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Abstract— We present a novel formulation of the prob-
lem of energy misbehavior and develop an analytical frame-
work for quantifying its impact on other nodes. Specifically,
we formulate two versions of the power control problem for
wireless sensor networks with latency constraints arising
from duty cycle allocations. In the first version, strategic
power optimization, nodes are modeled as rational agents
in a power game, who strategically adjust their powers
to minimize their own energy. In the other version, joint
power optimization, sensor nodes adjust their transmission
powers to minimize the aggregate energy expenditure. Our
analysis of these models yields insights into the different
energy outcomes of strategic versus joint power optimiza-
tion. We show that while joint power optimization fits the
accepted paradigm of cooperation among sensor nodes (for
example large number of sensor nodes cooperating for a
task such as target tracking), it comes with both advantages
and disadvantages when energy misbehavior is taken into
account. One advantage is that it can (sometimes) be
energy-dominant, i.e. the optimal energy cost for each
node under joint energy minimization is lower than its
strategically optimal energy cost. We then develop a model
for characterizing energy misbehavior and show that joint
optimization is disadvantageous because it is impossible
to prevent misbehavior under any channel quality and
load constraints, whereas strategic optimization is more
resilient. We prove that it is impossible for a node to
unilaterally and un-detectably follow a different energy
optimization strategy than the other nodes and hence
the only threat to the network is misbehavior through
false advertisement. We then provide sufficient conditions
under which misbehavior through false advertisement can
be prevented under a strategic optimization regime. Our
analytical results reveal optimal strategies for attacking
nodes in an enemy network through energy depletion and
help develop effective defense mechanisms for protecting
our own wireless network against energy attacks by an
intelligent adversary.
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I. INTRODUCTION

Energy-efficiency is a critical concern in many wire-
less networks, such as cellular networks, ad-hoc net-
works or wireless sensor networks (WSNs) that consist
of large number of sensor nodes equipped with unre-
plenishable and limited power resources. Since wireless
communication accounts for a significant portion of node
energy consumption, network lifetime and utility are
dependent on the design of energy-efficient communica-
tion schemes including low-power signaling and energy-
efficient multiple access protocols.

Power-control multiple access (PCMA) schemes
have become an essential feature of many energy-
constrained interference-limited wireless networks. Sev-
eral approaches for maximizing information transmission
over a shared channel subject to average power con-
straints have been proposed [1], [2], [3], [4], [5], [6]. [7]
addresses the issue of minimizing transmission power,
subject to a given amount of information being suc-
cessfully transmitted and derives PCMA algorithms for
autonomous channel access. [4] describes an aggregate
power control scheme for a group of interfering users
subject to minimal signal-to-noise (SNR) constraints.
They also show that this power vector solution is strictly
Pareto-optimal since each individual nodes power is also
minimized by this vector. In other words, the strategic
or node-centric solution coincides with the aggregate
or network-centric solution. [2], [3] then propose joint
scheduling and power-control algorithms for wireless
networks based on this system model.

A hidden feature of such PCMA schemes is the fact
that they are based on implicit trust agreements between
interfering nodes which makes them highly vulnerable to
energy-depletion attacks. Compromised nodes can mis-
behave by maliciously adjusting their transmission pow-
ers in order to increase energy consumption at ‘good’
nodes who are faithfully following a power-control
regime. In this paper, we present a novel formulation
of the problem of energy misbehavior and develop an
analytical framework for quantifying its impact on other
nodes. Our analytical results reveal optimal strategies for
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attacking nodes in an enemy network through energy
depletion.

We consider misbehavior in the context of the fol-
lowing problem: minimizing transmission energy for
users transmitting information to their receivers over a
shared wireless channel over overlapping intervals or
duty cycles, as in the case of wireless sensor networks.
We formulate two versions of the power control problem
for such duty-cycle constrained networks. In the first
version, strategic power optimization, nodes are modeled
as rational agents in a power game who adjust their
powers strategically in response to the power behaviors
of the other nodes, in order to minimize their own
energy consumption. We also develop a second ver-
sion of the power control problem called joint power
optimization, in which nodes adjust their transmission
powers to minimize the aggregate energy expenditure.
For strategic energy minimization, we develop a simple
game-theoretic model of a 2-player power game and
analytically derive conditions for the existence of Nash
equilibria in this game. We then derive the power vectors
for joint energy minimization and then investigate the
relationship between the energy outcomes of the two
approaches.

Note that the model of joint power optimization fits
the accepted paradigm of cooperative sensor network
operation in which large numbers of sensor nodes are
cooperatively working towards a group objective such
as target tracking. Thus while joint power optimization
could result in higher energy depletion at some sensor
nodes, it could be beneficial in improving overall sensor
network lifetime, since the network contain a large num-
ber of redundant nodes that can afford to lose energies at
differential rates. On the other hand, strategic power opti-
mization could increase also network utility/performance
since critical sensor nodes, for example, clusterheads or
data aggregators might strategically consume less energy.

Our primary motivation for investigating these two
optimization models is to gauge the energy outcome
of selective node misbehavior. Misbehavior can occur
in insecure networks if nodes are compromised by
adversaries and then do not follow agreed upon trans-
mission policies. In this paper, we develop a model for
characterizing energy misbehavior by dishonest nodes
and find that the common sensor network operational
paradigm of joint energy optimization comes with both
advantages and disadvantages when misbehavior is taken
into account. We show that while joint optimization can
sometimes be energy-dominant and there exist channel
and load conditions under which all nodes consume
less energy as opposed to strategic optimization (i.e the
energy vector for joint energy minimization is strictly
lesser than the energy vector for strategic energy mini-
mization), it is however more vulnerable to misbehavior

by compromised nodes. We also show that a useful
side effect of following a strategic energy optimization
regime is the discouragement of node misbehavior, since
it does not always lead to performance gains for the
misbehaving node.

II. MOTIVATION AND ASSUMPTIONS

We make several simplifying assumptions in order to
gain fundamental theoretical insight into the problem of
misbehavior by wireless nodes. First, similar to the ap-
proach followed by [8], [9] in which nodes periodically
exchange duty-cycle information to enable the construc-
tion of interleaved duty-cycles, we assume that nodes
exchange relevant information about duty-cycle lengths
and traffic load with each other (though not necessarily in
an honest manner). This information is then used by the
nodes to calculate optimal solutions for both the strategic
as well as joint energy minimization approach. We will
show that this optimal solution (based on the advertised
information) is sufficient to develop a strategy for pre-
venting misbehavior. Second, rather than considering a
general N -node scenario, we model wireless commu-
nication between two transmitter-receiver pairs over an
interference channel: This model represents two strongly
interfering nodes (close neighbors), who are also collab-
orating with each other by sharing information to solve
the problem of mutual energy minimization (joint or
strategic), i.e each wireless node selects a close neighbor
with whom it engages in energy optimization with the
remaining nodes treated as background interference. As a
simplifying assumption for obtaining theoretical insights,
this is similar in philosophy to the single user receiver
assumption used in multi-user communication networks,
where the summation of remaining interfering signals
is treated as Gaussian noise based on the central limit
theorem. Third, our analysis focuses on the case of a
slowly fading channel where the delay constraints are on
the order of channel coherence time, i.e these parameters
remain fixed over the active periods. It is also assumed
that these channels experience independent fading and
channel state information at the receivers is known and
advertised between the nodes.

III. SYSTEM MODEL

Let NTx1
(node 1) and NTx2

(node 2) be two
transmitter-receiver pairs transmitting to their respective
receivers NRx1

and NRx2
over a Gaussian interference

channel. Each transmitter has its own information to
send to its receiver within its active duty-cycle deadline.
The duty-cycles of the two nodes partially overlap. We
assume that node 1 transmits first over the period T I =
T1+T2, while node 2 starts its transmission later over the
period T II = T2 +T3, T = T1 +T2 +T3, and T I 6= T II
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in general. This can happen in wireless networks where
different nodes initiate periodic transmissions at different
times, for example in wireless sensor networks, nodes
operate under duty cycles over an interval T which is
divided into active (awake) and inactive (asleep) periods
[8], [9]. We represent the average transmission load on
each node by R1 = B1/T and R2 = B2/T , where
B1 and B2, respectively, represent the total amount of
information to be transmitted by each node within its
deadline. We use the notation µ1 and µ2 to represent
the active ratios of the two nodes respectively, i.e. µ1 =
(|T1 + T2|/|T |) and µ2 = (|T2 + T3|)/|T |. Figure III
illustrates this transmission setup.

T 1 T 2 T 3

NODE 2

NODE 1

T

Fig. 1. Duty cycle transmission model for interfering nodes.

Let α(i,j), i, j ∈ {1, 2} be the channel attenuation
factors between NTxi

and NRxj
, which captures the

effects of path-loss, shadowing and frequency nonse-
lective fading. Under our assumptions, this two-user
interference channel system can be modeled as

r11(t) = α(11)s11(t) + n11(t), t ∈ T1

r12(t) = α(11)s12(t) + α(21)s22(t) + n12(t), t ∈ T2

r22(t) = α(12)s12(t) + α(22s22(t) + n22(t), t ∈ T2

r23(t) = α(22)s23(t) + n23(t), t ∈ T3 (1)

where rij(t) are the received baseband signals at node
NRxi

in the jth interval, sij(t) are the transmit narrow-
band signals from node NTxi

over jth interval with
power E

[

|sij |2(t)
]

= Pij , and nij(t) are the additive
complex white Gaussian noise with power ηi. It is
assumed transmitters and receivers have full access to
channel state information (CSI) such that channel coding
over two independent blocks by each transmit node
enables error free transmissions over two periods. Single
user decoding is assumed at each receiver NRxi

to
decode the information from its own transmit node NTxi

while treating other party’s information as Gaussian in-
terference. The normalized mutual information between
NTxi

and NRxi
over the active periods are

R1 = (1 − µ2)R11 + (µ1 + µ2 − 1)R12

R2 = (1 − µ1)R23 + (µ1 + µ2 − 1)R22 (2)

where Rij = log2 (1 + ρij) is the rate of node i in the
jth interval with signal-to-interference-noise-ratio (SNR)

defined as follows:

ρ12 =
G(11)P12

G(21)P22 + η1
, ρ22 =

G(22)P22

G(12)P12 + η2

ρ11 =
G(11)P11

η1
, ρ23 =

G(22)P23

η2
(3)

where G(ij) = |α(ij)|2. Further, let β1 = η1/G
(11), α1 =

G(21)/G(11), β2 = η2/G
(22) and α2 = G(12)/G(22).

Defining η12 = β1 + α1P22 and η22 = β2 + α2P12,
we can more conveniently express ρ12 = P12/η12 and
ρ22 = P22/η22.

IV. PROBLEM SETUP

We model the problem of duty-cycle constrained
strategic energy minimization as a simple two player
power game with the following parameters: Node 1
selects its transmit power during periods T1 and T2

from the space P of achievable transmit powers. Thus
the strategy choice of node 1 is represented by l1 =
(P11, P12) ∈ P × P. Likewise, the strategy choice of
node 2 is given by l2 = (P22, P23) ∈ P×P. We consider
only pure strategies here as opposed to the more general
mixed strategy model where nodes choose their Pij’s
from a probability distribution. For notational simplicity,
we define P13 = P23 = 0 since the nodes are not active
during these time intervals.

Let E1 and E2 denote the transmission energy func-
tions

E1 = T [P11(1 − µ2) + P12(µ2 + µ1 − 1)]

E2 = T [P23(1 − µ1) + P22(µ2 + µ1 − 1)] (4)

Let Rij represent the transmission rate of node i during
period Tj , where

R11 = log2

(

1 +
P11

β1

)

, R23 = log2

(

1 +
P23

β2

)

,

R12 = log2

(

1 +
P12

β1 + α1P22

)

,

R22 = log2

(

1 +
P22

β2 + α2P12

)

(5)

Also, R1 = B1/T and R2 = B2/T represent the
average transmission rates for node 1 and node 2. Then
nodes 1 and 2 operate under load constraints L1 and L2

defined as

L1 = R11(1 − µ2) + R12(µ2 + µ1 − 1) − R̄1 = 0

L2 = R23(1 − µ1) + R22(µ2 + µ1 − 1) − R̄2 = 0 (6)

Let l = (li, l−i) represent a particular strategy profile of
the power game. In this case, l−1 = l2, l−2 = l1 and l
also represents a particular energy outcome of the game.
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We define the payoff at node i under strategy profile l
as:

Πi(l) = −Ei

Strategy li is defined to be the best-response of player
i to a given l−i if

Πi(l
′
i, l−i) ≤ Πi(li, l−i) for all strategies l′i.

Let BRi(l−i) denote the set of player i’s best response
to l−i. A strategy profile l = (l1, l2) is optimal if
the nodes are playing a Nash Equilibrium[10] i.e. li ∈
BRi(l−i) for each sensor node i.

Note that the best-response power strategy of node
1 minimizes its individual energy consumption and
satisfies its load constraint for a given power strategy
employed by node 2, without accounting for the load
constraint of the other node. However at the Nash equi-
librium point, node 2 is also playing its best response to
node 1, i.e. both users are simultaneously satisfying their
load constraints as well as minimizing their individual
energies for each others power vector solutions. We will
shortly identify system conditions (for example, load and
channel quality) under which the two players arrive at
Nash equilibrium in the power game.

We also consider the joint minimization approach in
which nodes jointly adjust their powers during overlap-
ping periods in order to minimize the aggregate energy,
i.e. minimize

∑

i Ei, subject to the load constraints Li.
Joint minimization is important in itself since there are
circumstances under it is preferable from the application
point of view, for example data aggregation in sensor
networks with large number of redundant nodes. More
importantly, while strategic energy optimization natu-
rally suggests energy benefits to some nodes, we in-
vestigate whether there are conditions under which joint
energy minimization can strictly dominate the strategic
approach, with respect to all individual node energies.
This is indeed the case as shown below.

V. ANALYTICAL RESULTS

We first obtain optimal strategic power vectors fol-
lowed by power vectors for joint energy minimization.
Optimal strategic power vectors correspond to the Nash
equilibrium points of the two player power game de-
fined above. Let power vectors P s

1 = (P s
11, P

s
12) and

P s
2 = (P s

23, P
s
22) represent node 1 and node 2’s best-

responses to each other in the two player power game,
with Rs

12 = log2(1 + P s
12/(β1 + α1P

s
22)) and Rs

22 =
log2(1 + P s

22/(β2 + α2P
s
12)) the corresponding best-

response rates. Also let C1 = 2R1/(1−µ2) and C2 =
2R2/(1−µ1) be load related terms. Finally, define n =
µ1/(1 − µ2), m = µ2/(1 − µ1), 0 < µ1, µ2 < 1,
xs = 2Rs

12 and ys = 2Rs
22 . Then we have,

Proposition 1: The Nash equilibria of the two player
power game are determined by the solutions to the sys-
tem of bivariate functions {F(xs, ys) = 0,G(xs, ys) =
0} defined by

F : β1x
n
s ym

s + α1β2C2x
n
s ys

−α1β2C2x
n
s − β1C1y

m
s = 0

G : β2x
n
s ym

s − β2C2x
n
s

+α2β1C1xsy
m
s − α2β1C1y

m
s = 0 (7)

where xs ≥ 1, ys ≥ 1.

Proof: Please see Appendix.

Generally games can have several Nash equilibria or
none at all [10], depending on specific conditions (in this
case channel quality and load). If there is no solution to
the above proposition, the two-player power game does
not have explicit equilibria for the given parameters and
the players cannot have meaningful overlapping periods.
When Nash equilibrium does not exist, the nodes have
several options. They can choose to change parameters
such as µ values and use the above necessary conditions
to ensure equilibrium. Alternately they can choose TDM
allocation in a ’fair’ manner or agree on a different
energy optimization function. Since these options involve
changing the definition of the game (non-cooperative to
cooperative) they are beyond the scope of this paper.

We now discuss under what conditions equilibria exist
and if so, how many. Meaningful equilibria correspond
to non-negative power allocations P ∗

12 ≥ 0 and P ∗
22 ≥ 0

are therefore those non negative real-valued solutions
to the equilibrium functions which satisfy 1 ≤ x ≤
2R1/µ1 and 1 ≤ y ≤ 2R2/µ2 . When one of the power
solutions is zero, it corresponds to TDM–Time Division
Multiplexing. We now provide explicit load and channel
quality conditions for the existence of Nash equilibria
for the power game.

Proposition 2: The strategic power game does not
have Nash equilibrium points only if either S.1 and T.2
are simultaneously true or T.1 and S.2 are simultane-
ously true. However if S.1 and T.1 are simultaneously
true or simultaneously false, then there exist at most
three Nash equilibria.

S :

β1

α1
(2

R1

1−µ2 − 1) < β2(2
R2

µ2 − 1)S.1

(n − 1)β2C2A

(n − 1)β2A + α2β1C1
> [1+

(n − 1)β1(C1 − A)

α1 (β2C2A(n − 1) + abβ1C1)

–m

S.2
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T :

β2

α2
(2

R2

1−µ1 − 1) < β1(2
R1

µ1 − 1)T.1

(m − 1)β1C1B

(m − 1)β1B + α1β2C2
> [1

+
(m − 1)β2(C2 − B)

α2 (β1C1B(m − 1) + α1β2C2)

–n

T.2

where 0 < µ1, µ2 < 1.
Proof: Please see Appendix.

Corollary 1: For given channel quality and load con-
ditions, there always exist duty cycle values under which
the nodes can find meaningful equilibrium.

As seen from conditions S.1 and T.1, for any channel
quality and load, we can always find µ1 and µ2 such
that the LSH of condition S.1 and T.1 exceed their RHS.
Therefore, both S.1 and T.1 can be made false and thus
equilibrium exists.

Next we identify the power vectors for the case when
the two nodes carry out joint energy minimization. Let
Rj

12 and Rj
22 be the rate solutions during the overlapping

period and denote xj = 2Rj
12 and y = 2Rj

22 . The
corresponding power solutions are denoted by P j

. .

Proposition 3: The optimal power vectors for joint
energy minimization are determined by the solutions
(xj , y) to

P : β1 [1 + α1(xj − 1)] [C1 (1 − α1α2(xj − 1)(y − 1))−

xn
j (1 + α2(y − 1))

˜

ym

= α1β2C2 (1 − α1α2(xj − 1)(y − 1)) [1 + α2(y − 1)]

(y − 1)xn
j

Q : β2 [1 + α2(y − 1)] [C2 (1 − α1α2(xj − 1)(y − 1))−

ym (1 + α1(xj − 1))] xn
j

= α2β1C1 (1 − α1α2(xj − 1)(y − 1)) [1 + α1(xj − 1)]

(xj − 1)ym

Proof: Please see Appendix.

In the case of joint energy minimization, the non-
existence of feasible power vectors, (i.e P j

12 ≥ 0 and
P j

22 ≥ 0) implies that one node is creating significant
interference at the other nodes receiver. In this case,
(since the nodes are cooperating, unlike in the strategic
optimization case) one of the nodes can choose to zero
its power output during the overlapping period.

Proposition 4: There exist load, channel quality and
duty-cycle conditions under which joint energy minimiza-
tion is dominant over strategic energy minimization, i.e.
the optimal energy cost for each node under joint en-
ergy minimization is strictly lower than its strategically
optimal energy cost.

Proof: Consider n = m = 2, identical loads
(C1 = C2 = C) and channel quality (α1 = α2 = α)
and normalized β1 = β2 = T = 1 at each node. It can
be easily seen that the optimal joint power allocation of
node 1 is equal to node 2, i.e P J

12 = P J
22 = P J =

√
C−1

α+1 .
Likewise, it can be seen that at strategic equilibrium
PS

12 = PS
22 = PS where (α + 1)2(PS)2 − (2α + 2−

αC)PS+1−C = 0. Further P J
11 = P J

23 and PS
11 = PS

23.
Therefore let EJ and ES represent the optimal energy
output of the nodes under the two energy minimization
schemes, respectively. By definition, 2EJ ≤ 2ES . After
some simplification, it can be shown that EJ = P J +
(1+αP J)

√
C−1 and ES = PS +

√

(1+αP S)
√

C−1.
Looking at the expression ns for P J and PS , there exist
α and C that EJ < ES and thus joint optimization
is dominant. By continuity arguments, there exists a
range of channel quality and loads centered around the
symmetric point for which joint optimization remains
dominant.

As will be seen from the examples in the numerical
results section, joint energy minimization is not always
dominant over strategic optimization. In such cases, one
of the nodes consumes less energy, while the other
consumes more. Thus both joint as well as strategic
optimization have their advantages. Either scheme can
be preferable depending on the applications and specific
parameters of data loads, channel qualities, and duty
cycles.

VI. NODE MISBEHAVIOR AND IMPACT ON ENERGY

OPTIMIZATION

We now investigate the impact of misbehavior by
sensor nodes in the network. We have assumed that
nodes share duty cycle, load and channel quality pa-
rameters with each other so they can obtain the optimal
power allocations as specified by either the strategic or
joint optimization regime. Under these assumptions, is it
possible for a sensor node to misbehave by selectively
adjusting its power output. In general, we define node
misbehavior as follows: A node will misbehave only if it
can adjust its power output leading to lower transmission
energy costs for itself, higher energy costs for others,
and its misbehavior cannot be detected.

There are two ways in which nodes can misbehave.
Since nodes must share information, a misbehaving node
can easily affect the optimal power vector solutions by
falsely advertising its duty-cycle or load parameters.
We consider this approach first. Later we show that it
is impossible for a node to misbehave without false
advertisement and thus the results in the first part are
strict (i.e apply to all misbehavior). Essentially, we show
that without false advertisement, the only possibility is
for the misbehaving node to unilaterally adopt strategic
minimization when the other node is expecting joint
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energy minimization. We prove that such unilateral de-
viation from the agreed upon optimization strategy is
always detectable and thus impossible.

A. Misbehavior through False Advertisement

We model misbehavior by assuming that a compro-
mised node can falsely advertise its transmission load
but make misbehavior difficult by assuming that duty
cycle lengths (µ1, µ2) along with node power outputs
during the overlapping portion of the duty cycle can
be monitored. However power outputs during the non-
overlapping part of the duty cycle are assumed to be
not monitored (since the other node is off during this
period). Thus a misbehaving node must conform to the
overlapping period power solutions obtained using the
falsely advertised load, thereby preventing it from falsely
advertising an overwhelmingly large load.

Using this model, we now analytically derive con-
ditions for node misbehavior. First, we formally define
misbehavior as follows: WLOG, assume that node 1 is
the good node while node 2 can misbehave. Let Et

1

and Et
2 represent energy consumptions if node 2 does

not misbehave, i.e the two nodes perform strategic/joint
energy optimization with true load information Bt

2, with
Ef

1 and Ef
2 the energy consumptions when node 2

falsely advertises a load of Bf
2 .

Definition 1: The misbehavior gain of (the misbehav-
ing) node 2 is defined as EG2 = Et

2−Ef
2 . Similarly, the

misbehavior loss of node 1 is defined as EL1 = Ef
1 −Et

1.

We define the necessary condition for misbehavior as

∃BF
2 s.t EL1 ≥ 0, EG2 ≥ 0. (8)

Thus node 2 will misbehave only if there exists Bf
2

such that it has a misbehavior gain and node 1 has a
misbehavior loss.

As shown previously, strategic transmission is energy
optimal for one node in most cases (the exception
being when joint energy optimization turns out to be
strongly pareto-optimal). Thus given freedom of choice,
this node will choose to optimize transmission energy
strategically thereby forcing the other node to minimize
its energy by also performing strategic optimization. We
show below that there can be an additional rationale for
strategic optimization, namely preventing misbehavior.
In particular, the following propositions show that joint
energy optimization is conducive to misbehavior, while
strategic energy optimization is not.

We summarize the main results in this section below.
In the derivations, we assume normalized duty cycle
interval T = 1 and background interference parameters
β1 = 1 and β2 = 1.

Theorem 1: It is impossible to prevent misbehavior
under joint energy optimization for all channel quality,
duty-cycle and load values α1, α2, µ1, µ2, B1, B2, 0 <
µ1, µ2 < 1.

Theorem 2: Under strategic energy optimization,
both nodes can guarantee good behavior from each other
by choosing loads and duty-cycle lengths B1, B2, µ1, µ2,
0 < µ1, µ2 < 1, such that

ρ12 >
1 − µ2

µ1 + µ2 − 1
(9)

ρ22 >
1 − µ1

µ1 + µ2 − 1
(10)

1) Misbehavior under Strategic Energy Optimization:
We first consider misbehavior under strategic optimiza-
tion. First we show that it is necessary and sufficient for
the bad node to advertise a larger false load, in order to
penalize the good node (i.e make EL1 > 0). This is not
true under joint optimization, as we shall prove later.
Later we provide a necessary condition for profitable
misbehavior at the bad node (EG1 > 0).

Proposition 5: If both nodes are following a strategic
optimization regime, then EL1 > 0 if and only if BF

2 >
BT

2 .
Proof: Let C1 = 2R1/(1−µ2) and C2 = 2R2/(1−µ1).

If node 2 falsely advertises a load Bf
2 , then the equi-

librium power solutions in Prop 1 are changed, because
C2 has changed to Cf

2 = 2R
f

2
/(1−µ1). For any given load

pair (B1, B
f
2 ), let Ef

1 denote the energy consumed by
the good node at (false load) strategic equilibrium.

Ef
1 = (1 − µ2)

{

(n − 1)P f
12 + P f

11

}

(11)

where n = µ1/(1−µ2). P f
12 (along with P f

22) is the
equilibrium strategic power solution obtained using C1

and Cf
2 (for notational simplicity, we have dropped the

s superscript). P f
11 = (C1/x

n−1
f )−1 (from Eqs. 41 and

43), where xf−1 = ρf
12 is the equilibrium SNR at node

1.
We consider the rate of change of Ef

1 with respect
to Cf

2 i.e the partial E′
1 = ∂Ef

1 /∂Cf
2 . Differentiating

Eq. 11, we get

E′
1 = (µ1+µ2−1)

(

P ′
12 −

C1

xn
x′

f

)

(12)

where P ′
12 and x′

f are the partial derivatives with respect
to Cf

2 . From Eq 47, we get C1/x
n
f = ηf

12, where ηf
12 =

1+α1P
f
22. Next from Eq. 49, we have (xf−1)ηf

12 = P f
12.

Taking the partial derivative and simplifying, we get

x′
fηf

12 = P ′
12 − α1ρ

f
12P

′
22 (13)
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Thus we have

E′
1 = α1ρ

f
12P

′
22 (14)

To obtain P ′
22 and P ′

12 rewrite Eqs. 47 and 48 as

P f
12 = (ηf )

1−1/n
12

(

C
1/n
1 −(ηf )

1/n
12

)

(15)

P f
22 = (ηf )

1−1/m
22

(

(Cf
2 )1/m−(ηf )

1/m
22

)

(16)

Taking partial derivatives w.r.t Cf
2 and simplifying, we

get

nP ′
12 = α1P

′
22

(

ρf
12(n−1)−1

)

(17)

mP ′
22 = α2P

′
12

(

ρf
22(m−1)−1

)

+
1

ym−1
(18)

Solving for P ′
22 above we get

P ′
22 =

1

mym
f

(

1−α1α2

[

ρf
12

(n−1)−1
n

] [

ρf
22

(m−1)−1
m

])

(19)
Using Eqs 49 and 50, P f

12 and P f
22 can be expressed

in terms of the equilibrium SNRs as

P f
12 =

ρf
12(1+α1ρf

22)
1−α1α2ρf

12
ρf
22

P f
22 =

ρf
22(1+α2ρf

12)
1−α1α2ρf

12
ρf
22

Thus 1−α1α2ρ
f
12ρ

f
22 > 0 for all equilibrium ρf

12 and
ρf
22. Furthermore, since ρf

12 > 0, ρf
22 > 0 at equilibrium,

we also have (ρf
12(n−1)−1) < nρf

12 and (ρf
22(m−1)−

1) < mρf
22. Utilizing this in Eq 19, we get P ′

22 > 0
and therefore ∀Cf

2 : E′
1 = ∂E1/∂Cf

2 > 0. Hence under
strategic energy optimization, Ef

1 − Et
1 > 0 if and only

if Cf
2 > Ct

2 (and therefore Bf
2 > Bt

2).

Thus the good node is penalized if and only if the bad
node falsely advertises a higher load. Next, we derive a
necessary condition for the the bad node to also profit
through misbehavior.

Proposition 6: Under strategic energy optimization,
the bad node can profit from misbehavior (EG1 > 0),
only if the equilibrium SNR of the good node during the
overlapping period satisfies

ρf
12 <

1 − µ2

µ1 + µ2 − 1
(20)

Proof: The energy consumed by the bad node can
be expressed as

Ef
2 = (1 − µ1)

{

(m − 1)P f
22 + P f

23

}

(21)

where m = µ2/(1−µ1) and P f
22 (along with P f

12) is
derived from proposition 1 using C1 and Cf

2 . Note that
P f

23 = (Ct
2/y

m−1
f )−1 (from Eqs. 44 and 46) and therefore

considering the partial derivative w.r.t Cf
2 , we get P ′

23 =
−(m−1)Ct

2y
′
f/ym

f . Thus we have

E′
2 = (µ1+µ2−1)

(

P ′
22 −

Ct
2

ym
f

y′
f

)

(22)

Next, taking the partial derivative of Eq. 50 and
simplifying, we get

y′
fηf

22 = P ′
22 − α2ρ

f
22P

′
12

= P ′
22

(

1 − α1α2

[

ρf
12(n−1)−1

n

]

ρf
22

)

(23)

Note that Cf
2 = ηf

22y
m
f (from Eq. 48). Substituting

this in Eq. 22 along with Eq 23, we get

E′
2 = (µ1 + µ2 − 1)P ′

22

(

1 −

Ct
2

Cf
2

{

1 − α1α2

[

ρf
12(n−1)−1

n

]

ρf
22

}

)

For the bad node to profit from misbehavior, it is
necessary that E′

2 < 0, which reduces to

α1alpha2

[

ρf
12(n−1)−1

n

]

ρf
22 < 1 − Cf

2

Ct
2

Since Cf
2 ≥ Ct

2 (from proposition 5), a necessary
condition for misbehavior by node 2 is ρf

12(n−1)−1 < 0
or

ρf
12 >

1

n − 1
(24)

Substituting n = µ1/(1−µ2) leads to the proposition
as stated.

Thus if both nodes are following strategic energy
optimization, there exist values of true-load at the good
node for which the bad node cannot misbehave. Prop 6
shows that node 1 can defend against misbehavior by
node 2 (make it less likely) by choosing larger loads and
larger values of n. However, as we show below, there is
no such defense against misbehavior under joint energy
optimization.

2) Misbehavior under Joint Energy Optimization: We
begin by proving the following useful result.

Lemma 1: If both nodes are following a joint energy
optimization regime, then

E′
1|Cf

2
=Ct

2

+ E′
2|Cf

2
=Ct

2

= 0 (25)

and hence EG1 = −EL2 for small values of ∆C2 =
Cf

2 − Ct
2.
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Proof: Ef
1 and ∂E1/∂Cf

2 are defined as in Eqs. 12
and 11 (with all the parameters there and below referring
to joint rather than strategic optimization). From Eq. 60,

we get C1/x
n
f =

(1+α2ρf
22

)ηf
12

1−α1α2ρf
12

ρf
22

. Substituting the above in

Eq. 12 along with x′
f (from Eq.13) and simplifying, we

get,

E′
1 =

(

µ1+µ2−1

1−α1α2ρf
12

ρf
22

) (

α1ρ
f
12(1+α2ρ

f
22)P

′
22 −

α2ρ
f
22(1+α1ρ

f
12)P

′
12

)

(26)

E′
1 at Cf

2 = Ct
2 is obtained by replacing the ρf terms

with ρt in the expression above and evaluating P ′
22 and

P ′
12 at Cf

2 = Ct
2.

Likewise E′
2 = (µ1+µ2−1)(P ′

22−Ct
2y

′
f/ym

f ) (from Eq.

22). When evaluated at Cf
2 = Ct

2, Ct
2/y

n
f =

(1+α1ρt
12

)ηt
22

1−α1α2ρt
12

ρt
22

(from Eq. 61) Substituting the above in 22 along with
y′

f evaluated at Cf
2 = Ct

2 (from Eq. 23) and simplifying,
we get

E′
2|Cf

2
=Ct

2

=

(

µ1+µ2−1

1−α1α2ρt
12ρ

t
22

)

(

α2ρ
f
22(1+α1ρ

f
12)P

′
12 − α1ρ

f
12(1+α2ρ

f
22)P

′
22

)

(27)

Therefore we have E′
2|Cf

2
=Ct

2

= −E′
1|Cf

2
=Ct

2

as de-
sired.

Proposition 7: If both nodes are following a joint
energy optimization regime, then for any channel quality,
duty-cycle and true-load values, α1, α2, µ1, µ2, B1, B

T
2 ,

there always exists a false load value using which the
bad node can obtain an energy gain while the good node
suffers an energy loss.

Proof: From lemma 1, it suffices to show that E ′
2 6=

0 at Ct
2 (i.e Ct

2 is not a local minimum for Ef
2 viewed

as a function of Cf
2 ), since this will imply that Ef

2 < Et
2

(and therefore Ef
1 > Et

1) always, in either the positive
or negative neighborhood of Ct

2. After simplifying Eqs.
26 and 27, showing E′

2 6= 0 is equivalent to showing

α2ρ
t
22(1+α1ρ

t
12)P

′
12 6= α1ρ

t
12(1+α2ρ

t
22)P

′
22 (28)

where P ′
22 and P ′

12 are evaluated at Cf
2 = Ct

2. For
notational simplicity, we drop the t and f subscripts in
the rest of this derivation.

Simplifying Eqs. 60 and 61 (using normalized β1 =
β2 = 1), we get

C1 =
1+α2(P12+P22)

1+α2P12+α1P22)
η2
12x

n (29)

C2 =
1+α1(P12+P22)

1+α2P12+α1P22)
η2
22y

n (30)

Differentiating both equations above with respect to C2,
and after some algebraic manipulation, we have

P ′
12 =

A

BC + AD
P ′

22 =
B

BC + AD
(31)

where

A =
η2(α2−α1)

(η1+α2P12)(η2+α2P22)
+

2α1

η1
− nα1P12η1(η1+P12) (32)

B =
α2(α2−α1)P22

(η1+α2P12)(η2+α2P22)
− n

η1+P12
(33)

The C and D terms are obtained by interchanging α1

with α2, n with m and the 12 subscripts with 22 in B
and A, respectively. Consider two cases:

• BC+AD < 0: Then we have A > α1ρ12B after
some manipulation of Eqs. 32 and 33 and therefore
P ′

12 < α1ρ12P
′
22. Also, α2ρ22(1+α1ρ12) < 1+

α2ρ22 since α1α2ρ12ρ22 < 1. Hence Eq. 28 is
satisfied and E′

2 < 0 in this case.
• BC+AD > 0: Then we have α2ρ22A > B from

Eqs. 32 and 33 and therefore α2ρ22P
′
12 > P ′

22.
Likewise, 1+α1ρ12 > α1ρ12(1+α2ρ22). Hence
Eq. 28 is satisfied and E′

2 > 0 in this case.

Hence E′
2 6= 0 at Cf

2 = Ct
2, and there always exists Cf

2

in the positive or negative neighborhood of Ct
2 such that

EL1 > 0, EG2 > 0. Therefore misbehavior by the bad
node cannot be prevented.

B. Misbehavior through Unilateral Deviation

Suppose a node cannot falsely advertise its load values
as assumed in the previous section. In this case the only
way a node can misbehave is if it unilaterally follows
an energy optimization strategy that is different from
the one being followed by the other nodes. Clearly, if
the good node is performing strategic optimization, then
the bad node cannot decrease the good nodes energy by
performing joint optimization (By definition of strategic
optimization. Note that both nodes are using true load
values). The only possibility is if the good node assumes
that both nodes will follow the joint optimization regime,
however the bad node unilaterally deviates and follows
strategic optimization. We now show that it is impossible
for the bad node to remain undetected and hence the only
threat of energy misbehavior in the network is through
false advertisement.

Proposition 8: If all nodes in the network are fol-
lowing a joint optimization regime, a bad node cannot
un-detectably obtain a misbehavior gain by unilaterally
following strategic energy optimization.
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Proof: WLOG, assume node 2 is the bad node per-
forming unilateral strategic energy minimization while
node 1 adheres to the power vectors produced under
joint energy minimization. Clearly, due to the nature
of strategic optimization, the bad node always has an
energy gain from this type of misbehavior. Now assume
that the good node cannot detect the others misbehavior
provided the good node’s packet can still be successfully
transmitted. Based on our interference channel model,
this is only possible when the good node’s SNR during
the overlapping period T2 is not decreased.

Let R
s|j
22 and P

s|j
22 denote the rate and power of node 2

over T2, respectively, given that node 1 uses power P j
12

and P j
11 determined under the joint energy minimiza-

tion protocol. The necessary condition for undetectable
misbehavior by node 2 is P

s|j
22 ≤ P j

22 i.e R
s|j
22 ≤ Rj

22.
Given P j

12 > 0, to minimize node 2’s total energy,
R

s|j
22 and R

s|j
23 satisfy the following two equations:

R
s|j
23 (1 − µ1) + (µ2 + µ1 − 1)R

s|j
22 =

B2

T

R
s|j
22 + log2 ηj

22 = R
s|j
23 + log2 β1

(34)

where the first equation is the load constraint, the second
one comes from solving the Lagrange multiplier equation
for strategic minimization and ηj

22 = P j
12α2 + β2. The

power vectors for joint energy minimization must also
satisfy P j

22 = ηj
22(y − 1) along with

P j
22 = (y − 1)

β2 + α2β1(x − 1)

1 − α1α2(x − 1)(y − 1)

Combining these results, we solve Eq. (34) and obtain

2R
s|j
22 = 2

B2

T µ2

[

β2 (1 − α1α2(x − 1)(y − 1))

β2 + α2β1(x − 1)

]

1−µ1

µ2

(35)
Define m = µ2

1−µ1

and n = µ1

1−µ2

. To satisfy the

necessary condition of misbehavior R
s|j
22 ≤ Rj

22, and
using y = 2Rj

22 , we have

ym ≥ 2
mB2

T µ2 · β2 (1 − α1α2(x − 1)(y − 1))

β2 + α2β1(x − 1)
(36)

Next, from the Lagrangean for joint energy minimiza-
tion, we have

λ2 = β22
mB2

T µ2 y1−m

(1 + α1(x−1)) (β2+α2β1(x−1)) =
λ2

y
(1 − α1α2(x−1)(y−1))

2 (37)

which yields

ym (1 + α1(x−1)) (β2 + α2β1(x−1)) =

β22
mB2

T µ2 (1 − α1α2(x−1)(y−1))
2
. (38)

Combining Eq. (38) and (36), we obtain

1 − α1α2(x−1)(y−1) ≥ 1 + α1(x−1), (39)

which is only true for x = 1 implying P j
12 = 0, i.e. it

requires the good node to shut off its transmitter during
T2, which contradicts the assumption that P j

12 > 0.

Proposition 8 demonstrates that it is impossible for
the bad node to misbehave using unilateral strategic
approach without compromising the good nodes perfor-
mance. Thus a bad node can misbehave only by falsely
advertising its load as analyzed in the previous section.

VII. NUMERICAL RESULTS

This section contains numerical results for optimal
power allocation and misbehavior given the duty cycle
µ = µ1 = µ2 for both the strategic and total energy
minimization approach. It is assumed normalized β1 =
β2 = 1 and T = 1.

Figure 2-5 compare individual energies E1 and E2, as
well as the total energy E1 + E2, under both joint and
strategic energy minimization schemes, respectively. It
has been shown in [4] that joint energy minimization
is strongly Pareto-optimal when duty-cycle overlap is
complete, i.e. µ = 1. Figure 2 and 3 demonstrate the
case when joint energy minimization is still strongly
Pareto-optimal even for partial overlap, i.e. µ < 1. These
observations agree with Proposition 4 It can also be seen
that the dominance of the joint minimization scheme
over the strategic one becomes greater as overlap µ
increases.

For intermediate µ values, Figure 4 illustrates the
benefit of the strategic approach in terms of energy gains
by the user having smaller load and higher interference.
Since the goal of the strategic scheme is to minimize
individual energies, node 1 saves its energy at the price
of higher energy consumption by node 2 compared to
the joint energy minimization scheme.

Figures 4 and 5 reflect the converging tendency of
these two schemes in the sense that the difference be-
tween individual energies is decreasing. We could expect
as µ → 1 (complete overlap of duty cycles), joint and
strategic energy minimization will yield the same energy
expenditures. If the node with higher load has better
channel quality in terms of smaller αj , there exists a
crossing point of µ beyond which the joint minimization
scheme becomes dominant, as shown in Figure 5.

Figure 6 demonstrates misbehavior by node 2 when
both nodes perform joint energy minimization. Node 2’s
misbehavior results in energy savings for itself while si-
multaneously leading to higher energy costs for the good
node. However, as shown in 7 if both nodes perform
strategic energy minimization, misbehavior through false
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advertisement not only increases the energy of the good
node, but also that of the bad node.

The figures show that both joint as well as strategic
optimization have their advantages. Either scheme can
be preferable depending on the applications, specific
parameters of data loads, channel qualities and duty
cycles and tolerance for misbehavior.
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VIII. CONCLUSIONS

Power-control multiple access (PCMA) schemes have
become an essential feature of many energy-constrained
interference-limited wireless networks. A hidden fea-
ture of such PCMA schemes is the fact that they are
based on implicit trust agreements between interfering
nodes which makes them highly vulnerable to energy-
depletion attacks. Compromised nodes can maliciously
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adjust their transmission powers resulting in increased
energy consumption at ’good’ nodes who are faithfully
following a power-control regime. In this paper, we
present a novel formulation of the problem of energy
misbehavior and develop an analytical framework for
quantifying its impact on other nodes. Our analytical
results reveal optimal strategies for attacking nodes in
an enemy network through energy depletion. We also
develop effective defense mechanisms for protecting our
own wireless network against energy attacks by an intel-
ligent adversary. Specifically, we formulate two versions
of the power control problem for wireless networks with
latency constraints arising from duty cycle allocations. In
the first version, strategic power optimization, wireless
nodes are modeled as rational agents in a power game,
who strategically adjust their powers to minimize their
own energy. In the other version, joint power opti-
mization, wireless nodes jointly minimize the aggregate
energy expenditure. We show that a node cannot uni-
laterally misbehave by transmitting strategically without
being detected. We then show quantitatively how an
enemy network can be attacked by falsely advertising
traffic load information in order to minimize our energy
consumption while maximally depleting the enemies’.
While joint energy optimization is sometimes energy
dominant, it is more vulnerable to energy misbehavior
than strategic optimization. We provide sufficient condi-
tions under which strategic optimization inoculates our
network against an enemies’ misbehavior. Extensions of
our misbehavior model to the case of multiple nodes is
described in [11].
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APPENDIX

Proof of Proposition 1. Proof: For given P22, T , µ1

and µ2, the best-response (P ∗

11, P
∗

12) of node 1 is the solution
to the constrained minimization problem min E1 s.t L1 = 0
or equivalently,

Min P11 + (n − 1)P12

s.t log2

“

1 + P11

β1

”

+ (n − 1) log2

“

1 + P12

β1+α1P22

”

− R̄1 = 0

Since this is a minimization of a convex objective function with

convex constraints (E1 and L1 are convex functions of P11

and P12), the global minimum can be obtained by considering
the function H1(λ1, P11, P12) = E1 − λ1L1, where λ1 is
the Lagrange multiplier [12]. The necessary and sufficient
condition for the global minimum of E1 is

5λ1,P∗
11

,P∗
12

H1 = 0 (40)

Solving Eq. 40 leads to

λ1/ ln 2 = P ∗

11 + β1 (41)

λ1/ ln 2 = P ∗

12 + β1 + α1P22 (42)

λ1/ ln 2 =
β1C1

(x∗)n−1
(43)

where x∗−1 = P ∗

12/(β1 +α1P22). Further, it can seen that
52H1(P

∗

11, P
∗

12) is a non-negative definite matrix. Thus the
necessary condition is also a sufficient condition and the local
minimum is a Global minimum [12].

Similarly, the best-responses (P ∗

23, P
∗

22) of node 2 for a
given P12 can be obtained from H2(λ2, P23, P22) = E2 −
λ2L2 in an identical manner as:

λ2/ ln 2 = P ∗

23 + β2 (44)

λ2/ ln 2 = P ∗

22 + β2 + α2P12 (45)

λ2/ ln 2 =
β2C2

(y∗)m−1
(46)
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where y∗−1 = P ∗

22/(β2+α2P12).
The above equations describe the best-responses of each

node to an arbitrary power value of the other node. At the Nash
equilibrium point, these power values are not arbitrary and
must in fact be be best-responses to each other. Let (P s

11, P
s
12)

and (P s
23, P

s
22) represent the Nash power vectors. They can be

obtained by solving Eqs. 41-46, where all the power variables
are replaced by the P s

ij’s.
Combining Eqs. 42 and 43 and Eqs. 45 and 46, we get

β1 + α1P
s
22 =

β1C1

xn
s

(47)

β2 + α2P
s
12 =

β2C2

ym
s

(48)

We also have, by definition,

xs − 1 =
P s

12

β1 + α1P s
22

(49)

ys − 1 =
P s

22

β2 + α2P s
12

(50)

Combining Eqs. 47-50 and simplifying, we get equilibrium
functions F and G as stated.

Next we prove Proposition 2. Proof: We provide a
simple algebraic and graphical proof of the proposition. The
Nash equilibrium functions F and G from Prop. 1 can be
rewritten as

F :
ym

s

ys − 1
=

α1β2C2

β1

xn
s

C1 − xn
s

(51)

G :
xn

s

xs − 1
=

α2β1C1

β2

ym
s

C2 − ym
s

(52)

Meaningful equilibria correspond to 1 ≤ xs ≤ C
1/n
1 and

1 ≤ ys ≤ C
1/m
2 . The LHS of Eq. 51 is U -shaped with

the minimum value occurring at ys = m/(m − 1) while the
RHS is increasing in xs with the minimum value at xs = 1.
For simplicity, we assume n and m are integers. Condition
S.1 indicates whether the minimum value of the RHS of
Eq. 51 i.e (α1β2C2)/(β1(C1 − 1)) is greater than the RHS
for ys = C

1/M
2 i.e C2/(C

1/m
2 − 1). Thus it can be seen that

within these xs and ys boundaries, F forms a curve with
bottom endpoint at (xs → C

1/n
1 , ys = 1) and top endpoint

intersecting only the vertical line xs = 1 if condition S.1 is
true and the horizontal line ys = C

1/m
2 only if condition S.1 is

false, A similar observation can be made about G using Eq. 52,
i.e a curve with top endpoint at (xs = 1, ys → C

1/m
2 ) and

bottom endpoint intersecting either only ys = 1 or xs = C
1/n
1

depending on condition T.1.
Combining the two observations, note that if S.1 and T.1 are

simultaneously true or false, F and G must intersect within the
prescribed xs, ys boundary, thereby creating Nash equilibria.
Further they must intersect at most at three points. For there to
be no Nash equilibrium, exactly one of the conditions S.1 or
T.1 must be true. Assume T.1 is true. Then, for there to be no
Nash equilibrium, the leftmost point of F within the boundary
should lie above G, i.e have a bigger ys value. Algebraically,
this translates to condition S.2 being true.

Next we prove Proposition 3. Proof: The joint
objective function to be minimized by both nodes is

Min (E1 + E2) s.t {L1 = 0, L2 = 0}

Consider the function H(λ1, λ2, P11, P12, P23, P22) =
P

i Ei − λiLi, where λi is the Lagrange multiplier, i = 1, 2.
Unlike the strategic optimization case, the constraints are non-
convex. Thus the necessary condition for the local minima of
P

i Ei is

5
λ1,λ2,P

j
11

,P
j
12

,P
j
23

,P
j
22

H = 0 (53)

First we have, by definition,

xj − 1 =
P j

12

β1 + α1P
j
22

(54)

yj − 1 =
P j

22

β2 + α2P
j
12

(55)

Differentiating H with respect to the P j
()s and simplifying

leads to

P j
11 + β1 =

xj

`

β1+α1P
j
22

´

(1 + α2(yj−1))

1−α1α2(xj−1)(yj−1)
(56)

P j
23 + β2 =

yj

`

β2+α2P
j
12

´

(1 + α1(xj−1))

1−α1α2(xj−1)(yj−1)
(57)

Differentiating H with respect to λ1 and λ2 leads to

P j
11 + β1 =

β1C1

xj
n−1

(58)

P j
23 + β2 =

β2C2

yj
m−1

(59)

Combining the above equations together leads to

β1C1 =
xn

j

`

β1+α1P
j
22

´

(1 + α2(yj−1))

1−α1α2(xj−1)(yj−1)
(60)

β2C2 =
yn

j

`

β2+α2P
j
12

´

(1 + α1(xj−1))

1−α1α2(xj−1)(yj−1)
(61)

Substituting for P j
12 and P j

22 above using Eqs. 54 and 55
and simplifying, we get P and Q as stated. Note that since the
constraints are non-convex the solutions to P and Q specify
all minima and and must be evaluated exhaustively for global
minima.
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