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Abstract. We develop algorithms for finding the minimum energy
transmission schedule for duty-cycle and rate constrained wireless sen-
sor nodes transmitting over an interference channel. Since traditional
optimization methods using Lagrange multipliers do not work well and
are computationally expensive given the non-convex constraints, we de-
velop fully polynomial approximation schemes (FPAS) for finding op-
timal schedules by considering restricted versions of the problem using
multiple discrete power levels. We first show a simple dynamic program-
ming solution that optimally solves the restricted problem. For two fixed
transmit power levels (0 and P ), we then develop a 2-factor approxima-
tion for finding the optimal fixed transmission power level per time slot,
Popt, that generates the optimal (minimum) energy schedule. This can
then be used to develop a (2, 1 + ε)-FPAS that approximates the opti-
mal power consumption and rate constraints to within factors of 2 and
arbitrarily small ε > 0, respectively. Finally, we develop an algorithm
for computing the optimal number of discrete power levels per time slot
(O(1/ε)), and use this to design a (1, 1 + ε)-FPAS that consumes less
energy than the optimal while violating each rate constraint by at most
a 1 + ε factor.

1 Introduction

Energy-efficiency is a critical concern in many wireless networks, such as cellular
networks, ad-hoc networks or wireless sensor networks (WSNs) that consist of
large number of sensor nodes equipped with unreplenishable and limited power
resources. Since wireless communication accounts for a significant portion of
node energy consumption, network lifetime and utility are dependent on the
design of energy-efficient communication schemes including low-power signaling
and energy-efficient multiple access protocols.

Delay is also an important constraint in many wireless network applications,
for example battlefield surveillance or target tracking in which data with finite
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lifetime-information must be delivered before a deadline. Delay constraints in
wireless networks can also be examined in terms of node operation under pe-
riodic duty cycles, in which time is divided into active (awake) and inactive
(asleep) periods. [1], [2, 3] establish the idea of duty cycles in WSNs as a prac-
tical means of conserving node energy. Minimizing transmission energy subject
to latency constraints has been studied [4, 5]. Several approaches for maximizing
information transmission over a shared channel subject to average power con-
straints have been proposed [6, 7, 8, 9, 10]. [11] addresses the issue of minimizing
transmission power, subject to a given amount of information being successfully
transmitted and derives power control multiple access (PCMA) algorithms for
autonomous channel access.

We consider N sensor nodes transmitting to their destinations over a typical
AWGN interference channel over a time period T . These nodes could represent
reasonably close neighbors communicating as part of some MAC protocol. We
assume that time T is divided into M slots of equal duration. Let Pit be the
transmit power used by node i during time slot t, 1 ≤ t ≤ M . Let Rit rep-
resent the achievable transmission rate for node i during time slot t over this
N -node interference channel. Single user decoding is assumed at each receiver
to decode the information from its own transmitter while treating the remaining
information as Gaussian interference. Thus we have,

Rit =
1
2

log2

(
1 +

αt
iiPit

N t
i +

∑
j �=i αt

jiPjt

)
, 1 ≤ i ≤ N, 1 ≤ t ≤ M (1)

where αt
ji represent the channel attenuation at i’s receiver due to transmitter

j, which captures the effects of path-loss, shadowing and frequency nonselective
fading, and N t

i represents the background interference (usually N t
i = N0), during

time slot t. We assume these parameters remain fixed over a (short) time slot of
duration T/M but can vary from slot to slot.

We are interested in the following scheduling and energy minimization prob-
lem (labeled MESP: minimum energy scheduling problem)

min f :
N∑

i=1

M∑
t=1

Pit

s.t g :
M∑

t=1

AitRit ≥ R̃i i = 1, 2, . . . , N

Ait =
{

0 if node i is idle
1 otherwise

M∑
t=1

Ait ≤ μi i = 1, 2, . . . , N

(2)

The objective function in MESP is to determine the schedule which minimizes
the total energy. Since all slots are assumed to be of fixed duration, this is
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equivalent to minimizing the total transmitted power. Each node must maintain
an average rate constraint R̃i over the M slots. Further, we assume that nodes
operate under duty-cycles where time T is divided into active and idle time
slots, wireless sensor networks for example, operate under such constraints [2, 1].
The duty-cycle constraint of node i is given by μi: the maximum number of
time slots it can remain active, 1 ≤ μi ≤ M , i = 1, 2, . . .N . Ait ∈ {0, 1}
depending on whether the node is idle or active during slot t, 1 ≤ t ≤ M . Note
that in this formulation of MESP, we do not have any overall power budget
constraint (only duty-cycle constraints for limiting node activity) and we are
looking to minimize the total power/energy over the universe of available power
values. Individual/overall power budget constraints can be incorporated in our
algorithm, if desired.

It can be seen that the rate constraints above are non-convex in the power
variables Pit, even for the restricted version of MESP with two users (N = 2).
Unfortunately this implies that traditional analytical optimization methods such
as Lagrange multipliers [12] will not work well, since convexity of the constraints
is a necessary condition for obtaining the global minimum using the Lagrangean
H = f + λkgk (where gk are the constraints), and computing �Pit,λk

= 0.
Moreover finding the global minimum through exhaustive search of all possible
solutions of ∂h/∂Pit = 0 is likely to be computationally expensive. Alternately
computing the optimal dual maxλ minx h() introduces a duality gap which van-
ishes only under certain conditions on the number of constraints and parameters
N and M [12, 13].

In this paper, we develop approximation algorithms for finding the optimal
rate and duty-cycle constrained energy schedule by considering restricted ver-
sions of the problem using discrete power levels. From the algorithmic perspec-
tive, the MESP problem is NP -hard and related to the generalized assignment
problem [14]. We develop fully polynomial approximation schemes (FPAS) for
MESP using ideas related to bin-packing and the knapsack problem [14, 15]. We
first show a simple dynamic programming solution (of exponential complexity in
M) that optimally solves the restricted problem. For two fixed transmit power
levels (0 and P ), we then develop a 2-factor approximation for finding the op-
timal fixed transmit power level per time slot, Popt, that generates the optimal
(minimum) energy schedule. This can then be used to develop a (2, 1 + ε)-FPAS
that approximates the optimal power consumption and rate constraints to within
factors of 2 and arbitrarily small ε > 0, respectively. Finally, we develop an al-
gorithm for computing the optimal number of discrete power levels per time slot
(O(1/ε)), and use this to design a (1, 1 + ε)-FPAS that consumes less energy
than the optimal while violating each rate constraint by at most a 1 + ε factor.

2 Basic Dynamic Programming Solution

First, we consider a simple relaxation of the minimum energy scheduling problem
using two discrete transmit power levels. In this restricted version of the problem,
a node is allowed to be either idle or transmit with a given (fixed) power P during
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its active slot. We illustrate our schemes using two nodes (N = 2) over M time
slots. As mentioned above, even the restricted two node case is not amenable
to traditional optimization methods. Later in section 6, we extend the dynamic
program and approximations are extended to the N -node, M time slot case.

The restricted optimization problem is described by:

min
2∑

i=1

M∑
t=1

Pit

s.t
M∑

t=1

Rit ≥ R̃i, i = 1, 2

Pit ∈ {0, P}, i = 1, 2; t = 1, . . . , M (3)

Ait =
{

0 if Pit = 0
1 otherwise

M∑
t=1

Ait ≤ μi, i = 1, 2

(4)

We assume that μ1 + μ2 ≥ M , i.e the two nodes have to interleave during
some of the slots. A more restricted version of 4 with αt

ji = αji independent of
t is analyzed in [16].

Let R̄kP,a,b
i,j = {<R1, R2>} represent the set of rate vector (rate pairs) corre-

sponding to cumulative transmission rates for user 1 and user 2 from time slots
i through j, 1 ≤ i ≤ j ≤ M , while using a total power (node 1 + node 2) of
kP . For notational simplicity, if i = j, we drop one of the redundant subscripts
in the rate vector. In the above definition, Rl =

∑j
t=i Rlt, where Rlt, l = 1, 2,

is the achievable rate for node l during time slot t, depending on the actions of
the other node i.e active/asleep. The number of active slots for user 1 and 2 in
this period is denoted by a and b, respectively, where 0 ≤ a, b ≤ j−i+1. Since a
node uses fixed power P during an active slot, a+b = k, in this case. Thus for a
given time slot t, we have four different rate vectors specified by,

R̄0,0,0
t = <0, 0>

R̄P,0,1
t = <0,

1
2

log2
(
1 + αt

22P/N t
2
)
>

R̄P,1,0
t = <

1
2

log2
(
1 + αt

11P/N t
1
)
, 0>

R̄2P,1,1
t = <

1
2

log2

(
1 +

αt
11P

N t
1 + αt

21P

)
,
1
2

log2

(
1 +

αt
22P

N t
2 + αt

12P

)
>

(5)

The restricted version of the problem consists of finding a transmission sched-
ule of minimum total energy in which active nodes transmit at a fixed power
during each active time slot while also satisfying the given duty-cycle and rate
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constraints. For fixed power level P , the optimal schedule is easily specified by
the following dynamic program which maintains the current best-solution for
each total power level and duty-cycle value. The boundary conditions are given
by the rate vectors in Eq. 5. The recursive formula for each power level kP and
duty-cycles a, b, 1 ≤ k ≤ 2M , 0 ≤ a ≤ μ1, 0 ≤ b ≤ μ2 is

R̄kP,a,b
i,j = vectormax

{
R̄kP,a,b

i,j−1

⋃ (
R̄

(k−1)P,a−1,b
i,j−1 + R̄P,1,0

j

) ⋃ (
R̄

(k−1)P,a,b−1
i,j−1 + R̄P,0,1

j

)
⋃ (

R̄
(k−2)P,a−1,b−1
i,j−1 + R̄2P,1,1

j

) }
(6)

where the rate vectors in each union operation above are computed using pairwise
addition of the individual vectors. The vectormax operation eliminates all dom-
inated rate pairs from a set of rate pairs, i.e. ∀{<R1, R2>, <R3, R4>} ∈ R̄kP,a,b

i,j

either R1 > R3 and R2 ≤ R4 or vice versa. Using the recursive function, the
table of rate vector values is evaluated in increasing order of time slots from 1
to M . There are O(MPμ1μ2) rate vectors and the set of feasible schedules cor-
respond to those rate vectors ≥ <R̃1, R̃2> under the usual meaning of vector
comparison. The optimal schedule for a given transmit power level P is the one
whose rate vector satisfies

R̄P
opt = argmin

k=1,2...,2M

{
∃ <R1, R2> ∈ R̄kP,μ1,μ2

1,M | <R1, R2> ≥ <R̃1, R̃2>
}

(7)
In practice, it is likely that many of the vectors in R̄kP,a,b

i,j would be dominated
and hence eliminated by the vectormax operation. However in the worst-case,
even after the vectormax operation, the size of R̄kP,a,b

i,j can quadruple with each
additional slot. Thus the above dynamic program is clearly exponential in terms
of the slot parameter M , even though each slot contains only four rate vectors.
This motivates us to consider a (1+ ε, 1+ ε) FPAS for the problem, as described
in Section 5.

3 2-Approximate Minimum Energy Schedule

Let AP denote the (exponential time) dynamic programming algorithm for find-
ing the optimal schedule under duty-cycle constraints and using only two fixed
transmit power levels of 0 or P per slot. We note it is possible under AP that
∀k, R̄kP,μ1,μ2

1,M < <R̃1, R̃2 >. Thus R̄P
opt = φ and no feasible schedule ex-

ists for the given transmit power value P . In this case, we wish to find the
optimal feasible transmit power P = Popt for which a feasible schedule exists
under AP and that uses minimum possible energy E

Popt

A among all such feasible
powers. In this section, we describe a 2-approximation for finding E

Popt

A . Sub-
sequently (in Section 5), we develop an FPAS using O(1/ε) power levels, that
approximates Popt and the corresponding minimal energy schedule to within an
ε-factor.
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Let EP
A denote the total energy of the schedule produced by AP . Let Pa and

Pb, where Pa > Pb, represent two different transmit power levels. Consider two
instances of the scheduling problem. In the first instance, each node can either
transmit at power Pa or be idle during each slot. Likewise, with power Pb in the
second instance.

Claim. For each <R1, R2> ∈ R̄kPb,a,b
i,j there is a rate pair <R3, R4> ∈ R̄kPa,a,b

i,j

such that <R1, R2> < <R3, R4>.

Proof. From Eq. 5 it can be seen that for any slot t, we have R̄kPa,a,b
t >

R̄kPb,a,b
t , k = 1, 2, a = 0, 1, b = 0, 1. The proof follows in a straightforward man-

ner by induction.

Let Pmin be the minimum (fixed) transmit power level per active slot for which
a feasible schedule exists. Without loss of generality, we assume Pmin ≥ 1.

Theorem 1. �Pmin	 can be found in O(�log2 Pmin	) calls to the dynamic pro-
gramming algorithm AP .

Proof. Initialize P = 11. While R̄P
opt = φ, set P = 2P and run algorithm AP .

By Claim 1, the values of the rate vectors increase with P and hence the process
will terminate with R̄P

opt 
= φ. Let Pm be the terminating value of P which is
found in �log2 Pmin	 calls. �Pmin	 can then be obtained through binary search
in the interval [Pm/2, Pm] with O(log2(Pm/2)) further calls to AP .

Note that Claim 1 for rate vectors cannot be translated to total energy values
i.e Pa > Pb does not imply EPa

A > EPb

A . EP
A is not convex and can have multiple

local minima for Pa > Pmin. Thus to obtain a 2-approximation of the global
minimum energy schedule, we first need to restrict the space of feasible transmit
powers by finding an upper bound Pmax such that E

Popt

A < EP
A for all P > Pmax.

A simple upper bound is Pmax =
(

μ1+μ2
2

)
Pmin ≤ MPmin. Note that E

Popt

A ≤
EPmin

A ≤ Pmin(μ1+μ2). Since each node is active during at least one slot, EP
A >

EPmin

A for all P > Pmax. Further, since Popt ∈ [Pmin, Pmax], we note that Popt

can be found by searching in an interval of size bounded by O(MPmin).
We can obtain a smaller bound on Pmax (and hence the search space for

Popt) by using the following lemma: Let SP
1 , SP

2 and SP
3 be the set of time slots

occupied by node 1 only, node 2 only and both nodes, under the schedule created
by AP . Let RP

i,SP
i

denote the total rate obtained by node i over SP
i , i = 1, 2.

Let SP
i,s ⊂ SP

i represent the set of �|SP
i |/2
 time slots with the smallest rates

log2(1 + αt
iiP/N t

i )/2 among the slots in SP
i . Similarly, let SP

3,s(i) ⊂ SP
3 denote

the set of �|SP
3 |/4
 slots with the smallest rates calculated as log2(1+αt

iiP/N t
i )/2

among the slots in SP
3 and let RP

i,SP
3,s(i) denote the corresponding total rate over

these slots. A sufficient condition for finding Pmax is then given by:

1 Note that a better initial value can be obtained by using P = min(P ′
1, P

′
2)/M from

Eq 10 in the next section.
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Lemma 1. P ≤ Pmax < 2P if SP
3 ∩ S2P

3 
= ∅, RP
i,SP

3,s(i) ≥ (�|SP
3 |/4	)/2 and

Ri,SP
i,s

≥ (�|SP
i |/2	)/2, i = 1, 2.

For a detailed proof, please refer to [17]. The last rate condition of the lemma
is derived from the fact that doubling the power over any set S of solo slots can
increase the achieved rate by less than |S|/2. Thus if the worst half-set of slots
(SP

i,s) has a total rate at least |SP
i |/4, i = 1, 2, then doubling the power over

the best half-set of slots (thereby expending the same energy) cannot achieve
the same rate as before. The second rate condition is derived using the fact that
doubling the power still leads to overlapping slots. The first condition states that
if overlapping slots persist even after doubling the transmit power, and simul-
taneously the second rate condition is also satisfied with respect to the worst
SP

3,s(i)/4 slots (pretending that each node i is transmitting without interference
from the other in these slots), then no amount of further increases in transmit
power can decrease the overall energy. Thus Pmax < 2P .

We use the above bound on Pmax to obtain a 2-approximation for E
Popt

A , the
energy of the optimal (minimum energy) schedule as follows:

Theorem 2. Let

P ∗ = argmin
P=2tPmin, t=0,1...,�log2

Pmax
Pmin

�
EP

A .

Then EP ∗

A is a 2-approximation to E
Popt

A , the minimum energy schedule gener-
ated by the optimal transmit power Popt. The algorithm for finding EP ∗

A uses
�log2

Pmax

Pmin
	 = o(log2 M) calls to AP .

Proof. We run the AP algorithm starting with P = Pmin and doubling P with
each iteration until we reach a Pmax as defined by lemma 1. The total energy
can oscillate between EPmin

A and EPmax
A as we sequentially double the power.

For any solution using power Pa, P < Pa < 2P , the number of active slots
tPa = |SPa

1 |+|SPa
2 |+2|SPa

3 | cannot increase between tP and t2P i.e tP ≥ tPa ≥ t2P

(using claim 1). Thus EPa

A ≥ (1/2)minEP
A , E2P

A . Let P ∗ be the power yielding
the minimum energy among the iterations and choose EP ∗

A as the output of
our algorithm. By the above arguments, EP ∗

A ≤ 2E
Popt

A and therefore this algo-
rithm is a 2-approximation. Since Pmax = o(MPmin, the number of iterations is
o(log2 M).

4 Minimum Energy Schedule with Multiple Power Levels

We now consider the scheduling problem with multiple discretized power levels,
where each node can choose from a set of power levels per time slot. As shown
below, if the power levels are chosen appropriately, the cost of the resulting min-
imum energy schedule approximates the cost of the optimal schedule to within
an ε-factor.
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For the optimization problem with multiple power levels, let P and Lt denote
the maximum allowable transmit power and the number of discrete power lev-
els available per time slot, respectively, with values as defined below. For this
problem, the constraint 3 of Eq. 4 is replaced with

Pit ∈ {Pl}, l = 0, 1, . . .Lt; 0=P0 ≤ Pl ≤ PLt =P ; i = 1, 2; t = 1, . . . , M. (8)

Note that the corresponding optimal version of the minimum energy schedul-
ing problem contains the constraint

0 ≤ Pit ≤ P, i = 1, 2; t = 1, . . . , M (9)

Let AP ∗
denote the optimal algorithm for the above restricted version of

MESP with per slot maximum power constraints (Eq. 9), i.e nodes select an
optimal power value 0 ≤ P ∗

it ≤ P in each slot, to satisfy their rate and duty-cycle
constraints. Let R∗

it denote the corresponding optimal rate achieved per time slot,
i = 1, 2, t = 1, 2, . . .M . Finally, let P ∗ =

∑ ∑
P ∗

it and R∗
i =

∑
t R∗

it denote the
overall optimal power and rate allocations. In general, an (α, β) approximation
of the optimal minimum energy scheduling problem is one which provides a
feasible schedule with total power P̂ ≤ αP ∗ and each rate constraint violated
by at most a β-factor i.e βR̂i ≥ R∗

i , for each node i. Note that R∗
i ≥ R̃i and

hence βR̂i ≥ R̃i. Given some ε > 0, we first show the construction of a more
computationally expensive (1 + ε, 1 + ε)-approximation in order to illustrate
our approach and then describe a more efficient (1, 1 + ε)-approximation to the
optimal.

Let P ′ = P ′
1 + P ′

2, where P ′
i is the solution to the problem

min P ′
i =

M∑
t=1

Pit, i = 1, 2

s.t
M∑

t=1

1
2

log2

(
1 +

αt
iiPit

N t
i

)
≥ R̃i, i = 1, 2

Pit ≥ 0 i = 1, 2; t = 1, .., M
M∑

t=1

Ait ≤ μi, i = 1, 2

Ait =
{

0 if Pit = 0
1 otherwise

(10)

P ′
j is the solution to the problem of zero-interference scheduling of node j with

variable (non-discrete) power levels and can be found using standard Lagrange
multiplier techniques [12]. Thus P ′ is a lower bound for the minimum energy
scheduling problem using discrete power levels. Now define
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q = mini,t

{
P ′

M ,
αt

ii

αt
ji

(
2εR̃i/M − 1

)}
, i, j = 1, 2, 1 ≤ t ≤ M . Let k be the largest

solution to the equation kq = 2 lnkP such that

e/P < k ≤ 2(2εR̃i/M − 1)

q
(
1 + ε − 2εR̃i/M

) (11)

else set k = 0. For the given ε > 0, choose δ1 = εq
2+kq . If k = 0, let r0 = � 2P

qε 
,
otherwise r0 = � 2+kq)

εkq 	. Let s0 = �ln1+kδ1 P/r0δ1
.
Allocate power to nodes in each time slot by dividing the total available power

P into the following Lt = r0 + s0 + 2 discrete power levels.

Pr =
{

rδ1, 0 ≤ r ≤ r0
(1 + kδ1)r−r0Pr0 , r0 + 1 ≤ r ≤ r0 + s0

Pr0+s0+1 = P

(12)

Lemma 2. For given max power level P and constraints R̃i, the number of
discrete power levels per slot Lt is O( 1

qε ).

Proof. Note that we are allocating power levels by dividing the range of avail-
able power into two types of intervals: the first r0 intervals of fixed size δ1 and
remaining intervals of geometrically increasing size. Since geometric intervals are
small in the beginning, the total number of power levels would be much larger
using only geometrically increasing intervals. Therefore we use intervals of fixed
size initially and choose integer r0 such that the size of the first geometric inter-
val, kδ2

1r0 is the same as the size of the previous fixed interval δ1. The overall
objective is to find optimal values of k and δ1 that minimize the total number of
power levels, yet allow us to closely approximate the overall energy consumption
and rate constraints. From the energy approximation requirements (as shown
below), we will get the constraint δ1 = qε/(2 + kq). Hence kδ1 < ε and thus for
small ε, the total number of levels Lt = r0 + s0 = 1/(kδ1) + ln1+kδ1 kP can be
approximated by 1+ln kP

kδ1
= (1/ε)(1 + ln kP )(1 + 2/(kq)). Thus the objective is

to find k that minimizes Lt. The solution to this minimization is ln kP = kq/2
subject to ln kP > 1. If k does not satisfy these conditions then δ1 = qε/2 and
the number of power levels is � 2P

qε 	.

The remaining constraints on k as specified in Eq. 11, are obtained from the rate
approximation requirements shown below.

Theorem 3. For small ε > 0, let AP̂ denote the modified version of the (expo-
nential) dynamic programming algorithm AP in which each node can select from
discrete power levels per time slot as specified by Eq. 12, subject to overall duty-
cycle and rate constraints R̃i(1−ε). Then AP̂ is a (1 + ε, 1 + ε)-approximation
of AP ∗

.
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Proof. Divide the set of time slots T = {1, 2, . . . , M} into disjoint sets T11 and
T12 (resp. T21 and T22) such that

t ∈ T11(resp. T21) if P ∗
1t(resp. P ∗

2t) ∈ [0, r0δ1]
t ∈ T12(resp. T22) if P ∗

1t(resp. P ∗
2t) ∈ (r0δ1, P ]

(13)

Let P̂it and R̂it denote the (discrete) power levels and rate allocations per
node per time slot under AP̂ . Since AP̂ considers combinations of power levels
over M slots, the errors in power levels and rate allocations per slot (either
absolute or relative) must be bounded from above. Consider the solution in
AP̂ that simply rounds up the optimal power level in each slot to the nearest
(larger) discrete power level. For this solution, the absolute error is bounded by
P̂it − P ∗

it < δ1, t ∈ Ti1, and the relative error by P̂it < (1 + kδ1)P ∗
it, t ∈ Ti2,

i = 1, 2. Therefore we have

P̂ =
∑

i

∑
t∈Ti1

P̂it +
∑

i

∑
t∈Ti2

P̂it

≤ P ∗ +
qε (|T11| + |T21|)

2 + kq
+

kqε

2 + kq

∑
i

∑
t∈Ti2

P ∗
it

≤ P ∗ +
2Mqε

2 + kq
+

εkq

2 + kq
P ∗ (14)

The overall relative error in energy Perr, of this solution P̂ is defined as

Perr =
P̂ − P ∗

P ∗ (15)

Therefore we can bound the relative error as

Perr =
2ε

2 + kq
· Mq

P ∗ +
εkq

kq + 2
≤ ε (16)

since q ≤ P ′/M ≤ P ∗/M as P ′ is a lower bound for the optimal energy value
P ∗. Hence this particular solution of algorithm AP̂ approximates the optimal
energy value of the minimum energy schedule to within an ε factor.

To complete the proof, we just need to show that the above power allocation
is also a feasible solution in terms of the rate constraints i.e the overall rates
achieved by AP̂ also approximate each rate constraint to within an ε factor.
First consider the achieved rate R̂1t, for the case t ∈ T21.

R̂1t ≥ 1
2

log2

(
1 +

αt
11P

∗
1t

N t
1 + αt

21(P
∗
2t+δ1)

)

≥ 1
2

log2

⎛
⎝1 +

αt
11P

∗
1t

N t
1 + αt

21P
∗
2t

· 1

1 + αt
21δ1

N t
1+αt

21P ∗
2t

⎞
⎠
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≥ R∗
1t − 1

2
log2

⎛
⎝1 +

δ1

P ∗
2t + N t

1
αt

11
· αt

11
αt

21

αt
21)

⎞
⎠ (17)

Using the fact that P ∗
2t ≥ 0, and the background noise N t

1/αt
11 ≥ 1 for each

time slot t ∈ T11, we can bound the absolute R1 rate error = R∗
1 −R̂1 over all

such time slots by

M

2
log2

(
1 + max

t

(
αt

21

αt
11

)
δ1

)
≤ εR̃1

2

by using the fact that δ1 ≤ εq ≤ mint

(
αt

11
αt

21

)
ε
(
22εR̃1/M − 1

)
.

Next, for t ∈ T22 (when k > 0), we get

R̂1t =
1
2

log2

(
1 +

αt
11P̂1t

N t
1 + αt

21P̂2t

)

≥ 1
2

log2

(
1 +

αt
11P

∗
1t

N t
1 + αt

21P
∗
2t(1 + kδ1)

)

≥ 1
2

log2

(
1 +

1
1+kδ1

· αt
11P

∗
1t

N t
1

1+kδ1
+ αt

21P
∗
2t

)

Since kδ1 ≥ 0, this implies

R̂1t ≥ 1
2

log2

(
1 +

αt
11P

∗
1t

N t
1 + αt

21P
∗
2t

)
− 1

2
log2(1 + kδ1)

= R∗
1t − 1

2
log2(1 + kδ1) (18)

Hence the total error in R1 over all the time slots when t ∈ T22 is at most
(M/2) log2(1 + kδ1) ≤ εR̃1/2 using the upper bound on k as specified in Eq. 11.
Combining the two cases, the total absolute error in R1 = R̃1−R̂1 ≤ εR̃1 and
thus the relative error in R1 is bounded by ε i.e R̂1 ≥ R̃1(1 − ε). The analysis is
identical for rate R2. Since algorithm AP̂ uses R̃i(1 − ε) as the rate constraint
for user i, therefore the choice of power levels described above is a feasible choice
and hence the algorithm is a (1 + ε, 1 + ε) approximation.

For the algorithm above, note that the number of discrete power levels per slot
Lt, is a function of the channel quality parameters αt

ji/αt
ii. While the α’s are

exponentially distributed random variables with typically small means [18], the
ratios can still be quite large, thereby increasing the number of levels. Therefore
we consider a more optimal scheme where the rate and energy approximations
are obtained independent of channel quality parameters.

Let R̃m = min(R̃1, R̃2) and k1 = (M log2(1+P )−2R̃m)/ log2

(
1+P

1+1/k

)
. Define

δ1 > 0 and k > 0 as the solutions to

min
1

kδ1
+ ln1+kδ1 kP
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s.t k1δ1 + M log2(1 + kδ1) = 2εR̃m

k >
1

22R̃m/M − 1
(19)

δ1 and k can be obtained using standard constrained minimization techniques
such as Lagrange multipliers [12]. However if no solution exists above, then δ1
and k are the solutions obtained by replacing the constraints in Eq. 19 above by
the constraint

δ1 + log2(1 + kδ1) =
2εR̃m

M
(20)

If no solution still exists, then δ1 = εR̃m/M and k = (2εR̃m/M − 1)/δ1. Now
divide the available power per time slot into discrete power levels as specified by
Eq. 12 using the δ1 and k values above.

Theorem 4. For ε > 0, let AP denote the (exponential) dynamic programming
algorithm for finding a minimal energy schedule using the discrete power levels
defined above, subject to overall duty-cycle and rate constraints R̃i(1−ε). Then
AP is a (1, 1 + ε)-approximation of AP ∗

.

Proof. For each slot t, round down the optimal power level choice P ∗
it to the

nearest discrete power level, represented by P it and let Rit denote the corre-
sponding achieved rate per slot. As before, divide the M time slots into sets
Tij , i, j = 1, 2, based on the value of P ∗

it. We show below that P it represents a
feasible allocation of power levels under the rate constraints R̃i/(1−ε). Hence
AP is a (1, 1 + ε)-approximation since the total energy consumption of AP is at
most

∑ ∑
P it ≤

∑ ∑
P ∗

it.
First, for t ∈ T12, using P 1t ≥ P ∗

1t/(1 + kδ1) and P 2t ≤ P ∗
2t, we get

R1t ≥ 1
2

log2

(
1 +

αt
11P

∗
1t

(1 + kδ1)(N t
1 + αt

21P 2t)

)

≥ R∗
1t − 1

2
log2(1 + kδ1) (21)

Thus the absolute error in R1t per time slot for this case is ≤ 1
2 log2(1 + kδ1).

Next, for t ∈ T11, define the total interference, I1t = (N t
1 + αt

21P 2t)/αt
11, and

likewise I∗1t, where I∗1t ≥ I1t ≥ 1 (minimum total interference ≥ 1). Therefore
we have,

R∗
1t − R1t ≤ 1

2
log2

(
1 +

P ∗
1t

I1t

)
− 1

2
log2

(
1 +

P 1t

I1t

)

Using the fact that lnx − ln y < x − y for x > y > 1, we get R∗
1t − R1t <

(P ∗
1t − P 1t)/2 ≤ δ1/2. Thus the absolute error in R1t per time slot for this case

is ≤ δ1/2.
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Combining the two cases, we can bound the overall rate error over M time
slots as

Terr =
|T11|δ1

2
+

|T12| log2(1 + kδ1)
2

(22)

For AP to be a (1, 1 + ε) algorithm, we must have Terr ≤ εR̃1. To finish the
proof, note that the maximum R1 rate we can obtain under this algorithm in
any t ∈ T12 is 1

2 log2(1+P ) and 1
2 log2(1+r0δ1) = 1

2 log2(1+1/k) in any t ∈ T11.
The maximum value of |T12| is M . (Clearly log2(1+P ) should be ≥ 2R̃1(1−ε)/M ,
otherwise AP does not have a solution). However the maximum value of |T11|
is |T11| ≤ (M log2(1 + P ) − 2R̃1)/ log2

(
1+P

1+1/k

)
if log2(1 + 1/k) < 2R̃1/M else

|T11| ≤ M . When |T11| takes the first value, the total number of power levels per
slot is minimized by choosing δ1 and k as in Eq. 19, whereas in the second case
it is minimized by Eq. 20. If both cases do not yield a solution then we set the
two error components δ1 = log2(1 + kδ1) = εR̃m/M which makes the relative
error over M slots ≤ ε as desired.

Finally, we note that the worst-case values of k and kδ1 are O(εR̃m/M) and
therefore

Theorem 5. Given rate constraints R̃i and max power P , the number of dis-
crete power levels per slot is O(1

ε ).

Note that the time complexity of AP is still exponential. Using the fact that the
number of power levels per slot required to closely approximate rate and energy
constraints is O(1

ε ), we develop an FPAS in the next Section.

5 An FPAS for Rate Constraints

We now describe a simple Fully Polynomial Approximation Scheme that solves
the minimum energy scheduling problem by using a β-relaxation on the rate
constraints for some arbitrary constant β > 0. For clarity, we describe the FPAS
using two power levels 0 and P per time slot. The algorithm for the multiple
power level case is a simple extension as described later.

The FPAS solves the same restricted problem of Eq. 4 with only each rate
constraint replaced by

M∑
t=1

Rit ≥ (1 − β)R̃i i = 1, 2 (23)

For any δ > 0, define the following

Definition 1. A rate vector <R1, R2> δ-dominates another vector <R3, R4>
iff either R3(1−δ) ≤ R1 ≤ R3 and R2 ≥ R4 or R3 ≤ R1(1−δ) and R4(1−δ) ≤ R2.
For R1 ≥ R̃1, the δ-dominant vector is the one with max R2 among all such
vectors.
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Note that dominance (under standard vector comparison) implies δ-dominance
but not vice-versa.

Definition 2. Let R̄ be a set of rate vectors. Define the operation vector-
maxdelta(R̄) as one that eliminates all δ-dominated and dominated vectors
from R̄.

Operation vectormaxdelta is equivalent to dividing the two-dimensional vector
space into horizontal and vertical strips, each of whose left endpoint is (1−δ)
times its right endpoint and choosing at most one vector per strip. A simple
algorithm for implementing vectormaxdelta(R̄) is as follows. Assume R̄ has been
sorted by R1 values. First obtain the δ-dominant vector for R1 ≥ R̃1 if such R1’s
exist. Then find the δ-dominant vectors successively in the strips defined by R1
intervals (R̃1(1−δ), R̃1], (R̃1(1−δ)2, R̃1(1−δ)] (R̃1(1−δ)3, R̃1(1−δ)2] and so on.
Dominated vectors are eliminated simultaneously. Since R̄ has been sorted by
R1, this can be done in one pass through R̄, in decreasing order of R1 values.

Choose δ = β
2M . Let AP

β denote the following dynamic programming algo-
rithm for the fixed power minimum energy scheduling problem. The boundary
conditions (i.e rate vectors for each slot t) are the same as before in Eq. 5.
The main recursive step in the algorithm is derived by replacing the vectormax
operation with vectormaxdelta. Let R̂kP,a,b

i,j represent the set of δ-dominating
rate pairs corresponding to cumulative transmission rates for user 1 and user 2
from time slots i through j, 1 ≤ i ≤ j ≤ M , while using a total power of kP ,
1 ≤ k ≤ 2M .

R̂kP,a,b
i,j = vectormaxdelta

{
R̂kP,a,b

i,j−1

⋃(
R̂

(k−1)P,a−1,b
i,j−1 + R̂P,1,0

j

)
⋃(

R̂
(k−1)P,a,b−1
i,j−1 + R̂P,0,1

j

) ⋃(
R̂

(k−2)P,a−1,b−1
i,j−1 + R̂2P,1,1

j

) }
(24)

The terminating condition for the algorithm occurs when the rate vectors are
≥ R̃i(1 − β), i = 1, 2. The optimal schedule corresponds to the minimum total
power rate vector that satisfies the terminating condition.

Theorem 6. AP
β is a FPAS for the minimum energy scheduling problem with

two fixed transmit power choices 0 or P per slot.

Proof. First we show that the running time of AP
β is polynomial in 1/β. The

number of δ-dominant vectors in R̂kP,a,b
i,j−1 is bounded by

1 + ln1+δ R̃1 = 1 +
ln R̃1

ln(1 + δ)
= O

(
M

β
· ln R̃1

)

since we keep only one vector for each 1−δ-factor interval. and using 1/(1− δ) =
1 + δ. The running time for the creation of each R̂kP,a,b

i,j is also polynomial
since it includes sorting followed by the vectormaxdelta operation. There are
O(MPμ1μ2) such rate vector sets, each of size polynomial in 1/β and hence the
overall running time is also polynomial in 1/β.
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Next we need to show that algorithm AP
β provides a β-approximation of the

rate constraints. Let <R1, R2> ∈ R̄kP,a,b
1,j be an arbitrary non-dominated vector

from the exponential time algorithm AP up to time slot j. We can show by
induction that ∃ <R3, R4 > ∈ R̂kP,a,b

1,j such that R3 ≥ R1(1 − δ)j and R4 ≥
R2(1 − δ)j . The ‘parent’ of <R1, R2> (the vector that produced <R1, R2> in
stage j−1) is approximated within (1− δ)j−1 by the induction hypothesis. After
combining with the vectors of stage j and implementing vectormaxdelta, at most
a further (1 − δ)-factor error in R1 and R2 is introduced. Thus the total error in
each dimension is bounded by (1 − δ)j after j slots. Therefore every rate vector
in R̄kP,μ1,μ2

1,M is approximated to within (1− δ)M by a rate vector from algorithm
AP

β . Using δ = β/2M , we can see that there exist ‘approximate’ rate vectors
<R3, R4> ∈ R̂kP,μ1,μ2

1,M such that R3 ≥ R1(1 − β) and R4 ≥ R2(1 − β) for all
‘actual’ rate vectors <R1, R2> ∈ R̄kP,μ1,μ2

1,M . Hence AP
β is a β-approximation.

Algorithm AP
β above can be easily modified to incorporate multiple power lev-

els per slot. For any small α > 0, choose ε = β = α/2 and then set δ1 and
k as per Eq. 19 with Lt power levels per user per slot. Eq. 5 is modified to
reflect (Lt)2 = O(1/α2) (from Theorem 5) total rate vectors per time slot t,
corresponding to all combinations of power levels. Define a new algorithm APLt

β

in which the vectormaxdelta operation applies to combinations of these (Lt)2

rate vectors. The total number of table entries (for rate vectors) in the modified
dynamic program is now increased to (Lt)2MPμ1μ2. However by applying the
vectormaxdelta operation, the size of each rate vector set remains the same size,
O(1/β), as before.

Theorem 7. For any α > 0 and ε = β = α/2, APLt

β is a (1, 1 + α)-Fully Poly-
nomial Approximation Scheme for the minimum energy scheduling problem with
Lt power levels per slot.

Proof. By choosing multiple power levels as defined above, each rate vector is
no more than a 1−ε = (1−α/2)-factor away from the ideal rate vector for that
stage. For each such vector, the vectormax operation selects another which is at
most another 1−α/2-factor away. Thus at the end of algorithm APLt

β , the rate
constraints are violated by at most a factor of (1 − α/2)2 < (1 − α). For given
M , P , μ1 and μ2, the total number of table entries and related operations is
O(1/α2) and hence APLt

β is a (1, 1 + α) FPAS.

Finally, we note that the 2-factor approximation of Section 3 that finds a min-
imal energy schedule corresponding to optimal transmit power Popt can be im-
proved by using APLt

β instead of the exponential AP . We increase P by a factor
of 1+ kδ1 = 1+α in each iteration rather than doubling as in Theorem 2.
Unlike the two fixed transmit powers case, E

P (1+kδ1)

APLt
β

≤ EP

APLt
β

since the for-

mer contains the schedule of the latter as a subset. The other arguments of
Theorem 2 remain valid and by outputting the lowest energy value from the
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iterations, we obtain a (1 + α, 1 + α)-approximation algorithm that finds the
optimal maximum transmit power level Popt and the corresponding minimum
energy schedule in O(log1+kδ1

Popt/Pmin) = O( 1
α · Popt

Pmin
) = O(M

α ) iterations
(since Popt ≤ Pmax ≤ MPmin), where each iteration takes time O(1/α2). Since
this is the solution to the unrestricted MESP problem of Eq. 2, we have

Theorem 8. There is a (1 + α, 1 + α) FPAS for solving the unrestricted MESP
problem.

6 Multiple Node Case

Even with N nodes, the number of discrete power levels Lt, required to approxi-
mate each nodes rate and overall energy within a (1+α)-factor, remains the same
as defined by Eq. 12 and Eq. 19 since the arguments of Theorem 4 apply even
with interference from multiple nodes. Hence each node can select from O(1/α)
power levels per slot. Even with only 2 power levels, the number of rate vectors
per slot is 2N , and in general O(1/α)N . However, we can extend the preceding
algorithm to the multiple node case by defining δ-dominance for N -tuple rate
vectors. If the number of users is treated as a fixed constant N , this extended
algorithm is still an FPAS since 1) the number of rate vectors per slot t is polyno-
mial in 1/α and 2) the size of each table entry (corresponding to the rate vector
set upto the jth slot) is O

((
M ln R̃m

α )N−1
))

, where R̃m = mini{R̃i}, since the

number of δ-dominant vectors in the smallest dimension is O((M ln R̃m)/β) and
we are considering dominant vectors over an N -dimensional hypercube of vector
elements.

7 Conclusions

We have considered the problem of finding a minimum energy transmission
schedule for duty-cycle and rate constrained wireless sensor nodes. Since tra-
ditional optimization methods using Lagrange multipliers are computationally
expensive given the non-convex constraints, we develop fully polynomial time ap-
proximation schemes by considering restricted versions of the problem using dis-
crete power levels. We derive an (1+ε, 1+ε)-FPAS for MESP that approximates
the optimal energy consumption and rate constraints to within an 1 + ε-factor.

References

1. Singh, S., Raghavendra, C.: Pamas: Power aware multi-access protocol with sig-
nalling for ad hoc networks (1999)

2. Ye, W., Heidemann, J., Estrin, D.: An energy-efficient mac protocol for wireless
sensor networks (2002)

3. Ye, W., Heidemann, J., Estrin, D.: Medium access control with coordinated, adap-
tive sleeping for wireless sensor networks (2003)



Approximation Algorithms for Power-Aware Scheduling of WSNs 479

4. Uysal-Biyikoglu, E., Prabhakar, B., El Gamal, A.: Energy-efficient packet trans-
mission over a wireless link. IEEE/ACM Transactions on Networking 10 (2002)
487– 499

5. Uysal-Biyikoglu, E., Gamal, A.E.: On adaptive transmission for energy efficiency
in wireless data networks. IEEE Trans. Inform. Theory (2004)

6. Hanly, S., Tse, D.: Power control and capacity of spread-spectrum wireless net-
works. Automat. 35(12) (1999) 1987–2012

7. Wang, K., Chiasserini, C., Rao, R., Proakis, J.: A distributed joint scheduling and
power control algorithm for multicasting in wireless ad hoc networks. In: IEEE
International Conference on Communications, 2003. ICC ’03. Volume 1. (2003)
725–731

8. ElBatt, T., Ephremides, A.: Joint scheduling and power control for wireless ad hoc
networks. IEEE Transactions on Wireless Communications 3 (2004) 74–85

9. Foschini, G.J., Miljanic, Z.: A simple distributed autonomous power control al-
gorithm and its convergence. IEEE Transactions on Vehicular Technology (1993)
641–646

10. Bambos, N.: Toward power-sensitive network architectures in wireless communi-
cations: concepts, issues, and design concepts. IEEE Personal Communications
(1998) 50–59

11. Bambos, N., Kandukuri, S.: Power control multiple access (pcma). Wireless Net-
works (1999)

12. Bertsekas, D.P.: Nonlinear Programming. Second edn. Athena Scientific, Belmont,
Massachusetts (1999)

13. Bertsekas, D., Lauer, G., Sandell, N., Posbergh, T.: Optimal short-term scheduling
of large-scale power systems. IEEE Transactions on Automatic Control (1983) 1–11

14. Dorit Hochbaum, E.: Approximation Algorithms for NP-Hard Problems. First edn.
PWS Publishing Company, Boston, MA (1997)

15. Martello, S., Toth, P.: Knapsack Problems. First edn. J. Wiley and Sons, Chichester
(1990)

16. Kannan, R., Wei, S., Chakravarthi, V., Seetharaman, G.: Using misbehavior to
analyze strategic versus aggregate energy minimization in wireless sensor networks
(2006)

17. Kannan, R., Wei, S.: Lsu-cs-tr-06-3. Technical report, LSU (2006)
18. Cover, T.M., Thomas, J.A.: Elements of Information Theory. First edn. Wiley,

New York (1991)


	Introduction
	Basic Dynamic Programming Solution
	2-Approximate Minimum Energy Schedule
	Minimum Energy Schedule with Multiple Power Levels
	An FPAS for Rate Constraints
	 Multiple Node Case
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




