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Abstract—The measurement of the average received power
is essential for power control and dynamic channel allocation
in wireless communication systems. However, due to the effects
of multipath fading and additive noise inherent to the wireless
channel, there can be significant errors in such measurements. In
this paper, the error statistics for average power measurements
are considered; in particular, the probability distribution of the
value of the average received power at the time of interest con-
ditioned on an outdated measurement is obtained. The resulting
expression should have high utility in the analysis of wireless
communication systems. However, in this paper, the design of
power control algorithms that minimize the average transmitted
power required to achieve a desired outage probability for the
link is considered. A number of novel power control algorithms
based on various models for the error in the average power
measurement are derived. Numerical results indicate that power
control algorithms based on the accurate expression derived in
this paper can demonstrate significant gains over those based on
previous approximate models.

Index Terms—Average power measurement, dynamic channel
allocation, fading channels, power control.

I. INTRODUCTION

I N WIRELESS communication systems, the transmission
environment can vary greatly as conditions evolve over

time. This is due not only to the variation in the path loss
caused by changes in the distance between the transmitter
and the receiver, but also to shadowing and multipath fading.
Thus, adaptation of the transmitter parameters to the current
transmission environment is imperative to avoid the losses in
system performance that result from prescribing a system with
constant parameters that are set such that the system performs
acceptably under the worst possible operating conditions.
Although recent work in adaptive signaling has considered
adaptation to fast multipath fading [1]–[3], historically, adap-
tation has been done in response to characteristics of the
environment that are constant over a relatively long period of
time, such as the local average power, where the averaging is
over the multipath fading.
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Different adaptation schemes that require measurements of
the local average power, such as data-rate adaptation, power
control, and handoff algorithms, have been proposed to increase
spectral efficiency, power efficiency, and system capacity. In the
second- and third-generation packet data standards, data-rate
adaptations generally considered are slow rate adaptations.
The data rate is adapted in response to shadowing and path
loss over the coverage area. In code-division multiple-access
(CDMA) systems, pilot strength measurements are used to
estimate the signal-to-interference-plus-noise ratio (SINR) at
the receiver. By making use of such information about the
channel quality, rate adaptation is achieved through a com-
bination of variable spreading, coding, and code aggregation
[4]. Handoffs in cellular communication, whereby a mobile
subscriber communicating with one base station is switched
to another base station during a call [5], [6], also employ
average power measurements. In many systems, especially
microcellular systems, signal strength may be the only reliable
measurement that can be used to make such handoff decisions
[6]. In CDMA systems, to effectively implement soft handover
as described in [7], the controlling base station (BS) is selected
from within the active set according to the slow shadowing
measurements of the channel between the mobile station (MS)
and each BS in that set. Finally, the use of transmitter power
control has been proposed to control cochannel interference.
The main idea is to adjust the transmitter power, based on the
measurements of the slow channel variation such that the large
scale shadowing of the channel can be compensated [8], [9].

It is obvious that those adaptation schemes discussed in the
previous paragraph all require knowledge of the local power av-
eraged over the multipath fading. However, the effects of the
multiplicative fading and additive noise can lead to significant
errors in the measurements of the average received signal power.
In [10], it was argued that the distribution of the estimation error
in the average power under combined Rayleigh fading and shad-
owing follows a log-normal distribution. Because of the wide
applicability of such a model, it has been referenced often in
the short time since [10] appeared. In particular, [11] considers
the effects of imperfect average power measurements on adap-
tive M-ary quadrature amplitude modulation (MQAM), where
the transmit power and data rate are varied based on the channel
gain. In [5], the model of [10] is used to understand BS selec-
tions. In particular, in cellular CDMA networks, the selection of
the controlling BS is made based on the local mean estimation
from a sequence of power level measurements that the MS takes
on the pilot channels broadcast by the various BSs. From the es-
timation error model in [10], the analysis in [5] is able to provide
a characterization of the membership switching, in terms of how
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frequently this switching may be required and to what extent fast
fading contributes to a nonoptimal BS selection. Finally, under
the same measurement error statistical model, the effect of the
power control error on the system capacity of a CDMA mobile
satellite link is analyzed in [9].

The statistical model for the measurement error can be em-
ployed not only in system performance analyses as described
above, but also in system design. In this paper, such a model
will be employed to design power control algorithms. In power
control problems, the path gains and log-normal shadowing of
the users are usually assumed to be perfectly known by the
receivers (see [12] and references therein). However, in prac-
tical implementations, they are measured at the receiver end,
which results in measurement uncertainty. The idea of stochastic
power control was proposed in [13]. In [13], variation in the
measurements of the average received power is caused by ran-
domness in both the data transmitted by the users and the addi-
tive noise; assuming that there is a feasible solution to the power
control problem, algorithms are presented which converge in
the mean-square sense to the optimal power control vector. In
this paper, the randomness is due to the multipath fading and
additive noise. Instead of attempting to prescribe an algorithm
which evolves over time to the optimal power solution, such
that all user signal-to-interference ratio (SIR) requirements are
met, a small outage probability is allowed for each user. This al-
lows the statistical dependence of the average received SIR on
the measurement of the average received SIR to be exploited to
prescribe a power control algorithm, such that the outage prob-
ability of each user is met with the minimum required transmit
power. An alternative method to deal with the measurement un-
certainty is to increase the signaling margin of the system to ac-
count for the worst-case level of uncertainty; however, in cases
where there is a well-accepted statistical model for the measure-
ment error, it may be feasible to adapt the system parameters in
such a way that it accounts for this measurement uncertainty
directly.

For a single-user system, a closed form power control rule
is found in our previous work [14] under the model for mea-
surement error developed in [10]; the resulting rule suggests
a moderate gain over systems which employ traditional power
control functions with an energy margin to compensate for mea-
surement uncertainty. However, in [10], the additive noise is
not taken into account, and the successive samples of the re-
ceived signal power are assumed to be uncorrelated when de-
veloping the log-normal form of the measurement error model;
these assumptions result in a Gamma distribution for the mea-
surement. (Note that the correlation of the samplesis included
in [10] when deriving theparametersof the log-normal distri-
bution of the measurement error.) The goal of this paper is to
study the conditional distribution function of the actual slow
shadowing given the measurement, while taking into account
both the impact of additive noise and the correlated nature of the
Rayleigh fading. Furthermore, the optimum power control rule
will be developed under the derived measurement error model
for a single-user system. Thus, there are two contributions of this
paper: 1) an accurate model for the error in average power mea-
surements, which can be used for system design and analysis, or

Fig. 1. System and measurement model.

to verify other approximate models, and 2) a novel approach to
power control under measurement uncertainty, which includes
the derivation of a number of novel power control algorithms.

The remainder of this paper is organized as follows. In
Section II, the system and measurement models are outlined.
In Section III, the desired conditional distribution is derived
analytically by employing Toeplitz matrix theory, and the
result is verified numerically. An accurate approximation to the
desired conditional distribution function is developed. Finally,
in Section IV, optimal power control rules are developed
under different measurement error statistical models, and their
performance is compared. Section V presents the conclusions.

II. M ODEL AND CHARACTERIZATION

A. System Model

In this paper, only the single-user case is considered. A fre-
quency nonselective, slowly fading channel as shown in Fig. 1
will be assumed; thus, the transmitted signal is affected by a
multiplicative process, which may be regarded as constant over
the support of a given symbol pulse [15]. The complex baseband
representation of the received signal is given by

(1)

where is the real-valued factor caused by path loss and the
shadowing due to objects between the transmitter and receiver
[16], is the complex-valued fast-fading factor due to the
multipath short-term fading [16], and is the additive white
complex-valued Gaussian noise, which is independent of
and . The signal is the low-
pass representation of the transmitted signal, whereis the th
transmitted symbol, and is the unit-energy baseband pulse
shape, which is assumed for simplicity to have the band-limited
frequency response characteristic

otherwise

where is the symbol rate. It will be assumed that a pilot
channel is being used for signal strength measurement; thus, let

, , where is the average transmitted energy
per symbol. Assuming the Gaussian wide-sense stationary un-
correlated scattering (GWSSUS) model [18]
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where and are independent Gaussian random pro-
cesses, each with zero mean and autocorrelation function [16],
[17]

(2)

where is the maximum Doppler shift, is the mobile
velocity, and is the wavelength of the carrier signal. The pro-
cesses and are independent white Gaussian noise
processes, each with zero mean and two-sided power spectral
density .

It is generally assumed that the marginal distributions of the
shadowing process are log-normal [16]; that is, for a fixed,

is normally distributed with mean and standard de-
viation , both in nepers (Np), wherecorresponds to the path
loss. Since the shadowing is generally estimated over a time in-
terval which is only on the order of several times the inverse
of the channel bandwidth, the path loss is assumed to be con-
stant over the measurement interval [10] and it is available to
the receiver. Furthermore, can generally be treated as
a Gaussian random process, with meanand autocovariance
function given by [19]

(3)

where is the effective correlation distance of the shadowing.
It should be noted that the form of the autocorrelation functions
for the multipath fading and shadowing in (2) and (3), respec-
tively, will impact the numerical results when used for analysis
purposes, although the same derivation method can easily be
applied for other autocorrelation functions. Issues to robustness
across uncertainties in these functions is important, particularly
for design [3], and will be the subject of future work.

The received signal is passed through a noise-limiting
lowpass filter matched to the transmitted pulse to yield

where , and is the convolution of
and .

B. Measurement Model

1) Continuous-Time Model:One practical method of
measuring the average received power is to employ an inte-
grate-and-dump (I&D) filter, as shown in Fig. 1 [10], [20].
The average received power measurement is then given by (4)
shown at the bottom of the page, where is the measured
value of , is the duration of the measurement
window, and is a complex-valued

zero-mean Gaussian noise process, whose autocorrelation
function is given by

(5)

where here has included the factor of path loss and the trans-
mitted power after normalization by them (i.e., reciprocal of
the ratio of received signal power to noise power). As in [21],
it will be assumed that can be modeled as constant in
this window; hence, it will be assumed that , for

, and thus the measurement error is due to the
variation in the short-term fading and noise.

2) Discrete-Time Model:Measurement of the average re-
ceived power is often done in the discrete domain [9], [22]. Let

, , be the
th normalized sample of the filtered received signal, where the

sampling has been done at the Nyquist rate, and
is the number of sample points corresponding to a window of du-
ration . As stated in [22], for the linear power measurement
method considered here, the performance improvement of the
optimal local mean signal level estimator (optimum minimum
variance unbiased estimator) for the Rayleigh fading environ-
ment over the traditional sample average estimator is minimal;
hence, in this work, the traditional sample average estimator is
considered. Thus, the estimator of the slow shadowing in the
discrete-time case is given by

(6)

Let , ,

and , where is the transpose

of a vector. Note , where and
are independent Gaussian random vectors with

(7)

where is the Kronecker Delta function. The discrete-time
model also will provide a reasonable approximation of the con-

(4)
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tinuous-time model; thus, the discrete-time model is considered
for the rest of this paper.

C. Conditional Distribution

In any practical application, there will be delay between
the time the shadowing estimate is made and the time the
corresponding estimate is employed for system adjustments.
Hence, it is of interest to find the conditional density function

of the shadowing at the time of interest
, given the measured value of the shadowing at an earlier

time

(8)

According to the measurement model, is condi-

tionally independent of , when given . Thus,
, and

it follows that

(9)

Since is a Gaussian random process whose auto-
correlation function is known, the difficulty lies in finding

.

III. A SYMPTOTICCONDITIONAL DENSITY FUNCTION

In order to find , it is necessary to
study the statistics of the output of the measurement filter. For
any reasonably reliable estimator of , is
large. Hence, the asymptotic (large) statistics of the output of
the sample average estimator are studied in this section.

A. Matrix Transformation

The measurement in (6) is a quadratic form of the vector
. Let be the complex conjugate transpose of .

Then

(10)

From (7), the autocorrelation matrix of the vectors
and are and

, respectively, where

(11)

The matrix is symmetric, Toeplitz, and nonnegative def-
inite. Thus, , the eigenvalues of , are
real and greater than or equal to zero. Thus, there exists an or-
thogonal matrix [23] such that for

...
...

(12)

where is a Gaussian random vector whose elements are
independent. Since , the measurement output
can be rewritten as

(13)

The probability density function of is determined by the

characteristics of the eigenvalues .

B. Toeplitz Forms

In order to determine the properties of the eigenvalues of the
matrix , the standard theory of the asymptotic distribution
of eigenvalues of Toeplitz forms is employed ([24]–[29]). Let

where is determined by (7). Let be a
real-valued function such that

(14)
are its Fourier coefficients. Then,

(15)

and

(16)

where

,
otherwise.

Since is a real symmetric Toeplitz matrix, as
, the eigenvalues of are related to the

set of values that assumes on the sampling
points between [26]; that is, the sets

and are
equally distributed, as , if [24], [25]

(17)
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where the two sets and

, as , are equally distributed in

the interval , with and , ,
if the following condition holds [24]:

where is an arbitrary continuous function in the interval
. The condition in (17) is indeed satisfied

(18)

and thus the sets and

are equally distributed in
.

Letting , the Fourier transform of (2) is given by

if

otherwise
(19)

and the Fourier transform of the truncated autocorrelation func-
tion is

(20)
and, by (16)

(21)

Note that will have relevant support only on

. Let be the set of eigenvalues for
the infinite correlation matrix of (11) when , which
are equally distributed with the sample values that
assumes over . The number of sampling points, ,
which lie in , is fixed by and the window length

regardless of the sampling frequency. This implies that,
as , a fixed number of eigenvalues will be playing
the dominant role in determining the conditional probability
density function . This behavior will
indeed be observed in succeeding sections.

C. Numerical Results and Interpretation

In this section, numerical results are presented to demonstrate
that the previous analysis holds for even moderate values of.
The parameters used are: mobile speed kmph, carrier

TABLE I
EIGENVALUES OF MATRIX N � R . PARAMETERS USED ARE: MOBILE

SPEED� = 40 kmph,f = 1 GHz,C = 5:3, C =N = 7:24 dB,
DOPPLERFREQUENCYSHIFT f = �=� = 37:03 Hz. MEASUREMENT

WINDOW IS OF DURATION T = 85 ms,AND SAMPLING FREQUENCY

f = �f , N = dT =T e

TABLE II
NORMALIZED EIGENVALUES OF MATRIX R .

PARAMETERS ARE THESAME AS FOR TABLE I

frequency GHz, , dB, Doppler
shift Hz. The measurement window is of
duration ms, and the sampling frequency will be given
by . The properties of the eigenvalues of the matrix in
(11) will be considered for various values of. The numerical
results are shown in Tables I and II. As expected, only a finite
number , where is independent of but subject to
and , of the eigenvalues in the set are

nonzero. Thus, in (13), for large enough, there are
independent identically distributed (i.i.d.) Gaussian random

variables in whose variances are . Per above, the
independent random variables corresponding to the first

eigenvalues are equally distributed with the sampling points of
in (21), as . Fig. 2 displays ,

using the same parameters stated above.
These results demonstrate that for even moderate values of
, the second term in

(22)

is the sum of i.i.d. random variables, ,

each of which is exponentially distributed with mean .
Thus, the second term has a chi-squared distribution with

degrees of freedom. Theth element in the first term of (22)
is exponentially distributed with mean ,
where is solely dependent on and .
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Fig. 2. Functionf (
). Parameters used are: mobile speed� = 40 kmph,
f = 1 GHz,C = 5:3, C =N = 7:24 dB, Doppler shiftf = �=� =
37:03 Hz. Measurement window is of durationT = 85 ms, and sampling
frequencyf = �f , � = 200,N = dT =T e = 630.

D. Asymptotic Conditional Distribution

Using the asymptotic properties of the eigenvalues ,
as discussed in Section III-C

(23)

as , where means equivalence in distribution. The
set contains independent expo-
nentially distributed random variables, and theth element has
probability density function

if
otherwise

where

The term is a random variable caused by the additive
noise, which, per Section III-C, has a chi-squared distribution
with degrees of freedom, where the variance
of each component term is . By the central limit the-
orem (CLT) [30], will become normally distributed as

. However, by [32], the cube root trans-
formation of a chi-squared random variable produces a much
better approximation to normality when is
not large. Hence, let . Now is approximately
Gaussian-distributed [32] with mean

(24)

and variance

(25)

where is the Gamma function (36).

Then, the conditional distribution is given by

(26)
where

and

IV. OPTIMAL POWER CONTROL SCHEMES

A. Introduction

In this section, power control schemes, which are defined
as maps from the noisy average power measurement to a
transmission power, are considered. In particular, power control
schemes are sought that are optimal in the sense that they
minimize the average transmitted power to achieve a specified
outage probability. For notational simplicity, throughout this
section the shorthand and will
be employed for the shadowing at the time of interest and the
shadowing estimate the system is employing, respectively.

For the single-user system, the average received signal-to-
noise ratio (SNR) at the time of interest will be given by ,
where, per Section II-A, is log-normal distributed, and thus

is Gaussian distributed after the normal-
ization with mean , and is the ratio of the product of
the transmitted power and path loss over the noise power. The
transmitter and receiver design, channel fading assumptions,
and quality-of-service (QoS) requirements fix a minimum re-
quired average SNR for acceptable system operation. Hence,
the probability of outage will be defined as the probability that
this average received SNR is not achieved; thus, the outage prob-
ability is given by the probability of the event

. With the aim of compensating for the slow shadowing, the
goal here is to develop a power control scheme , which is
the ratio of the product of the transmitted power and path loss
over the noise power when , to minimize the average
transmitted power for a required outage probability . Dif-
ferent models for the statistics of the measurement error yield
different optimal power control schemes. The parameters to em-
ploy in (26) depend on the mobile speed, which can be well es-
timated [33], [34], and thus, these parameters will be assumed
to be perfectly known in this paper. Robustness to uncertainties
in the velocity estimates is relegated to future work. For sim-
plicity of exposition, the case is first considered through
Section IV-D; then, the modifications for are considered
in Section IV-E.

B. Conventional Power Control Scheme

In conventional power control schemes, the estimation of the
slow shadowing is generally regarded as perfect; in other words,



WEI AND GOECKEL: AVERAGE POWER MEASUREMENTS IN WIRELESS COMMUNICATION SYSTEMS 1541

. For required outage probability , the power con-
trol scheme that minimizes the average transmit power while
meeting the outage probability constraint is given by [35]

if
otherwise

(27)

where is the solution to

C. Optimal Power Control Scheme Under the Model of [10]

In [10], it is argued that the distribution of the actual shad-
owing given its estimate obtained by lowpass filtering is ap-
proximately distributed in a log-normal fashion; thus,

, where , the estimation error in dB, is Gaussian dis-
tributed with mean 0 and standard deviation. The outage
probability is given by

(28)
Per above, the objective is to minimize the average transmission
power

subject to . This problem can be solved
using the calculus of variations [31] to yield (29), as shown at
the bottom of the page, where the unit ofand here is Np
and is the solution to

where .
It should be noted that while solving the constrained opti-

mization problem stated above, there is a root ambiguity in
the sense that there are two possible power control solutions.
The second possible power control function is given by (30),
as shown at the bottom of the page. However, in this case, the

corresponding outage probability cannot be made arbitrarily
small as required

(31)

Thus, this second solution is discarded.

D. Optimal Power Control Scheme Under (26)

Using the accurate measurement error statistics of (26), an
optimal power control algorithm can be developed by solving
the following constrained optimization problem:

(32)

subject to

(33)

where and are the marginal distribution

function of , and the conditional distribution function of
given , respectively.

This constrained optimization problem above can again be
solved by referring to the calculus of variations [31]. The so-
lution is the root of the following nonlinear equation in-
volving the parameter , which is determined by the outage
probability requirement in (33):

(34)

(35)

While solving for in (34) numerically, the smaller root will
be discarded for the same reason stated in Section IV-C. Unlike

if

otherwise
(29)

if

otherwise
(30)
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in Section IV-C, we are unable to get a closed-form power con-
trol rule here. Thus, the new power control function based on
the proposed conditional probability function in (26) is derived
numerically.

E. Extensions to the Case

In most practical applications, there will be appreciable delay
between the time the shadowing estimate is made and the time
the estimate is employed for system adjustments. Without loss
of generality, is set to be zero. Then given the measurements
of the shadowing at time , the average outage probability of
the event at will be

(36)
where the joint distribution is determined by

(37)

The quantities and are jointly Gaussian
random variables, with zero mean and standard deviation.
The correlation coefficient between them is , as in
(3). By solving the following constrained optimization problem:

(38)

subject to

conditional distribution functions in [10] and

(26) will produce new power control schemes for the case .
Using the same arguments as in Section IV-C, the optimal

power control scheme under [10] for is given by (39), as

shown at the bottom of the page, where
and is the solution of

It is easily verified that (29) is the special case of (39), when
(and thus ).

The optimal power control scheme under (26) can be devel-
oped numerically as was done in Section IV-D, which results in

(40)

where is chosen to make .

F. Comparison of Power Control Schemes

1) Numerical Results:Optimal power control rules derived
under (26) will be compared to those obtained from the conven-
tional method and under the model of [10]. However, since the
previous models are only approximations, power control rules
based on previous models will not meet the prescribed outage
probability constraint. Thus, an energy margin is added to each
of the suboptimal rules to yield the modified rules as shown
in (41)–(43) at the bottom of the page, where , and

are chosen to meet the outage probability constraint (33)
under (26) by replacing in (33) with , , and

, respectively.
The parameters used in the numerical results are ,

kmph, GHz, dB, and dB,
where in (41) is the measurement error (in Np), is the
standard deviation of the shadowing in scale as defined in
[10]. The mobile speed and the carrier frequency are 40 kmph
and 1 GHz, respectively, the measurement window length is

ms, and the symbol rate is kHz. The
ratio of the effective correlation distance of shadowing over
the wavelength is . Under these conditions, the

if

otherwise
(39)

if

otherwise
(41)

if ,
otherwise

(42)

if

otherwise
(43)
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TABLE III
PARAMETERS FORNUMERICAL RESULTS ARE: � = 40 kmph,f = 1 GHz,
� = 8 dB, � = 2:7 dB, T = 85 ms,T = 1=(10 kHz). UNDER

THESECONDITIONS, THRESHOLDS AREGIVEN BY X = �27:45 dB,
X = �18:62 dB. AVERAGE TRANSMIT POWER AND OUTAGE

PROBABILITY OF POWERCONTROL RULES IN (32), (29),AND (27) ARE SHOWN

AS “NEW MODEL”, “L OGN”, AND “CONV”, RESPECTIVELY, UNDER (26),FOR

THREE DIFFERENTCASES( = 26:98 dB, 16.90DB, 6.79DB). ENERGY

MARGINSM AND M IN (41) AND (42) ARE CALCULATED SO THAT

SUBOPTIMAL POWER CONTROL SCHEMESMEET OUTAGE PROBABILITY

REQUIREMENTS, AND PERFORMANCE OFMODIFIED SUBOPTIMAL POWER

CONTROL RULES (41) AND (42) ARE SHOWN IN COLUMNS “M ODI LOGN” AND

“M ODI CONV”, RESPECTIVELY. PARENTHESESPARTS “()” IN THE COSTS OF

NON-EXACT MODELS AFTER ADDING POWER MARGINS IN (41) AND (42):
HOW MUCH MORE AVERAGE POWER THAN THAT OF “NEW MODEL” WILL

BE NEEDED TOMEET AVERAGE OUTAGE PROBABILITY REQUIREMENTS

thresholds for the case when there is no time delay between
the measurement and its use are dB and

dB. For cases taking into account the time
delay between the measurements and power adjustments, the
thresholds in (39) are dB for ms,

, dB for ms, ,
and dB for ms, .

In Table III the average transmit power and the outage proba-
bility of the power control rules in (32), (29), and (27) are shown
as “New model,” “LogN,” and “Conv,” respectively, under (26),
for three different cases ( 26.98 dB, 16.90 dB, 6.79 dB). Per
above, the energy margins and in (41) and (42) are
then calculated so that the power control schemes based on the
previous models meet the outage probability requirements, and
the performance of the modified suboptimal power control rules
(41) and (42) are shown in columns “Modi LogN” and “Modi
Conv,” respectively. To see the impact of the additive noisein
the measurementon the performance of various power control
rules, the power control rules are compared with and without ad-
ditive noise in the measurement. Without additive noise in the
measurement, the term is equal to 1 and in (26).

TABLE IV
WHEN SAMPLE SIZE IS LARGE ENOUGH, W TERM IN (23) CAN BE

APPROXIMATED ASCONSTANT. PARAMETERS ARE THESAME AS FOR TABLE

III. PARENTHESES“()” IN LOSSESWHEN EMPLOYING ARE OF THENONEXACT

MODELS AFTER ADDING POWER MARGINS IN (41) AND (42)

If the sample size is large enough, the variance (25)
of is so small (7.3 10 under the parameters set above
for dB) that the term in (23) can be approxi-
mated as constant and depends only onafter normalization.

Thus, it can be removed from the measurement , and the
conditional distribution function (26) can be modified accord-
ingly. In Table IV, the average outage probability and average
power of the schemes in (32), (29), and (27) are recalculated
using this modified measurement model for cases: 26.98
dB, 16.90 dB, 6.79 dB. Under this modified model, and

in (41) and (42) are determined to meet the outage prob-
ability requirements.

In Table V, time delay between the measurement and
its employment is considered. The performances of power
control schemes in (40), (29), (41), (39), and (43) are listed
as “ ,” “LogN,” “Modi LogN,” “ ,” and
“ ,” respectively, in terms of the average outage
probability, average power, and the power margins, for cases
of different time delays and whether the term in (23)
is removed or kept. The threshold in (29) is 27.45 dB,

in (39) is 28.09 dB, 33.55 dB, and 42.53 dB
for ms, 100 ms, and 250 ms, respectively, when

dB.
When dB, the marginal distribution of the mea-

surement of the average power is shown in Fig. 3. Power control
functions under the various models are shown in Figs. 4 and 5.

2) Discussion: From Table III, when is not removed,
it is apparent that the accurate expression derived in this paper
for the statistics of the error in the average power measurement
does have an impact on system design. This difference is due
to two effects: 1) the correlation of the samples employed in
the average power measurement, and 2) the additive noise in
the average power measurement. First, consider the case where
there is no additive noise at the input to the measurement filter,
which was an assumption in [10] that helped lead to their model.
From Table III, it is apparent that the gain obtained by em-
ploying power control functions based on the accurate expres-
sion in (26) over the power control function based on the model
of [10] is less than 0.5 dB for this case, whereas the gain over
the conventional power control function can be on the order of
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TABLE V
PARAMETERS ARE THESAME AS IN TABLE III. RATIO OF EFFECTIVE

CORRELATION DISTANCE OFSHADOWING X OVER WAVELENGTH � IS

X =� = 40. PERFORMANCES OFPOWER CONTROL SCHEMES IN (40), (29),
(41), (39),AND (43) ARE LISTED AS “New Model ,” “L OGN,” “M ODI

LOGN,” “LogN ,” AND “ModiLogN ,” RESPECTIVELY, IN TERMS OF

AVERAGE OUTAGE PROBABILITY , AVERAGE POWER, AND POWERMARGINS, IN

CASES OFDIFFERENTTIME DELAYS � , AND WHETHERW TERM IN (23) IS

REMOVED ORKEPT. THRESHOLDX IN (29) IS�27.45 dB.X IN (29) ARE

�28.09 dB,�33.55 dB,�42.53 dBFOR� = 10 ms, 100MS, AND 250MS,
RESPECTIVELY, WHEN  = 6:79 dB. PARENTHESESPARTS “()” IN COSTS OF

NONEXACT MODELSAFTERADDING POWER MARGINS IN (41) AND (43)

Fig. 3. Marginal probability density function of shadowing measurement
(in dB) in cases withW kept andW removed. Parameters are
� = 40 kmph,f = 1 GHz, � = 8 dB, � = 2:7 dB, T = 85 ms,
T = 1=(10 KHz), SNR=  = 6:79 dB.

1.0 dB. When measurement noise is considered, it is apparent
from Table III that the model of [10] leads to a distinctly sub-
optimal power control rule. In particular, the loss at a required

Fig. 4. Power control function (34) under model (26) and power control
function (41) under the measurement error model in [10] with marginM ,
when path loss information is known and unknown in the case with additive
noise in the measurement and time delay� = 0, � = 1:0. Parameters are
� = 40 kmph, f = 1 GHz, � = 8 dB, � = 2:7 dB, T = 85 ms,
T = 1=(10 kHz), SNR=  = 6:79 dB,X = �27:45 dB.

Fig. 5. Power control function (40) under the model (26), and power control
function (43) under the measurement error model in [10] with marginM ,
when path loss information is known and unknown in the case with additive
noise in the measurement and time delay� = 100 ms,� = 0:91. Parameters
are� = 40 kmph,f = 1 GHz,� = 8 dB, � = 2:7 dB, T = 85 ms,
T = 1=(10 kHz), SNR=  = 6:79 dB,X = �33:55 dB.

average received SNR of 6.79 dB can be over 3 dB versus the
power control rule based on (26). This is a significant loss that
demonstrates the impact that the accurate model of (26) may
have on wireless system design and analysis. However, as shown
in Table IV, when the term in (23) is removed, then the
gain obtained by employing power control functions based on
the accurate expression in (26) over the power control function
based on the model of [10] after adding the power margins are
less than 1.0 dB.

From Table V, the impact of the time delay between the in-
stants when the shadowing measurement has been made and
when the power is adjusted can be seen. If is removed

from in (23), the gains of the power control scheme (40)
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“ ” over “ ” (43) are decreasing from
0.63 dB to 0.21 dB, as time delayincreases from 10 ms to
250 ms, decreases from 0.99 to 0.79. This is due to the fact that
as is increasing, the correlation of the log-normal shadowing
is decreasing, and the information provided by the measure-
ments of the average power outdated bywill be decreasing.
In the limiting case, as , the outdated measurement re-
veals nothing about the current shadowing and the power control
schemes will be the same.

V. CONCLUSIONS

In this paper, the error statistics for average power measure-
ments have been considered; in particular, the probability dis-
tribution of the value of the average received power at the time
of interest conditioned on an outdated measurement has been
obtained. To demonstrate its utility, this expression has been
employed in the design of power control algorithms that mini-
mize the average transmitted power required to achieve a desired
outage probability for the link. It is demonstrated that power
control algorithms based on the accurate expression derived in
this paper can demonstrate gains in certain situations over those
based on previous approximate models. This accurate charac-
terization of the error statistics in average power measurements
should also prove useful in the design and analysis of the mul-
titude of other algorithms that rely on average received power
measurements. Since the conditional probability distribution of
the value of the average received power at the time of interest
conditioned on an outdated measurement is subject to the cor-
relation model used for the small scale fading (2) and the cor-
relation model of the log-normal shadowing (3), if the actual
correlation models do not agree with the assumed models of (2)
and (3), the statistical model (26) has to be modified accord-
ingly in a straightforward manner. In the case of design, such as
that of the power control schemes considered in the latter part of
this paper, the robustness to deviations of the correlation models
from the assumed ones will be a topic of future research.
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