
and the total number of power levels is d 2P

qε e.
Finally, to complete the definition of power levels, q is

specified for technical reasons as follows:
q = mini,j,t

{
P ′

M ,
αt

ii

αt
ji

(
2εR̃i/M − 1

)}
, i, j = 1, 2, 1 ≤ t ≤

M , where P ′ = P ′
1+P ′

2, and P ′
i is the solution to the problem

of zero-interference scheduling of node i with variable (non-
discrete) power levels as shown below.

minimize P ′
i =

M∑
t=1

Pit, i = 1, 2

s.t
M∑

t=1

1
2

log2

(
1 +

αt
iiPit

N t
i

)
≥ R̃i, i = 1, 2

Pit ≥ 0 i = 1, 2; t = 1, ..,M
M∑

t=1

Ait ≤ µi, i = 1, 2

Ait =
{

0 if Pit = 0
1 otherwise

(19)

P ′
i can be found using standard Lagrange multiplier tech-

niques [22]. Note that P ′ is a lower bound for the minimum
energy scheduling problem using discrete power levels.

Based on the preceding arguments it is easy to see the
following:

Lemma 1: For given max power level P and constraints
R̃i, the number of discrete power levels per slot Lt is O( 1

qε ).
For small ε > 0, let AP̂ denote the modified version of the

(exponential) dynamic programming algorithm AP in which
each node can select from discrete power levels per time slot
as specified by Eq. 17, subject to overall duty-cycle and rate
constraints R̃i(1−ε). Then we have:

Theorem 1: AP̂ is a (1 + ε, 1 + ε)-approximation of AP∗
.

Proof: Divide the set of time slots T = {1, 2, . . . ,M}
into disjoint sets T11 and T12 (resp. T21 and T22) such that

t ∈ T11(resp. T21) if P ∗
1t(resp. P ∗

2t) ∈ [0, r0δ1]
t ∈ T12(resp. T22) if P ∗

1t(resp. P ∗
2t) ∈ (r0δ1, P ]

(20)

Let P̂it and R̂it denote the (discrete) power levels and rate
allocations per node per time slot under AP̂ . Since AP̂ con-
siders combinations of power levels over M slots, the errors
in power levels and rate allocations per slot (either absolute or
relative) must be bounded from above. Consider the solution in
AP̂ that simply rounds up the optimal power level in each slot
to the nearest (larger) discrete power level. For this solution,
the absolute error is bounded by P̂it−P ∗

it < δ1, t ∈ Ti1, and
the relative error by P̂it < (1 + kδ1)P ∗

it, t ∈ Ti2, i = 1, 2.
Therefore we have

P̂ =
∑

i

∑
t∈Ti1

P̂it +
∑

i

∑
t∈Ti2

P̂it

≤ P ∗ +
qε (|T11|+ |T21|)

2 + kq
+

kqε

2 + kq

∑
i

∑
t∈Ti2

P ∗
it

≤ P ∗ +
2Mqε

2 + kq
+

εkq

2 + kq
P ∗ (21)

The overall relative error in energy Perr, of this solution P̂ is
defined as

Perr =
P̂ − P ∗

P ∗

Therefore we can bound the relative error as

Perr =
2ε

2 + kq
· Mq

P ∗ +
εkq

kq + 2
≤ ε (22)

since q ≤ P ′/M ≤ P ∗/M as P ′ is a lower bound for the
optimal energy value P ∗. Hence this particular solution of
algorithm AP̂ approximates the optimal energy value of the
minimum energy schedule to within an ε factor.

To complete the proof, we just need to show that the above
power allocation is also a feasible solution in terms of the
rate constraints i.e the overall rates achieved by AP̂ also



approximate each rate constraint to within an ε factor. First
consider the achieved rate R̂1t, for the case t ∈ T21.

R̂1t ≥ 1
2

log2

(
1 +

αt
11P

∗
1t

N t
1 + αt

21(P
∗
2t+δ1)

)

≥ 1
2

log2

1 +
αt

11P
∗
1t

N t
1 + αt

21P
∗
2t

· 1

1 + αt
21δ1

N t
1+αt

21P∗
2t


≥ R∗

1t −
1
2

log2

1 +
δ1

P ∗
2t + N t

1
αt

11
· αt

11
αt

21

αt
21)

 (23)

Using the fact that P ∗
2t ≥ 0, and the background noise

N t
1/αt

11 ≥ 1 for each time slot t ∈ T11, we can bound the
absolute R1 rate error = R∗

1−R̂1 over all such time slots by

M

2
log2

(
1 + max

t

(
αt

21

αt
11

)
δ1

)
≤ εR̃1

2

by using the fact that δ1 ≤ εq ≤
mint

(
αt

11
αt

21

)
ε
(
22εR̃1/M − 1

)
.

Next, for t ∈ T22 (when k > 0), we get

R̂1t =
1
2

log2

(
1 +

αt
11P̂1t

N t
1 + αt

21P̂2t

)

≥ 1
2

log2

(
1 +

αt
11P

∗
1t

N t
1 + αt

21P
∗
2t(1 + kδ1)

)
≥ 1

2
log2

(
1 +

1
1+kδ1

· αt
11P

∗
1t

N t
1

1+kδ1
+ αt

21P
∗
2t

)

Since kδ1 ≥ 0, this implies

R̂1t ≥ 1
2

log2

(
1 +

αt
11P

∗
1t

N t
1 + αt

21P
∗
2t

)
− 1

2
log2(1 + kδ1)

= R∗
1t −

1
2

log2(1 + kδ1) (24)

Hence the total error in R1 over all the time slots when
t ∈ T22 is at most (M/2) log2(1 + kδ1) ≤ εR̃1/2 using the
upper bound on k as specified in Eq. 18. Combining the two
cases, the total absolute error in R1 = R̃1−R̂1 ≤ εR̃1 and thus
the relative error in R1 is bounded by ε i.e R̂1 ≥ R̃1(1− ε).
The analysis is identical for rate R2. Since algorithm AP̂ uses
R̃i(1− ε) as the rate constraint for user i, therefore the choice
of power levels described above is a feasible choice and hence
the algorithm is a (1 + ε, 1 + ε) approximation.

For the algorithm above, note that the number of discrete
power levels per slot Lt, is a function of the channel quality pa-
rameters αt

ji/αt
ii. While the α’s are exponentially distributed

random variables with typically small means [26], the ratios
can still be quite large, thereby increasing the number of levels.
Therefore we consider a better scheme where the rate and
energy approximations are obtained independent of channel
quality parameters.

Let R̃m = min(R̃1, R̃2) and k1 = (M log2(1 + P ) −
2R̃m)/ log2

(
1+P

1+1/k

)
. Define δ1 > 0 and k > 0 as the

solutions to

minimize
(

1
kδ1

+ ln1+kδ1 kP

)
(25)

s.t k1δ1 + M log2(1 + kδ1) = 2εR̃m

k > 1
22R̃m/M−1

(26)

δ1 and k can be obtained using standard constrained minimiza-
tion techniques such as Lagrange multipliers [22]. However
if no solution exists above, then δ1 and k are the solutions
obtained by replacing the constraints in Eq. 26 above by the
constraint

δ1 + log2(1 + kδ1) =
2εR̃m

M
(27)

If no solution still exists, then δ1 = εR̃m/M and k =
(2εR̃m/M − 1)/δ1. Now divide the available power per time
slot into discrete power levels as specified by Eq. 17 using the
δ1 and k values above.

Theorem 2: For ε > 0, let AP denote the (exponential)
dynamic programming algorithm for finding a minimal energy
schedule using the discrete power levels defined above, subject
to overall duty-cycle and rate constraints R̃i(1−ε). Then AP

is a (1, 1 + ε)-approximation of AP∗
.

Proof: For each slot t, round down the optimal power
level choice P ∗

it to the nearest discrete power level, represented
by P it and let Rit denote the corresponding achieved rate
per slot. As before, divide the M time slots into sets Tij ,
i, j = 1, 2, based on the value of P ∗

it. We show below that
P it represents a feasible allocation of power levels under
the rate constraints R̃i/(1− ε). Hence AP is a (1, 1 + ε)-
approximation since the total energy consumption of AP is at
most

∑∑
P it ≤

∑∑
P ∗

it.
First, for t ∈ T12, using P 1t ≥ P ∗

1t/(1 + kδ1) and P 2t ≤
P ∗

2t, we get

R1t ≥ 1
2

log2

(
1 +

αt
11P

∗
1t

(1 + kδ1)(N t
1 + αt

21P 2t)

)
≥ R∗

1t −
1
2

log2(1 + kδ1) (28)

Thus the absolute error in R1t per time slot for this case is
≤ 1

2 log2(1 + kδ1).
Next, for t ∈ T11, define the total interference, I1t =

(N t
1 + αt

21P 2t)/αt
11, and likewise I∗1t, where I∗1t ≥ I1t ≥ 1

(minimum total interference ≥ 1). Therefore we have,

R∗
1t −R1t ≤ 1

2
log2

(
1 +

P ∗
1t

I1t

)
− 1

2
log2

(
1 +

P 1t

I1t

)
Using the fact that lnx− ln y < x− y for x > y > 1, we get
R∗

1t − R1t < (P ∗
1t − P 1t)/2 ≤ δ1/2. Thus the absolute error

in R1t per time slot for this case is ≤ δ1/2.



Combining the two cases, we can bound the overall rate
error over M time slots as

Terr =
|T11|δ1

2
+
|T12| log2(1 + kδ1)

2
(29)

For AP to be a (1, 1+ε) algorithm, we must have Terr ≤ εR̃1.
To finish the proof, note that the maximum R1 rate we can
obtain under this algorithm in any t ∈ T12 is 1

2 log2(1 + P )
and 1

2 log2(1 + r0δ1) = 1
2 log2(1 + 1/k) in any t ∈ T11. The

maximum value of |T12| is M . (Clearly log2(1 + P ) should
be ≥ 2R̃1(1− ε)/M , otherwise AP does not have a solution).
However the maximum value of |T11| is |T11| ≤ (M log2(1+
P ) − 2R̃1)/ log2

(
1+P

1+1/k

)
if log2(1 + 1/k) < 2R̃1/M else

|T11| ≤ M . When |T11| takes the first value, the total number
of power levels per slot is minimized by choosing δ1 and k
as in Eq. 26, whereas in the second case it is minimized by
Eq. 27. If both cases do not yield a solution then we set the
two error components δ1 = log2(1 + kδ1) = εR̃m/M which
makes the relative error over M slots ≤ ε as desired.

Finally, we note that the worst-case values of k and kδ1 are
O(εR̃m/M) and therefore

Theorem 3: Given rate constraints R̃i and max power P ,
the number of discrete power levels per slot is O( 1

ε ).

Note that the time complexity of AP is still exponential.
However, using the fact that the number of power levels
per slot required to closely approximate rate and energy
constraints is O( 1

ε ), we will develop an FPAS in Section IV .

IV. AN FPAS FOR RATE CONSTRAINTS

We now describe a simple Fully Polynomial Approximation
Scheme that solves the minimum energy scheduling problem
by using a β-relaxation on the rate constraints for some
arbitrary constant β > 0. For clarity, we describe the FPAS
using two power levels 0 and P per time slot. The algorithm
for the multiple power level case is a simple extension as
described later.

The FPAS solves the same restricted problem of Eq. 7 with
only each rate constraint replaced by

M∑
t=1

Rit ≥ (1− β)R̃i (30)

For any δ > 0, define the following

Definition 1: A rate vector (R1, R2) δ-dominates another
vector (R3, R4) iff either R3(1−δ) ≤ R1 ≤ R3 and R2 ≥ R4

or R3 ≤ R1(1−δ) and R4(1−δ) ≤ R2. For R1 ≥ R̃1, the
δ-dominant vector is the one with max R2 among all such
vectors.
Note that dominance (under standard vector comparison) im-
plies δ-dominance but not vice-versa.

Definition 2: Let R̄ be a set of rate vectors. Define the
operation vectormaxdelta(R̄) as one that eliminates all δ-
dominated vectors from R̄.

Operation vectormaxdelta is equivalent to dividing the two-
dimensional vector space into horizontal and vertical strips,
each of whose left endpoint is (1−δ) times its right endpoint
and choosing at most one vector per strip. A simple algorithm
for implementing vectormaxdelta(R̄) is as follows. Assume R̄
has been sorted by R1 values. First obtain the δ-dominant vec-
tor for R1 ≥ R̃1 if such R1’s exist. Then find the δ-dominant
vectors successively in the strips defined by R1 intervals
(R̃1(1−δ), R̃1], (R̃1(1−δ)2, R̃1(1−δ)] (R̃1(1−δ)3, R̃1(1−δ)2]
and so on. Dominated vectors are eliminated simultaneously.
Since R̄ has been sorted by R1, this can be done in one pass
through R̄, in decreasing order of R1 values.

Choose δ = β
2M . Let AP

β denote the following dynamic
programming algorithm for the fixed power minimum energy
scheduling problem. The boundary conditions (i.e rate vectors
for each slot t) are the same as before in Eq. 13. The
main recursive step in the algorithm is derived by replacing
the vectormax operation with vectormaxdelta. Let R̂kP,a,b

i,j

represent the set of δ-dominating rate pairs corresponding to
cumulative transmission rates for user 1 and user 2 from time
slots i through j, 1 ≤ i ≤ j ≤ M , while using a total power
of kP , 1 ≤ k ≤ 2M .

R̂kP,a,b
i,j = vectormaxdelta

{
R̂kP,a,b

i,j−1

⋃
(
R̂

(k−1)P,a−1,b
i,j−1 + R̂P,1,0

j

)⋃(
R̂

(k−1)P,a,b−1
i,j−1 + R̂P,0,1

j

)
⋃(

R̂
(k−2)P,a−1,b−1
i,j−1 + R̂2P,1,1

j

)}
(31)

The terminating condition for the algorithm occurs when
the rate vectors are ≥ R̃i(1 − β), i = 1, 2. The optimal
schedule corresponds to the minimum total power rate vector
that satisfies the terminating condition.

Theorem 4: AP
β is a FPAS for the minimum energy

scheduling problem with two fixed transmit power choices 0
or P per slot.

Proof: First we show that the running time of AP
β is

polynomial in M and 1/β. The number of δ-dominant vectors
in R̂kP,a,b

i,j−1 is bounded by

1 + ln1+δ R̃1 = 1 +
ln R̃1

ln(1 + δ)
= O

(
M

β
· ln R̃1

)
since we keep only one vector for each 1−δ-factor interval.
and using 1/(1 − δ) = 1 + δ. The running time for the
creation of each R̂kP,a,b

i,j is also polynomial since it includes
sorting followed by the vectormaxdelta operation. There are
O(MPµ1µ2) such rate vector sets, each of size polynomial
in 1/β and hence the overall running time is also polynomial
in 1/β.

Next we need to show that algorithm AP
β provides a β-

approximation of the rate constraints. Let (R1, R2) ∈ R̄kP,a,b
1,j

be an arbitrary non-dominated vector from the exponential
time algorithm AP up to time slot j. We can show by induction
that ∃(R3, R4) ∈ R̂kP,a,b

1,j such that R3 ≥ R1(1 − δ)j



and R4 ≥ R2(1 − δ)j . The ‘parent’ of (R1, R2) (the vector
that produced (R1, R2) in stage j−1) is approximated within
(1− δ)j−1 by the induction hypothesis. After combining with
the vectors of stage j and implementing vectormaxdelta, at
most a further (1−δ)-factor error in R1 and R2 is introduced.
Thus the total error in each dimension is bounded by (1− δ)j

after j slots. Therefore every rate vector in R̄kP,µ1,µ2
1,M is

approximated to within (1 − δ)M by a rate vector from
algorithm AP

β . Using δ = β/2M , we can see that there exist
‘approximate’ rate vectors (R3, R4) ∈ R̂kP,µ1,µ2

1,M such that
R3 ≥ R1(1 − β) and R4 ≥ R2(1 − β) for all ‘actual’
rate vectors (R1, R2) ∈ R̄kP,µ1,µ2

1,M . Hence AP
β is a β-

approximation.
Algorithm AP

β above can be easily modified to incorporate
multiple power levels per slot. For any small α > 0, choose
ε = β = α/2 and then set δ1 and k as per Eq. 26 with Lt

power levels per user per slot. Eq. 13 is modified to reflect
(Lt)2 = O(1/α2) (from Theorem 3) total rate vectors per
time slot t, corresponding to all combinations of power levels.
Define a new algorithm APLt

β in which the vectormaxdelta
operation applies to combinations of these (Lt)2 rate vectors.
The total number of table entries (for rate vectors) in the
modified dynamic program is now increased to (Lt)2Mµ1µ2.
However by applying the vectormaxdelta operation, the size of
each rate vector set remains the same size, O(1/β), as before.

Theorem 5: For any α > 0 and ε = β = α/2, APLt

β is
a (1, 1 + α)-Fully Polynomial Approximation Scheme for the
minimum energy scheduling problem with Lt power levels per
slot.

Proof: By choosing multiple power levels as defined
above, each rate vector is no more than a 1−ε = (1−α/2)-
factor away from the ideal rate vector for that stage. For each
such vector, the vectormax operation selects another which
is at most another 1−α/2-factor away. Thus at the end of
algorithm APLt

β , the rate constraints are violated by at most
a factor of (1 − α/2)2 < (1 − α). For given M , P , µ1 and
µ2, the total number of table entries and related operations is
O(1/α2) and hence APLt

β is a (1, 1 + α) FPAS.

V. MULTIPLE NODE CASE

We now consider the MESP problem with multiple (N >
2) users transmitting over M time slots. As pointed out
earlier, the general MESP problem is related to min GAP
[24] and can be shown to be NP-hard even for 2 users and
M slots. Here we show a stronger result for MESP and
demonstrate that the problem of finding any (r, r)-factor
approximation, for any r > 0, is itself NP -complete by
finding a gap preserving reduction from the graph clique
cover problem to MESP with N users.

Theorem 6: For any r > 0, there exists no (r, r)-factor
bicriteria approximation for the MESP problem with N
users, unless P = NP .

Proof: Let G = (V,E) be an arbitrary unweighted
graph for which we wish to find the minimum clique cover.
A k clique-cover for G is a collection V1, V2, . . . , Vk of
subsets of V , such that each Vi induces a clique of G and
such that for each edge 〈u, v〉 ∈ E there is some Vi that
contains both u and v. The minimum clique cover of G is
the one with smallest cardinality k.

We convert k clique-cover on G to an instance of MESP
as follows: There are N = |V | users (transmitter-receiver
pairs), one per node of the graph. For each user i, set
the total rate constraint R̃i = 1 and maximum duty-cycle
constraint µi = M , i.e users can be active for any number
of slots. For all time slots t, define channel attenuation
factors as follows: N t

i = 1, αt
ii = 1, αt

ij = αt
ji = 0 if there

exists an edge between nodes i and j in G (i.e i and j are
non-interfering nodes) and αt

ij = αt
ji = ∞ otherwise. Here

we use 0 and ∞ for channel values for simplicity, they can
be replaced by correspondingly small (αt

ij < ε) and large
values (αt

ij > W , where W is very large) without affecting
the proof.

When a node is scheduled during a slot t, if the only
other nodes are those with which it has an edge in G,
it can immediately obtain its total rate constraint using
power Pit = 3. Conversely, if node i is scheduled along with
another node j with whom there is no edge in G, it obtains
an arbitrarily small rate regardless of the magnitude of
its power Pit since the noise factor αt

jiPjt = ∞. Note that
Pjt cannot be too small (to make αt

jiPjt small) since node
j itself is active during this time slot and must obtain a
meaningful rate ≤ (1/2) log2(1 + Pjt

αt
ijPit

).

Let A∗(N, k) be any (r, r)-factor bicriteria approxima-
tion algorithm for MESP with N nodes over a given k
slots, i.e it returns a solution in which the total power is
within an r-factor of the optimal while all obtained rates
R̄i ≥ R̃i/r. We claim that A∗ can be used to find the
exact value of clique cover K. First we note that in any
schedule of length k slots (for all k < K), there must
exist at least one node which is scheduled only with high-
interference nodes (otherwise we would have a clique-cover
of size k < K) and thus have an arbitrarily small realized
total rate. Hence A∗(N, k), for k < K, cannot return a
solution in which all rate constraints are satisfied even
within a factor of r. When k = K, the optimal clique cover
gives the first schedule where every node can be scheduled
only with non-interfering nodes and thus satisfy its total
rate constraint. Conversely, any schedule of length K that
is not a clique cover must have at least one node whose
total obtained rate is arbitrarily small i.e R̄i < R̃i/r. Thus
there is a gap of at least an r-factor between the optimal
and the best approximate rate. Since A∗(N, k), is an r-
factor approximation, it must return at least one solution
(if it exists) where all the given total rate constraints are
satisfied within a factor of r. In this case, for k = K,
there is only such solution, the optimal, which happens to
exactly satisfy all rate constraints. A∗(N,K) must return



this optimal schedule and hence A∗(N,K) can be used to
find the optimal clique cover by iteratively running it for
k = 1, 2, . . .. The smallest value of k for which all the rate
constraints are satisfied within the approximation factor
r, is then the value of the optimal clique cover of graph
G. Since clique cover is in NP , this implies that MESP
cannot be approximated within any r-factor.

Since MESP is hard to approximate, we are motivated
to develop a (1, 1+ε) FPAS for MESP with a given number
of users N transmitting over an arbitrary number of time
slots M . Our solution with small approximation bounds
ε is applicable to cases with a moderate number of users
N .

Note that MESP is NP-hard even for the restricted case of
users transmitting using only two power levels (0 and P ).
In this case, the basic dynamic programming algorithm of
Section 2 is exponential both in the number of slots M and
users N with 2N feasible rate vectors per time slot and the
size of each table entry (the rate vector set corresponding to
feasible total power and duty cycle solutions) also growing
exponentially with M . If the numbers of users is a fixed
constant, N , then we can develop an FPAS for the general
case where users can select from multiple power levels by
extending the results of the previous section.

Proposition 1: For a fixed number of users N transmitting
over an arbitrary number of slots M using multiple power
levels, there is a (1, 1 + α)-FPAS for finding the optimal
minimum energy schedule.

We first note that the optimal number of power levels
required to approximate each nodes rate and overall energy
within a (1+ε)-factor can be obtained by extending Theorem 2
to the general N -node case, since the bounding arguments
apply even with interference from multiple nodes. Hence each
node can select from Lt = O(1/ε) power levels per slot,
where the levels are defined by Eq. 17 and Eq. 26 with R̃m

in Eq. 26 changed to R̃m = min{R̃i}, i = 1, 2, . . . N . The
number of feasible rate vectors per slot t is now O((1/ε)N ),
selected from the N -dimensional hyperplane bounded by
R̃1× . . .×R̃N . At each slot, we construct the table entries
corresponding to total power and duty-cycle combinations
of nodes, where each updated table entry consists of a set
of feasible rate vectors up to the current slot that satisfy
the total power and duty-cycle requirements. To keep the
size of each of table entry polynomial in M and 1/ε,
we eliminate δ-dominated vectors as before, where δ-
dominance (with δ = ε/2M ) is defined as follows: Divide
each dimension i into 1 + ln1+δ R̃i = O

(
M ln R̃i/ε

)
intervals, each of size 1 + δ times the preceding one, thus
dividing the N -dimensional space into O

(
ΠiM ln R̃i/ε

)
regions. Vector (R1, . . . , Ri, . . . RN ) δ-dominates vector
(R′

1, . . . , R
′
i, . . . R

′
N ) if R1 > R′

1 and (1 + δ)Ri ≥ R′
i,

i = 2, . . . , N . Thus there can be at most one representative
vector in a region. After eliminating all δ-dominated
vectors in slot t, the number of rate vectors for each table

entry (power level) is 1 in the best case, corresponding
to the case where there exists a feasible rate vector in
the ’uppermost’ region which dominates all other vectors.
In the worst case, there could be O

(
ΠN−1

i=1 M ln R̃i/ε
)

δ-

dominant vectors left. The arguments of algorithm APLt

β

can now be applied to show that the rate vectors output by
the algorithm are within a (1, 1 + ε)-factor of the optimal
power and rate constraints. The algorithm is an FPAS
since it is polynomial in M and 1/ε.

VI. 2-APPROXIMATE MINIMUM ENERGY SCHEDULE FOR
FIXED POWER TRANSMITTERS

Consider an interference channel based wireless network
with N (low-cost) transmitters, where nodes are restricted to
transmitting at a fixed power over their active time slots within
the M slot duty-cycle. At the start of the duty-cycle, nodes
must decide the optimal fixed transmission power value Popt

that results in a minimum energy schedule. Since we do not
have a closed form analytical solution for this schedule as a
function of P , we need an algorithmic solution for Popt. The
basic dynamic programming solution of Section 2 addresses
only the restricted version of this problem, where the fixed
transmit power value P is given as a prior.

For a given value of P , let AP denote the FPAS
(based on the previous section using only two power lev-
els) for finding the minimum energy schedule. It is possi-
ble that a feasible schedule does not exist under AP , i.e.
∀k, (R̃1, R̃2, . . . , R̃N) 6≤ R̄kP,µ1,µ2,...,µN

1,M and thus R̄P
opt = φ.

Thus the problem is to find the optimal fixed transmission
power Popt for which both a feasible schedule exists and
the total energy cost E

Popt

A =
∑N

i=1

∑M
t=1 Pit is minimized,

subject to Pit ∈ {0, Popt} in addition to the duty-cycle and
rate constraints.

Unfortunately, Popt cannot be found via simple binary
search since the total energy of a schedule is not a convex
function of P . EP

A can have multiple local minima; increasing
transmit power may increase or decrease the total energy
depending on the specific channel interference coefficients 1.
Thus to find Popt and the global minimum energy schedule,
we first restrict the space of feasible transmit powers by
finding upper and lower bounds Pmin and Pmax, such that
1) Popt ∈ [Pmin, Pmax]; 2) AP is infeasible for P < bPminc;
and 3) ∀P > Pmax, E

Popt

A ≤ EP
A . In this section, we describe

a 2-approximation for finding E
Popt

A .
Consider two instances of the scheduling problem: One

where nodes transmit at power P1 during active slots and
the other, where they transmit at P2, with P1 < P2. It is
straightforward to note that all nodes can achieve a higher
total rate over the M slots under P2, since during each slot,
for the same combination of active nodes, the individual rates
achieved by the nodes is higher under P2 than P1.

1Note that for the multiple power levels per slot case as in section 3 (with
lt > 2 levels per slot), a schedule with maximum power P encompasses
smaller values as well and thus the optimum value of P can be found through
a simple binary search. However this is not true when only two power levels
0 and P are available.



To find Popt, we first find Pmin, the minimum (fixed)
transmit power level per active slot for which a feasible sched-
ule exists. Pmin can be found via binary search as follows:
Initialize P = min{P ′

1/M,P ′
2/M, . . . , P ′

N/M}, where P ′
i is

obtained by extending Eq 19 to N nodes. We will assume
Pmin ≥ 1 for notational convenience below2. While R̄P

opt = φ,
set P = 2P and run algorithm AP . The values of all rate
vectors increase with P and hence the process will terminate
with R̄P

opt 6= φ. Let Pm be the terminating value of P
which is found in dlog2 Pmine calls. dPmine can then be
obtained through binary search in the interval [Pm/2, Pm] with
O(log2(Pm/2)) further calls to AP . Thus we have,

Proposition 2: dPmine can be found in O(dlog2 Pmine)
calls to the FPAS AP .

The following proposition defines an upper bound for Pmax:

Proposition 3: Pmax =
(PN

1 µi

N

)
Pmin and Popt can be

found by searching in an interval of size O((M − 1)Pmin).

Proof: Let Pmax be as defined above. For any P > Pmax

we have, EP
A >

(PN
1 µi

N

)
PmintP , where tP is the total

number of active slots under algorithm AP . Since each node
is active for at least one slot in a valid schedule, we have
EP
A > Pmin

∑N
1 µi,∀P > Pmax. Also, by definition we

have E
Popt

A ≤ EPmin

A ≤ Pmin

∑N
1 µi. Combining the two,

we get E
Popt

A < EP
A for all P > Pmax as desired. Finally,

since µi ≤ M and Popt ∈ [Pmin, Pmax], it can be found by
searching in an interval of size O((M − 1)Pmin).

Note that the above bound on Pmax is independent of the
number of users N . For the special case of N = 2, we can
obtain a smaller bound on Pmax (and hence the search space
for Popt) by using the following observation based on the
definition of the rate function:

Observation 1: Let S denote any set of slots in which a
node is transmitting solo with power P achieving a total rate
of RP

S =
∑

t∈S(1/2) log2(1+αt
iiP/N t

i ). Increasing the trans-
mit power over these slots to 2nP , n = 1, 2, . . ., increases the
achieved rate by less than n|S|/2, i.e R2nP

S < RP
S + n|S|/2.

Let SP
1 , SP

2 and TP be the set of time slots occupied by
node 1 only, node 2 only and both nodes, under the schedule
created by AP . Let RP

i,S denote the total rate obtained by
node i, i = 1, 2, over any set of slots S in this schedule. Let
SP

i,s ⊂ SP
i represent the set of b|SP

i |/2c time slots with the
smallest achievable solo rates (i.e (1/2) log2(1 + αt

iiP/N t
i )

among the slots in SP
i and let SP

i,l denote the remaining
d|SP

i |/2e slots. Let K1 ⊂ TP (K2, resp.) be the smallest
subset of slots such that the total rate obtained by node 1 (node
2, resp.) over these slots when transmitting solo at power 2P is
≥ RP

1,T P (≥ RP
2,T P , resp.). These slots can be determined by

2For notational convenience, we normalize Pmin as 1. This figure could
have any unit, subject to a real system constraint. For example, in 802.11,
to reach a distance of 40m, a transmission power in the amount of 1 mW is
used [27].

selecting the best slots for node 1/node 2 in TP after sorting by
decreasing solo rates using power 2P . Also let Ks

i represent
the worst set of b|Ki|/2c slots for node i in Ki, with R2P

i,Ks
i

the corresponding total solo rates over these slots.
The following proposition provides a sufficient condition

for finding Pmax under a moderate interference regime, when
the average solo achievable rate over the worst slots is ≥ 1/4.

Proposition 4: Pmax ∈ [P, 2P ] if ∀i

1. RP
i,SP

i,s
≥ (d|SP

i |/2e)/2

2. |K1|+ |K2| ≥ |TP |
3. R2P

i,Ks
i

≥ (d|Ki|/2e)/2

Proof: First we look at the rate impact of increasing the
power over the best solo slots. We have, RP

i,SP
i

= RP
i,SP

i,l
+

RP
i,SP

i,s
, i = 1, 2. Using the first condition of the proposition,

we get,
RP

i,SP
i,l
≤ RP

i,SP
i
− (d|SP

i |/2e)/2 (32)

Now consider the best set of d|SP
i |/2ne solo slots for node

i, n = 1, 2 . . .. Suppose we transmit over these d|SP
i |/2ne

slots with power 2nP and zero power over the rest of the
slots from SP

i . The new energy cost over SP
i is at least as

much as the energy cost using power P .
The new rate achieved over SP

i is:

R2nP
i,SP

i
< RP

i,SP
i,l

+ n
2 d|S

P
i |/2ne ≤ RP

i,SP
i

by using Observation 1 and then Eq. 32.
Thus increasing the power over SP

i will reduce the rate
while keeping the energy cost at least the same as before.
Hence Pmax < 2P over the set of solo slots.

Next we consider the set of jointly active slots TP . Since Ki

represents the best slots for node i in TP , condition 2, i.e. K1+
K2 ≥ TP , implies that the minimum total energy required
to simultaneously obtain a rate of RP

i,T P , i = 1, 2, over any
subset of TP while using power 2P is ≥ 2PTP (which is
the energy consumption when both nodes are using power
P ). Now applying Observation 1 to condition 3 in a similar
manner as for the solo slots, we find that increasing power
after 2P will not lead to a more efficient energy solution, and
thus Pmax < 2P .

Finally, we use the above bounds on Pmax to obtain a 2-
approximation for E

Popt

A : the energy of the optimal (minimum
energy) schedule for N nodes transmitting at fixed power Popt

over M slots as follows.

Theorem 7: Let

P ∗ = argmin
P=2tPmin, t=0,1...,dlog2

Pmax
Pmin

e
EP
A.

Then EP∗

A is a 2-approximation to E
Popt

A , the minimum energy
schedule generated by the optimal transmit power Popt. The



algorithm for finding EP∗

A uses dlog2
Pmax

Pmin
e = O(log2 M)

calls to AP .

Proof: We run the AP algorithm starting with P = Pmin

and doubling P with each iteration until we reach a Pmax

as defined by propositions 3 or 4. We claim that the energy
of any solution using power Pa : P ≤ Pa ≤ 2P , satisfies
EPa

A ≥ (1/2) min(EP
A, E2P

A ). Let tP denote the total number
of active slots for N users under power P . If EP

A ≤ E2P
A , then

we must have tP ≥ tPa
≥ t2P ≥ tP /2, using the fact that

the number of active slots in a solution cannot increase as we
increase the power. Thus EPa

A = PatPa
≥ PtP /2 = (1/2)EP

A .
Conversely if E2P

A ≤ EP
A , then Pa ≥ P and tPa ≥ t2P

together imply that EPa

A ≥ Pt2P = (1/2)E2P
A .

When the algorithm above is implemented, the total energy
can oscillate between EPmin

A and EPmax

A as we sequentially
double the power. Let P ∗ be the power yielding the minimum
energy among the iterations and choose EP∗

A as the output of
our algorithm. By the previous arguments, EP∗

A ≤ 2E
Popt

A and
therefore this algorithm is a 2-approximation. Since Pmax =
O(MPmin), the number of iterations is O(log2 M).

VII. CONCLUSIONS

We have considered the problem of finding a minimum en-
ergy transmission schedule for duty-cycle and rate constrained
wireless networks. Since traditional optimization methods us-
ing Lagrange multipliers are computationally expensive given
the non-convex constraints, we develop fully polynomial time
approximation schemes by considering restricted versions of
the problem using discrete power levels. We derive a (1, 1+ε)-
FPAS for MESP that approximates the optimal energy con-
sumption and rate constraints to within an 1 + ε-factor.
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