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Abstract. We take an algorithmic approach to a well-known commu-
nication channel problem and develop several algorithms for solving it.
Specifically, we develop power control algorithms for sensor networks
with collaborative relaying under bandwidth constraints, via quantiza-
tion of finite rate (bandwidth limited) feedback channels. We first con-
sider the power allocation problem under collaborative relaying where
the tradeoff between minimizing ones own energy expenditure and the
energy for relaying is considered under the constraints of packet out-
age probability and bandwidth constrained (finite rate) feedback. Then
we develop bandwidth constrained quantization algorithms (due to the
finite rate feedback) that seek the optimal way of quantizing channel
quality and power values in order to minimize the total average trans-
mission power and satisfy the given probability of outage. We develop two
kinds of quantization protocols and associated quantization algorithms.
For separate source-relay quantization, we reduce the problem to the
well-known k-median problem [1] on line graphs and show a a simple
O((KJ )2N) polynomial time algorithm, where log

2
KJ is the quantiza-

tion bandwidth and N is the size of the discretized parameter space.
For joint quantization, we first develop a simple 2-factor approximation
of complexity O(KJN + N log N). Then, for ε > 0, we develop a fully
polynomial approximation scheme (FPAS) that approximates the opti-
mal quantization cost to within an 1 + ε-factor. The running time of the
FPAS is polynomial in 1/ε, size of the input N and also ln F , where F
is the maximum available transmit power.
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1 Introduction

Energy efficiency is an important consideration in wireless sensor networks. One
technique for minimizing transmission energy in a cluster is collaborative re-
laying. Nodes can select partners to act as relays for forwarding their data to
the clusterhead or sink. Relaying exploits cooperative diversity, the fact that
sometimes the relay-clusterhead channel quality is significantly better than the
direct source-clusterhead. Thus if the relay is able to receive and decode the
source message, even if there are errors (packet outage) between the source and
clusterhead, the relay can correctly transmit the packet to the destination.

Cooperative diversities under relaying can be exploited to further improve
reliability and energy efficiency by using Channel State Information (CSI) [2, 3].
Communication channel quality is estimated and fed-back to the nodes in order
to decide the metrics of relaying. The preceding cited works share a common
feature in that they assume a set of relay nodes is already selected and the
issue is to determine power allocations across all transmitting nodes without
considering data originating from relay nodes themselves. No consideration is
given toward the relay’s own needs other than its function as a relay.

In our model, we assume that source sensor and relay sensor both have their
own data to transmit to the clusterhead along with an individual quality of
service requirement, e.g. outage probability Pout as a good approximation for
frame error rate (FER). We do not consider partner selection protocols but
assume a relay has been apriori selected. Each node divides its entire energy
budget into two parts. One is for transmitting its own data, the other is devoted
to relaying information. As a partner relationship is established between two
nodes such that each of them helps the other forward/relay information, we are
interested in a fundamental energy tradeoff question: What power allocation
policy should be adopted by each node in order to minimize its own total energy
consumption while meeting the outage probability constraints and complying
with its obligation as a relay.

In [2, 3], perfect CSI at each node is assumed available to the source and
relay nodes. However perfect CSI can only be available under the assumption
of unlimited feedback channel capacity in order for the receiver to transmit
back the measurements to its transmitter without any error. Adaptive signaling
under the finite rate feedback constraint has attracted considerable attentions
lately because of its more practical implications compared with the perfect CSI
assumption. When the feedback channel is assumed error-free with limited ca-
pacity, there are in general three approaches in exploiting partial CSI at the
transmitter side, namely, channel vector quantization, scalar quantization and
quantized signal adaptation schemes [4] (and references therein).

Not much work has been done yet for adaptive signaling schemes in sensor
networks with relay channels under the finite rate feedback constraint. In [5],
the power control problem is tackled for relay channels with finite rate feedback.
However, only amplify-and-forward relaying is considered, in which the issue of
availability of CSI for the source-relay link is relatively easier to address than
the decode-and-forward case. In addition, the majority of work in the literature
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on finite rate feedback problems approach the resulting quantization problems
directly by finding out the optimal quantization regions of fading vectors, as well
as associated power allocation functions [4].

In this paper, we take an algorithmic approach to collaborative relaying un-
der finite rate feedback by using the technique of discretization of variables (in
our case channel fading coefficients). We first briefly present results obtained in
[?] where we optimize the total average power expenditure of both relay and
source nodes under the assumption that nodes have perfect CSI in a network
of two transmitting sensors and one clusterhead. Based on the power control
strategies developed in [?] for decode-and-forward relaying, we develop band-
width constrained quantization algorithms (due to the finite rate feedback) that
seek the optimal way of quantizing channel quality and power values in order to
minimize the total average transmission power and satisfy the given probability
of outage.

We develop two kinds of quantization protocols and associated quantiza-
tion algorithms. First we consider separate source and receiver quantization,
where the clusterhead splits its available quantization bandwidth for feedback,
independently between the source and relay node. We reduce this quantization
problem to the well-known k-median problem [1] on line graphs and show a a
simple O(NKJ (KJ + log N)) polynomial time algorithm, where log KJ is the
quantization bandwidth and N is the size of the discretized parameter space.
Then we consider joint quantization. Here the base station can exploit the joint
probability distributions of source and relay channels and power values and use
the entire quantization bandwidth to jointly feedback both the source and relay.
Unfortunately, the joint quantization problem is NP-hard by reduction from the
k-median problem, which has itself been a subject of study for several decades
(problem ND51 in [1]). Therefore, we develop a simple 2-factor approximation
of complexity O(N(KJ +log N)). Then, for ε > 0, we develop a fully polynomial
approximation scheme (FPAS) that approximates the optimal quantization cost
to within an 1 + ε-factor. The running time of the FPAS is polynomial in 1/ε,
size of the input N and also ln F , where F is the maximum available transmit
power.

The paper is organized as follows. We first present the system model in
Section 2. Power control strategies with perfect CSI are then provided in Sec-
tion 3. When finite rate feedback constraint is imposed, the independent and
joint quantization algorithms for source and relay nodes are given in the next
two Sections.

2 System Model

To illustrate the major idea of power control across relay nodes, we first consider
a simple model in which there are two nodes N1 and N2 transmitting to a com-
mon receiver ND with help from each other. Narrow-band quasi-static fading
channel is assumed, where channel fading coefficients remain fixed during the
transmission of a whole packet, but are independent from node to node. The
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complex channel coefficient hi,j captures the effects of both pathloss and the
quasi-static fading on transmissions from node Ni to node Nj , where i ∈ {1, 2},
and j ∈ {2, 1, D}. Statistically, hi,j are modeled as zero mean, mutually indepen-
dent proper complex Gaussian random variables with variances: E|hi,j |2 = 2σ2

i,j .
We first assume a non-causal system model in which amplitudes |hi,j | are avail-
able to all transmitters and receivers at the beginning of transmissions. In a
quasi-static fading channel, CSI can be obtained by exploiting training sequences
sent by transmitters [6].

Consider a time-division (TD) multiple access scheme in which an entire time
period is divided into 4 slots [7, Fig. 2]. A repetition coding-based decode-and-
forward strategy (R-DF)is assumed at Nj , j = 1, 2, where relay node transmits
the same codeword as what source sends if its decoding is successful. The co-
operative communication protocol can be described as follows: Based on the
available CSI, N1 can determine whether relaying from N2 is needed or not, as
explained in the power control algorithms below. If such collaboration is sought,
N1 transmits as a source to ND in the first slot and then in the second slot N2

forwards its decoded messages to the destination. If N2 is not asked for relaying,
N1 transmits in the first 2 slots of on its own. Over the last two slots, N1 and
N2 exchange their roles as a source and relay.

The mathematical characterization of the whole process is:

Y1,D[k] = h1,DS1[k] + W1,D[k], Y1,2[k] = h1,2S1[k] + W1,2[k]

for k ∈ [0, N/4]; and
Y2,R[k] = h2,DS̃1[k] + W2,R[k]

for k ∈ (N/4, N/2], if relay N2 is needed and decoding is successful. The figure N
is the total number of degrees of freedom available over the entire transmission
period, and Wi,j are independent complex white Gaussian noise with two-sided

power spectral density N0 = 1. For R-DF schemes, S̃j [k] are scaled versions
of the transmitted Gaussian codewords Sj [k]. Over the last two slots, similar
models can be set up for node 2 based on symmetry over k ∈ (N/2, N ].

Given CSI on |hi,j |, transmission powers over various periods are denoted

as: E|S1[k]|2 = P1,D , k ∈ [0, N/4] and E|S̃1[k]|2 = P2,R, k ∈ (N/4, N/2] if
N2 is needed and decoding is successful; E|S1[k]|2 = P1,D , k ∈ [0, N/2] and

E|S̃1[k]|2 = 0, k ∈ [0, N/2], if N2 is not needed. Similarly, we define E|S2[k]|2 =
P2,D, k ∈ (N/2, 3

4N ] and E|S̃2[k]|2 = P1,R, k ∈ ( 3
4N, N ] if N1 is needed and

decoding is successful; E|S2[k]|2 = P2,D, k ∈ (N/2, N ] and E|S̃2[k]|2 = 0, k ∈
(N/2, N ] if N1 is not needed.

3 Total Energy Minimization for Collaborative Relaying
with Perfect CSI

Under the constraint that each sensor node has an outage probability no greater
than Pj,out, i.e. Pr [Ij < Rj ] ≤ Pj,out, where Ij is the mutual information of
the overall link for transmitting node j ∈ {1, 2}’s information, our objective is
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to investigate power control policies under which the total energy of these two
nodes is minimized in a complete collaborative manner. This Collaborative
Relaying problem can be formulated as below:

min
2
∑

j=1

E [Pj,D + Pj,R] , subject to Pr [Ik < Rk] ≤ Pk,out, (1)

for k = 1, 2.
Under the collaborative relaying approach, the optimal power allocation pol-

icy [Pi,D , Pj,R] to solving problem (1) can be characterized by the following
Theorem.

Theorem 1. The optimal power allocation vector [Pi,D , Pj,R] depends on chan-
nel strength ratios captured by |hi,D|/|hj,D| and |hi,D|/|hi,j | for i 6= j and
i, j ∈ {1, 2}. The resulting solutions are:

Pi,D = P̂i,D, Pj,R = P̂j,R if hi,j are in the set

Ai =
{

|hi,j | :
|hi,D |2

|hi,j |2
<

2

2Ri + 1
and

|hi,D|2

|hi,j |2
+
|hi,D|2

|hj,D|2

(

1−
|hi,D|2

|hi,j |2

)

≤
2

2Ri + 1

}

(2)
and P̂i,D + P̂j,R ≤ s∗i . Otherwise if hi,j ∈ Ac

i , the complimentary set of Ai, i.e.

Ac
i =

{

|hi,j | :
|hi,D|2

|hi,j |2
≥

2

2Ri + 1
or
|hi,D |2

|hi,j |2
+
|hi,D|2

|hj,D |2

(

1−
|hi,D|2

|hi,j |2

)

>
2

2Ri + 1

}

(3)
and 2P̃i,D ≤ s∗i , the solution is Pi,D = P̃i,D, Pj,R = 0. For all other cases,
transmission powers are all set to zero Pi,D = Pj,R = 0.
Transmission power functions are defined as follows:

P̃i,D
∆
= (2Ri−1)(|hi,D|

2), P̂i,D
∆
= (22Ri−1)(|hi,j |

2), P̂i,R
∆
=

22Rj − 1

|hi,D |2

(

1−
|hj,D|2

|hj,i|2

)

.

(4)
The thresholds s∗i , i = 1, 2 are determined by solving the following equations to
meet outage probability constraints:

1− Pi,out = Pr

{

2P̃i,D < s∗i , for

(

|hi,D|2

|hi,j |2
,
|hi,D |2

|hj,D |2

)

∈ Ac
i

}

+Pr

{

P̂i,D + P̂j,R < s∗i , for

(

|hi,D |2

|hi,j |2
,
|hi,D|2

|hj,D|2

)

∈ Ai

}

.

Proof. See [8].

4 Optimal Quantization for Optimal Collaborative
Relaying

In the previous section, we assumed the availability of perfect CSI at each sensor
node in order to develop an optimal power control algorithm for collaborative
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relaying. However, in reality, perfect CSI is not possible since bandwidth lim-
itations prevent the full exchange of precise channel information between the
source, relay and base-station1. This motivates the idea of developing power con-
trol algorithms for sensor networks with relaying under bandwidth constraints,
specifically via quantization of finite rate (bandwidth limited) feedback channels.

In this paper, we develop optimal quantization algorithms for optimal sensor
relaying by selecting appropriate quantization parameters and quantized values.
Quantized information received at the source and relay nodes is then mapped
to corresponding transmit powers. The overall objective of the quantization al-
gorithm is to minimize the expected sum of source and relay transmit powers,
as in the previous section. For the quantization algorithms, we need to consider
the power consumed by source and relay to satisfy the outage probability of
the source only during the first two mini-slots (the first half of the collabora-
tive relaying process). The algorithm can then be separately applied to develop
quantization for the source-relay pairs during the second half of the collaborative
process (when source and relay switch roles).

4.1 Quantization Protocol

The proposed quantization algorithms are associated with a specific protocol
for exchanging quantized information between the participants. We describe our
protocol below. Quantized information is exchanged between the participants in
four sequential steps as follows: In the first step, prior to data transmission, the
source node broadcasts a training sequence to the base station as well as the
relay. The clusterhead/basestation uses the training sequence to determine h1,D

while the relay node simultaneously determines h1,2. In the second step, the relay
node broadcasts another training sequence along with the quantized value of
measured h1,2 using the quantization algorithm QRB (described subsequently)
to the clusterhead and the source. This is used by the clusterhead to determine
h2,D. At this point, the clusterhead has perfect h1,D and h2,D measurements
and quantized h1,2, while the relay and source have measured and quantized
h1,2 values, respectively. Next, in the third step of the quantization protocol,
using either joint or separate quantization algorithms (described subsequently)
the station broadcasts quantized values to the source and relay. This value is
sufficient for the source and relay to determine their respective transmit power
levels for data transmission and relaying.

All algorithms can be implemented at all three nodes, so each node is aware
of the mapping from quantization to power levels without separate information.
Also each node is aware of the mapping for the other nodes. We also note as
a characteristic of the algorithms that power values are not quantized through
rounding, rather a set of feasible transmit power values is derived and there is a
mapping from channel space to this power space.

1 Imperfect CSI can also arise due to measurement errors and the time lag between
channel state measurements and actual transmission. In this paper, we do not con-
sider measurement errors and also assume slowly time-varying channel parameters.
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4.2 Preliminaries

We develop the proposed quantization algorithms by discretizing the parameter
space. For notational simplicity, let h denote any of the channel fading param-
eters h1,2, h1,D and h2,D. Let γ > 0 be an (arbitrary) discretization unit such
that the range of each h is divided into M discrete and contiguous intervals
Ij = [hj , hj+1), where hj = jγ and j = 0, 1, . . .M − 1. Each interval is of length
γ, except the last interval [hM−1,∞), which extends to infinity. The channel
fading variables h are exponentially distributed and hence we can choose as a
design parameter a maximum value, after which h is very small.

First, assume that the range of the source-relay fading coefficient is restricted,
i.e., it is known that h1,2 ∈ [ha, hb), where ha = kγ, hb = lγ, l > k. Now
consider the discretized {h1,D, h2,D} space as divided into N = M2 blocks each
of dimension γ × γ. Let bu,t denote the (u, t)th block in this space and let Hu,t

be the apriori probability that the h1,D, h2,D channel fading coefficients fall into
bu,t where Hu,t = Pr.{uγ ≤ h1,D < (u + 1)γ} · Pr.{tγ ≤ h2,D < (t + 1)γ}.

Also let Pu,t = (P s
u,t, P

r
u,t) denote the minimum (source,relay) transmit power

vector such that data can be collaboratively transmitted without outage if chan-
nel quality falls anywhere within block bj . We define,

(

P s
u,t = max{P1,D}, P r

u,t = max{P2,D}
)

∀(h1,D , h2,D) ∈ bu,t, ∀h1,2 ∈ [ha, hb)
(5)

where P1,D and P2,D are obtained using Theorem 1. Note that P s
u,t = 0 (P r

u,t = 0,
resp.) if the block is one of those for which we require outage (non-cooperation
from the relay, resp.) i.e the channel configuration corresponding to the given
block falls under the threshold s∗1 (s∗2, resp.). Hu,t and Pu,t can be obtained in
O(1) time for each block bu,t.

Consider the N blocks in the discretized h1,D, h2,D space. We state that a
block bi,j s-covers (r-covers, resp.) block bk,l if P s

i,j ≥ P s
k,l (P r

i,j ≥ P r
k,l, resp.).

Consider a block that is s-covered as well as r-covered. If the source transmits
at the source power of the s-covering block and the relay transmits at the relay
power of the r-covering block, then we are guaranteed there will be no outage if
the realized (actual) channel fading coefficients happen to fall within the covered
block. Note that if the source and relay powers of a block are both zero, then
we want the block to be in outage and there is no need to cover the block.

5 QBS and QBR: Independent Basestation-Source and
Basestation-Relay Quantization Algorithms

We assume the total downlink quantization bandwidth (from clusterhead to
source and relay) is kJ , i.e. the clusterhead has kJ bits available to transmit
the results of quantizations QBS and QBR to the source and relay. Under in-
dependent quantization, the clusterhead, after measuring the exact h1,D, h2,D

values, transmits independent quantization information to the source and relay,
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such that the realized block (under measured h values) will be s-covered by the
corresponding source power and and r-covered by the corresponding relay power.

Let ks and kr denote the choices for separate quantization bandwidths to
source and relay respectively, where ks + kr = kJ . Let KJ = 2kJ , Ks = 2ks and
Kr = 2kr .

The cost of the optimal independent quantization scheme OptIQ is given by

CostOptIQ = min
ks+kr=kJ

(QBS(ks) + QBR(kr)) (6)

We show that optimal independent quantization algorithms can be obtained
through simple reductions from the k-median problem, whose running time is
polynomial in the discretization parameter N . As we show below, the running
time of QBS(ks) and QBR(kr) are O(NKs + N log N) and O(NKr + N log N)
respectively. Thus from Eq.6, the cost of the optimal independent quantization
algorithm is O(NKJ (KJ + log N)). We describe QBS(ks) and QBR(kr) below.

5.1 Algorithm QBS(ks)

First, QRB quantizes h1,2 and this encoded value is sent to the base station,
which must implement either joint or separate quantization. Thus the quantiza-
tion of the {h1,D, h2,D} space is conditioned on the received quantized value
of h1,2, i.e. for every code of h1,2, there is a particular quantization in the
{h1,D, h2,D} space. This quantization must be designed to minimize the source
and relay power consumption. Since the optimal result also depends on the
quantization of h1,2, we must find the optimal quantization of h1,2 for which
the optimal quantization of the {h1,D, h2,D} gives the minimal power consump-
tion. QRB achieves this optimal recursive quantization as described in the last
section.

Let Ks = 2ks , i.e. the {h1,D, h2,D} space must be encoded by the clusterhead
into Ks levels, given the restricted h1,2 space. The objective of algorithm QBS is
to find a set Fs of Ks blocks (equivalently Ks power levels) such that all blocks
are s-covered and the expected transmission power of the source required to sat-
isfy the outage probability over the entire {h1,D, h2,D} space and restricted h1,2

channel space is minimized. QBS can be expressed as the following minimization
problem:

QBS : argmin
Fs

{
∑

u,t

Hu,t min
bi,j∈Fs|bi,js−coversbu,t

P s
i,j} (7)

We can now relate QBS to the k-median problem. The general k-median
problem on a graph G can be formulated as finding the optimal set F of vertices
(medians) that satisfies

kcostG = argmin
F

{
∑

u∈G

wu min
v∈F

duv} (8)

where |F | ≤ k, wu is the weight of vertex u and duv is the minimum distance
between u, v in G. While the k-median problem is known to be NP-hard in the
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general case, (ref. problem ND51 in [1]), it is solvable in polynomial time for
trees [9–12] and lines (paths) [13–16]. In this case, QBS can be easily reduced to
an instance of k-median on paths by using the fact that the s-cover relationship
is transitive.

The reduction is as follows: Sort the N blocks in non-decreasing order of
source power P s

u,t. Construct the directed path G∗ whose vertices are the ele-
ments of the sorted list in order. The directed edge cost between adjacent vertices
vi = bu,t and vi+1 = bk,l is set to ci,i+1 = P s

k,l−P s
u,t while vertex vi is assigned a

weight wvi
= Hu,t. After running the k-median algorithm on G∗ (with k = Ks),

the source power values of the k selected median nodes are mapped to the Ks

quantization levels under QBS i.e the qth quantization level corresponds to the
power value of the qth vertex in the k-median solution. Since QBS is implemented
at both the source and clusterhead, the power-level to quantization mapping is
apriori available to the source and it can transmit at the appropriate level when
the the quantized level is fed-back by the clusterhead.

The cost of quantization algorithm QBS is obtained as:

costQBS = kcostG∗ +
∑

u,t

Hu,tP
s
u,t (9)

Since s-cover is transitive, the block represented by each vertex in G∗, s-
covers all the blocks represented by vertices to its left. If vi is selected to be
one of the k-medians, then its contribution towards being a median for vj is
(P s

i − P s
j )Hj while its contribution to being an s-cover for vj is P s

i Hj . For
any set of k-medians from G∗, the difference in cost from QBS is the constant
∑

j P s
j Hj and thus there is a one-to-one correspondence between the optimal

solution to k-median on G∗ and the optimal quantization QBS. Thus we have,

Theorem 2. QBS is an optimal quantization of the source channel.

We note that k-median on a path can be implemented in O(kn) time [9]
Hence the time complexity of QBS is O(NKs + N log N).

5.2 Algorithm QBR(kr)

Algorithm QBR(kr) is identical to QBS(ks) with s-cover replaced by r-cover
and all P s values replaced by P r.

6 Joint Source/Relay Quantization

We now consider the case when the clusterhead devotes the entire downlink
quantization bandwidth to jointly quantize the source and relay transmit pow-
ers. Intuitively, this approach should prove more efficient in terms of total power
minimization as the clusterhead can consider quantization over the joint proba-
bility distribution of transmit powers and channel fadings, as opposed to treating
them independently. Unfortunately the related optimization problem is no longer
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polynomial. It can be shown that joint quantization is NP-hard by reduction from
the general k-median problem. Therefore we consider bounded approximations.

The k-median problem has been the subject of study for several decades.
There has been much work on developing efficient heuristics and approximation
algorithms [17, 18, 9, 10], particularly on trees and line graphs, as cited earlier.
For some more general cases, a constant factor approximation was presented
in [18] for graphs with a Euclidean distance metric (a 6-factor approximation).
Here, we first present a simple 2-factor approximation that exploits the much
simpler structure of joint quantization (as opposed to general k-median) and is
easy to implement. Then we develop a (1 + ε)-FPAS for joint quantization that
can approximate the quantized total power to within an arbitrarily close ε factor.

For both algorithms, we assume that the total downlink bandwidth for joint
quantization is kJ , with KJ = 2kJ . As before, the relay first transmits a quan-
tized value corresponding to a range of h1,2. Thus both algorithms quantize the
{h1,D, h2,D} space into KJ values, given the restricted h1,2 space. Each quan-
tized value corresponds to a (source,relay) power level pair. After measuring
channel quality, the clusterhead broadcasts the corresponding quantized value
to the source and relay nodes. Subsequent data transmission is accomplished
using the corresponding source and relay power levels. Note that the nodes are
each aware of the others power requirements since the algorithm is implemented
at both nodes. This is necessary since if the relay power is 0 (no relaying), the
source can transmit at the required level during both slots.

6.1 2-factor Approximation for Joint Quantization

Consider an arbitrary block bu,t. For notational simplicity, we drop the dual
subscripts u, t and use bj to denote the block. The minimum total power required
to transmit this block without outage is given by Pj = P s

j + P r
j . Hj denotes the

source-clusterhead and relay-clusterhead channel fading coefficient probability
of bj . We use P and H to denote this set of minimum total powers (per block)
and channel fading probabilities over all blocks.

QJ1, the 2-approximation algorithm for joint quantization of source and relay
powers is defined as follows: For each block bj , replace (P s

j , P r
j ) with (P s′

j , P r′

j ) =

(max(P s
j , P r

j ), max(P s
j , P r

j )). Let P ′
j = P s′

j + P r′

j and sort the blocks in non-
decreasing order of P ′

j . Construct the line graph G∗(P ′) on the vertices corre-
sponding to this sorted list, similar to algorithm QBS, and run the k-median
algorithm (with k = KJ) on G∗. Let FJ (with |FJ | = KJ) denote the subset
of blocks corresponding to vertices returned by the k-median algorithm. Each
block in FJ corresponds to a quantization level q, 0 ≤ q ≤ KJ − 1. The cor-
responding source and relay transmit powers are max(P s

i , P r
i ), where bi is the

block corresponding to quantization level q. In this case, the source and relay
transmit powers are identical, thus they will transmit at the same power when
a given quantization level is fedback from the clusterhead.

Theorem 3. QJ1 is a 2-approximation to the optimal joint quantization algo-
rithm.



11

Proof. Let costQJ∗ denote the cost of the optimal joint quantization algorithm
for the given set of blocks. QJ∗ finds a subset of KJ blocks such that all N
blocks in the set are s- as well as r-covered by the source and relay power
values represented by these KJ blocks and the average total power of the blocks
minimally meets the outage probability requirements. Let costG∗(P ) denote the
cost of the optimal k-median algorithm (with k = KJ) on directed line graph
G∗ using power values P and constructed as in the previous section.

We first note that costQJ∗ ≥ kcostG∗(P ) +
∑

j HjPj . Clearly, equality is met
when P r

j = 0 for all blocks. Further, every solution to QJ∗ is a solution to k-
median on G∗(P ). If bj was a selected block in QJ∗, then Pj > Pi for all blocks
bi that are simultaneously s-covered and r- covered by bj . Thus in G∗(P ), vertex
vj would be to the right of all such vertices vi. vj can therefore be a median for
these vertices. However the converse is not true and G∗(P ) need not correspond
to a feasible quantization. The block corresponding to a median in G∗ need not
be a solution to QJ∗, since Pj > Pi does not imply that bj can simultaneously
s-cover and r-cover bi. Hence costQJ∗ is larger than the right hand side in these
cases.

Let costP denote the sum kcostG∗(P ) +
∑

j HjPj for any set of powers P .

Now consider the system of blocks with (P s
j , P r

j ) replaced with (P s′′

j , P r′′

j ) =
(

P s
j + P r

j , P s
j + P r

j

)

. Let P ′′
j = P s′′

j + P r′′

j i.e P ′′
j = 2Pj . Clearly, costP” =

2costP ≤ 2costQJ∗ , from the discussion above. Note that every solution to k-
median on G∗(P ′′) can be converted to a lower cost feasible solution for k-median
on G∗(P ′) since P ′′

j ≥ P ′
j for all blocks bj . Thus costP ′ ≤ costP ′′ . Putting the

two observations together, we get costP ′ ≤ 2costQJ∗ and hence QJ1 is a 2-
approximation.

6.2 Fully Polynomial Approximation Scheme

For the (1+ε)-FPAS (labeled QJ2), we transform the problem from the (h1,D, h2,D)
channel space to a covering problem in the 2-dimensional power space as follows:
Each block bt in the (h1,D , h2,D) channel space is characterized by the vector
(P s

t , P r
t ) in the power space, 1 ≤ t ≤ N . Let P s = {P s

t }t and P r = {P r
t }t rep-

resent the set of source and relay powers. Without loss of generality, we assume
that |P s| = |P r| = N . We construct an N×N grid of cells C = (P s×P r), where
cell cij represents source power P s

i ∈ P s and relay power P r
j ∈ P r, 1 ≤ i, j ≤ N .

As before, the total power of cij is represented by Pij = P s
i + P r

j while Hij de-
notes the channel probability of cij , where Hij = Hk if cij corresponds to some
block bk, 1 ≤ k ≤ N . Note that cij need not correspond to an actual block and
in this case Hij = 0.

We define s- and r-covering as before. For this problem we are interested
only in joint s- and r-covering. The cells jointly covered by cij are defined by the
rectangle with left bottom endpoint at the origin and top right corner at (P s

i , P r
j ).

However for the algorithm, we prefer to express the joint covering relationship
as a directed graph G with 2N − 1 levels numbered from 2 to 2N . Level 2N
consists of only one node cNN with incoming edges from parents cN−1,N and
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cN,N−1 in level 2N−2. In general, node cij is located in level i + j and has two
outgoing edges to its two children in level i + j + 1 (ci+1,j and ci,j+1) and two
incoming edges from its two children in level i + j − 1 (ci−1,j and ci,j−1). The
nodes in level i + j are listed left to right in the order c1,i+j−1, . . . , ci+j−1,1.

We use Hij to represent the cumulative channel probability of all cells that

are jointly covered by cij , where H ij =
∑i

k=1

∑j
l=1 Hkl. Henceforth, we drop the

dual subscript and use vt to refer a generic node cij in G. We will also slightly
abuse the notation and let Ha denote the set of nodes covered by a as well as
the cumulative channel probability of these nodes. Thus for example, Ha\Hb

denotes the nodes covered by a and not b as well as the cumulative value of their
channel probabilities.

It can be seen that solving the k-median problem on directed graph G will
also lead to a solution to the joint quantization problem. Recent results show
that k-median can be solved in polynomial time on a directed tree [12]. However
G is not a directed tree (removing the directions on edges leads to cycles) and
this result cannot be applied. Instead we are able to develop an FPAS for this
problem.

Let r-set Lr = (v1, v2, . . . , vr) denote an ordered list of r nodes from G. The
nodes in an r-set are ordered by increasing levels. For nodes in the same level,
we impose a left to right ordering. Note that the ordering ensures P1 ≤ P2 ≤
. . . ≤ Pr. Let QC(Lr) denote the quantization cost if all nodes from Lr (and
only Lr) were chosen to represent quantization power levels. The total power
required for transmitting each cell in the (h1,D, h2,D) space is the power level of
its nearest ancestor in G belonging to Lr. Thus we have

QC(Lr) =

r
∑

i=1

Pi

(

H i\

(

i−1
⋃

k=1

Hk

))

(10)

Define H(Lr) =
⋃r

k=1 Hk. H(Lr) represents the cumulative channel proba-
bility of nodes covered by Lr. Let ST

r = {L1
r, L

2
r, . . . , L

T
r } denote an ordered list

of T distinct r-sets arranged in non-decreasing order of cost QC(Li
r), 1 ≤ i ≤ T .

Each r-set represents a potential sub-solution (with r levels) to the overall KJ

level quantization problem. However, we would like to reduce the number of
potential sub-solutions without losing essential information. Thus we prune the
list by retaining only those potential solutions with a specific channel quality
property.

Let δ > 0 be an arbitrary parameter. The operation Pruner,δ(S
T
r ) returns

the reduced list S
n(r)
r of size n(r) and is defined as follows:

Algorithm Pruner,δ(S
k
r )

1. Initialize i←− 1, j ←− 1, S
n(r)
r ←− φ.

2. tempH ←− H(Li
r).

3. While (QC(Lj
r) ≤ (1 + δ)QC(Li

r)) and (j ≤ k)
if (H(Lj

r) ≥ tempH) {tempH ←− H(Lj
r); x←− j; j + +}

Endif Endwhile
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4. S ←− S
⋃

Lx
r .

5. While ( QC(Lj
r) ≤ (1 + δ)QC(Lx

r )) and (H(Lj
r) ≤ H(Lx

r )) {j ++}
6. i←− j. If j ≤ k Go to Step 2.

Lemma 1. For every Lj
r ∈ ST

r , there exists an Lx
r ∈ S

n(r)
r , such that either (

QC(Lj
r)/(1 + δ) ≤ QC(Lx

r ) or (1 + δ)QC(Lj
r) ≥ QC(Lx

r )) and H(Lx
r ) > H(Lj

r).

Proof. Step 3 ensures that a representative Lx
r is found that has the highest H

among all Lj
r’s with j ≤ x and QC(Lx

r ) ≤ (1 + δ)QC(Lj
r). Once Lx

r is found,
step 5 ensures that we keep eliminating all Lj

r’s within a δ-neighborhood of Lx
r

that have smaller H values, i.e QC(Lj
r) ≤ (1 + δ)QC(Lx

r ) and H(Lj
r) ≤ H(Lx

r ).

Lemma 1 indicates a key requirement for the overall algorithm. By selecting
the particular r-set with maximum H within each δ-neighborhood, we are mini-
mizing the future cost of covering similar costing r-sets while potentially paying
a factor of (1 + δ) extra current cost.

We now define the key iterative step to be used in algorithm QJ2. Consider an
arbitrary r-set Lr = (v1, v2, . . . , vr). Let vr correspond to actual node uj ∈ G. We
define the operation Creater+1 that creates new r+1 sets from Lr by considering
Lr

⋃

uk, ∀k, k = j +1, j +2 . . .. New nodes are considered in increasing order as
per our ordering convention. Thus the last node to be considered corresponds to
cell cNN . let R = N2, the size of graph G. Then for each Lr, we create R − j
new r + 1 sets.

QC(Lr+1) can be calculated in O(R) time as follows: Assume all nodes
covered by Lr are marked. Then Huk

\HLr
can be calculated and marked by

breadth-first traversal of G starting from uk in the reverse direction of arrows.
Finally, QC(LKJ

) is created by adding to each list in QC(LKJ−1) the lowest
possible node in G such that all nodes are covered.

Algorithm QJ2 is now defined below. We assume some arbitrary node ui as
the first member of the KJ quantization and proceed as follows:

Algorithm QJ2(ui, ε)

1. L1
1 ←− (ui), S1

1 ←− (L1
1), n(1)←− 1, δ ←− ε

2KJ
.

2. For r = 1 to KJ − 1
ST

r+1 ←− Creater+1(S
n(r)
r ) ; Sort ST

r+1 by Quantization Costs QC(Li
r+1)’s ;

S
n(r+1)
r+1 ←− Pruner+1,δ(S

T
r+1) ;

3. Cost(QJ2)←− QC(L1
KJ

). Return L1
KJ

.

The minimum cost algorithm is given by QJ2 = mini QJ2(ui). We now analyze
the complexity and correctness of QJ2.

Theorem 4. For 0 < ε < 1, QJ2(ε) is a FPAS for the joint quantization prob-
lem.

Proof. We need to show that (a) the solution returned is within a factor of 1+ ε
of the optimal solution and (b) the running time is polynomial in 1/ε.
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For the first part, we have to show that our policy of selecting the r-set with
the largest H within a δ-neighborhood is not suboptimal, i.e it does not create
solutions with a cost that exceeds a 1+ ε factor of the optimal solution. Assume
some Lq

r−1 is optimal for the inductive hypothesis. Some L1
1 is certainly optimal

as we run R instances of the algorithm starting at each node. Let Lx
r be the

r-set chosen during the rth stage of pruning and let Ly
r be the optimal choice in

the same δ-neighborhood, which was not chosen because of Lx
r . Let vx and vy

be the two nodes that created the respective r-sets from Lq
r−1.

Let A = Hvx
\HL

q

r−1

and B = Hvy
\HL

q

r−1

be the marginal H contribu-

tions of the nodes. APx and BPy are the marginal costs of adding vx and vy

respectively to Lq
r−1. Also let A1 = A

⋃

HL
q

r−1

and B1 = B
⋃

HL
q

r−1

Since Lx
r was chosen over Ly

r , we know from lemma 1 that A1 ≥ B1 and also
APx ≤ (1 + δ)BPy . Now let ut be a node that is added during step r + 1. We
consider two cases:

First, let ut be the terminal node, i.e after ut all nodes in G are covered. The
cost of Lx

r

⋃

ut and Ly
r

⋃

ut are given by

C1 = QC(Lq
r−1) + APx + Pt(Ht\A1) (11)

C2 = QC(Lq
r−1) + BPy + Pt(Ht\B1), (12)

respectively. From the above observations on A, B, A1, B1, we have Ht\A1 ≤
Ht\B1 and thus C1 ≤ (1 + δ)C2 < (1 + ε)C2 since δ = ε/2KJ .

Suppose ut is a non-terminal node. We argue that there always exists another
vertex uw to be added in future whose cost will be within a 1+ ε factor by going
with Lx

r instead of Ly
r . Suppose now Ht\A > Ht\B even though A > B. Thus

ut has a larger overlap with B. Clearly the Quantization Cost of Ly
r

⋃

ut can be
unboundedly smaller than the cost of Lx

r

⋃

ut. Now consider another additional
node uw that is added later than ut such that A and B are both covered. uw exists
since ut is non-terminal and A and B have to be covered before the algorithm
terminates. By definition, Pw ≥ Pt. Consider the costs of Lx

r

⋃

ut

⋃

uw and
Ly

r

⋃

ut

⋃

uw given by

C1 = QC(Lq
r−1) + APx + Pt(Ht\A1) + Pw(Hw\(Ht

⋃

A1)) (13)

C2 = QC(Lq
r−1) + BPy + Pt(Ht\B1) + Pw(Hw\(Ht

⋃

B1)), (14)

respectively. Now using the fact that Pw ≥ Pt and A1 ≥ B1, we can see that
again C1 ≤ (1+δ)C2 < (1+ε)C2 as desired. Hence we have shown that choosing
the Lx

r representative as defined in the algorithm is not suboptimal by larger
than a 1 + δ factor at each stage.

Since at each stage we are no more than a 1 + δ factor from the optimal,
after KJ stages, we will be within a factor

(1 + δ)KJ = (1 +
ε

2KJ

)KJ ≤ (1 + ε) (15)
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For the second part, we need to show that the running time is polynomial in
1/ε. Algorithm Prune takes clearly takes time O(T ) assuming all costs and H
values are known. Let F = QC(LT

r ), i.e F is the maximum quantization cost in
ST

r . Note that F ≤ Pmax, the maximum allowed transmission power for source
and relay. This is usually imposed as a practical limitation. Now the size n(r)

of the pruned list can be determined as follows: Let S
n(r)
r = {L1

r, . . . , L
n(r)
r }.

By lemma 1, we have QC(Li
r) > (1 + δ)QC(Li−1

r and H(Li
r) > H(Li−1

r . Since

successive elements in S
n(r)
r differ by at least a (1 + δ) factor, we get

n(r) ≤ 2 + log1+δ F = 2 +
ln F

ln 1 + δ
≤ 2 +

2 ln F

δ
= O(

KJ ln F

ε
) (16)

The time complexity of QJ2(ε) can now be determined as follows. The
Creater+1 operation of step 2 takes O(|n(r)|R2) = O(KJ ln FR2/ε) time since
O(R) nodes are separately added to each existing list and each addition takes
O(R). The size T of the new r + 1-list ST

r+1 is O(|n(r)|R) and so sorting takes
O(|n(r)|R log(|n(r)|R)) time. Finally, the pruning operation takes O(|n(r)|R)
time. Hence the overall complexity is dominated by the first step which is
O(KJ ln FR2/ε). Since the algorithm is called O(R) times (one for each ui),
the total complexity is O(KJ ln FR3/ε) which is polynomial in 1/ε, KJ and F .

7 Relay to Clusterhead Quantization Algorithm QRB

Finally, we describe the Quantization between relay and base station. Let kb be
the relay to clusterhead quantization bandwidth and Kb = 2kb . If the clusterhead
is a more powerful node than an ordinary sensory, then Kb << {Ks, Kr}. Let
QRB(k, tγ) represent the optimal cost of quantizing the range of h1,2 represented
by 0 < h1,2 < tγ into k levels, 1 ≤ t ≤M . In the case of independent clusterhead
to source/relay quantization, QRB can be specified by the following dynamic
program.

QRBk,tγ = min
1≤r<t

{QRBk−1,rγ + OptIQrγ,tγ
KJ
} (17)

where the second term is a call to the independent quantization algorithm with
restricted h1,2 and total bandwidth parameters as described. The boundary con-
ditions are evaluated at QRB1,tγ1

for 1 ≤ t ≤ N1, using the recursive calls and
the fact that QRB0,tγ1

= 0. QRB is calculated in a bottom-up manner with
increasing t and k.

8 Conclusions

In this paper, we address the problem of developing power control algorithms
for sensor networks with collaborative relaying under bandwidth constraints,
via quantization of finite rate feedback channels. We develop a system model
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using channel fading parameters as the metric and are able to develop power
control policies that minimize aggregate source and relay power. Perfect Channel
State Information is not available due to bandwidth constraints and thus we
focused on developing quantization algorithms. We develop two quantization
protocols: independent quantization and joint quantization of source and relay
channels by the clusterhead. Our proposed quantization problem is related to the
k-median problem. Independent quantization can be reduced to k-median on line
graphs and hence easily solved in polynomial time. However joint quantization
is NP-hard and therefore we are forced to develop approximations. We show an
easy to implement 2-factor approximation and then develop a Fully Polynomial
Approximation Scheme that can approach the optimal to within a (1+ ε) factor.
In future work, we will work on further simplification of the FPAS.
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