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Abstract—Traditional design rules for cellular networks are not
directly applicable to code division multiple access (CDMA) net-
works where intercell interference is not mitigated by cell place-
ment and careful frequency planning. For transmission quality re-
quirements, a minimum signal-to-interference ratio (SIR) must be
achieved. The base-station location, its pilot-signal power (which
determines the size of the cell), and the transmission power of the
mobiles all affect the received SIR. In addition, because of the need
for power control in CDMA networks, large cells can cause a lot of
interference to adjacent small cells, posing another constraint to
design. In order to maximize the network capacity associated with
a design, we develop a methodology to calculate the sensitivity of
capacity to base-station location, pilot-signal power, and transmis-
sion power of each mobile. To alleviate the problem caused by dif-
ferent cell sizes, we introduce the power compensation factor, by
which the nominal power of the mobiles in every cell is adjusted.
We then use the calculated sensitivities in an iterative algorithm
to determine the optimal locations of the base stations, pilot-signal
powers, and power compensation factors in order to maximize ca-
pacity. We show examples of how networks using these design tech-
niques provide higher capacity than those designed using tradi-
tional techniques.

Index Terms—Capacity optimization, cell design, code division
multiple access (CDMA), location design, power compensation.

I. INTRODUCTION

T HE reverse link capacity of a single cell in a cellular code
division multiple access (CDMA) network depends on the

interference of users within that cell (intracell interference), as
well as on the interference of users in adjacent cells (intercell
interference) [1]–[3]. Thus, the number of simultaneous users
that can be handled within one cell depends on the number of
simultaneous users in all the cells in the network. This inter-
ference limitation makes the cell placement design in CDMA
networks particularly difficult: the problem of placing cells in a
region with a given user profile would require the calculation of
the intercell interference, which depends on the cell geometry,
the transmit power levels of the users, and the number of users in
adjacent cells. This problem is not present in networks that use
fixed channel assignment algorithms, wherein cochannel inter-
ference is eliminated by using different frequency sets in ad-
jacent cells, thereby separating the problem of cell placement
and cell capacity. In such networks, the design rule-of-thumb is
to place cells so that each will have a constant demand. Thus,
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smaller cells are used in areas of high demand while larger
cells are used in areas of low demand. In CDMA networks,
differing usage results in differing intercell interference, which
suggests the possibility of more efficient topology design. In this
paper, we describe a new network topology design technique for
CDMA networks that outperforms traditional techniques.

In [3]–[12], the authors calculate the capacity of a single
CDMA cell or a CDMA network by restricting analysis to re-
verse link capacity. These papers concede that CDMA networks
are interference- and reverse-link limited in that the system ca-
pacity for the reverse link will be lower than that of the for-
ward link. In [1], the authors analyze both forward- and re-
verse-link capacity. They have shown that for an ideal power
control and hard handoff case, reverse-link capacity limits the
system capacity; however, the difference between forward- and
reverse-link capacities is not large. In [13], the authors show that
reverse-link capacity is increased considerably by soft handoff,
but, at the same time, imperfect power control reduces it and
compensates for the increase. On the other hand, forward-link
capacity is decreased due to soft handoff, and the reduction is
shown to be more than the difference between reverse- and for-
ward-link capacities. They believe that the overload in forward
link limits the capacity of the system. From the above discus-
sion, it is evident that among researchers, a consensus does not
exist on whether the CDMA system capacity is reverse- or for-
ward-link limited. However, the majority of the literature pub-
lished on the subject is of the former view. In light of this, in
this paper we consider the reverse-link capacity only. In the rest
of this paper, when we refer to capacity, we actually mean the
reverse-link capacity.

Despite the abundant literature on CDMA, few contributions
address the cell design problem. The main emphasis to date
has been on capacity analysis through simulation with uniform
cells. In [14], the performance of IS-95-based CDMA systems
[15] is studied in nonuniform and uniform traffic distribution
with equal cell sizes. The elements that are investigated are
the pilot channel chip energy to received signal power spectral
density ratio, the forward link bit energy to noise power spectral
density ratio, and the reverse link bit energy to noise power
spectral density ratio. Monte Carlo simulations are carried out
under a hexagonal omnicell configuration to obtain statistics
of capacity, handoff percentage, and signal and interference
levels.

In [16], the problem of nonuniform traffic’s decreasing of the
system capacity in microcell CDMA systems is investigated.
The authors propose a scheme whereby every base station adap-
tively controls the required transmission power level of the mo-
biles based on minimizing the difference between the target
signal-to-interference ratio (SIR) and the observed SIR on the
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reverse link at the base station. The authors evaluate the ef-
fectiveness of their proposed method with regard to the signal
quality and the outage probability through computer simula-
tion. The results show that the proposed method is effective
against localized high-density traffic, but the effectiveness be-
comes smaller as the traffic load in the vicinity of congested
cells increases.

In [8] and [9], an iterative algorithm for cell design that mini-
mizes the disparity in communication quality between base sta-
tions is proposed. To equalize the SIR in order to maximize ca-
pacity, every base station adjusts both the pilot-signal power and
the desired transmission power level based on the difference be-
tween the average SIR and the observed SIR on the reverse link.
The authors confirm the effectiveness of the proposed algorithm
through computer simulation.

In [11], the problem of adaptive cell sectorization to increase
capacity in CDMA systems is investigated. The authors pro-
pose to minimize the total received power and the total transmit
power of the mobiles in order to reduce intercell interference
while retaining acceptable quality of service. The results show
that under nonuniform traffic conditions, the optimum arrange-
ment of the sector boundaries is quite different from uniform
cell sectorization.

In a CDMA network, the near–far problem necessitates power
control, whereby the transmit power of mobiles is proportional
to distance (from the base station) raised to the path-loss ex-
ponent. Typically, the power control scheme used in CDMA
networks is signal level based, i.e., the power control equal-
izes the received power from the mobiles at the base station.
We assume such a power control scheme in this paper. In par-
ticular, SIR-based power control is not investigated [17] [18].
When large cells are adjacent to small cells, users at the bound-
aries of large cells cause a lot of interference to users in small
cells. This causes a significant reduction in the capacity of the
small cells. To alleviate this problem, we propose to adjust the
nominal power of the mobiles in every cell by a power com-
pensation factor (PCF) [19]. Since CDMA is interference lim-
ited, any decrease in the amount of interference translates into
a capacity gain. Increasing the pilot-signal power of a base sta-
tion increases the coverage region of that cell and thus increases
the number of users and the intracell interference in that cell.
However, it will decrease the number of users in the adjacent
cells, thus decreasing the intercell interference on this base sta-
tion. In addition, changing the location of a base station changes
the coverage region of that cell and the coverage regions of the
adjacent cells. Thus, by controlling the transmitted pilot-signal
power and adjusting the location of the base stations, the cov-
erage region of each cell is controlled, which in turn controls
the intracell and intercell interference. Given a fixed configura-
tion of user distribution, we try to place a given number of cells
in order to maximize capacity. We evaluate the capacity of the
entire network as a function of all the PCFs, the base-station lo-
cations, and the transmitted pilot-signal powers and present an
optimization framework that allows us to maximize capacity.
We develop design rules that apply to general user configura-
tions (uniform or with hot spots). We validate our design rules
by presenting comparative capacity results for networks that are

designed by our method versus those designed with traditional
rules.

The remainder of this paper is organized as follows. In Sec-
tion II, we calculate the relative average intercell interference.
In Section III, we define network capacity. In Section IV, we
study the sensitivity of the network capacity with respect to
base-station locations, pilot-signal powers, and power compen-
sation factors. In Section V, the optimization of capacity is per-
formed, and numerical results are presented in Section VI. Sec-
tion VII concludes this paper.

II. RELATIVE AVERAGE INTERCELL INTERFERENCE

Consider two cellsand . We assume that each user is always
communicating with and is power controlled by the base station
that has the highest received power at the user. Letdenote the
region where the received pilot-signal power from base station
is the highest among all base stations. A user located at coordi-
nates is at distance from base station. Let be
the number of users in celland = Area( ), the area of cell
. It is assumed that the power-control mechanism overcomes

both large-scale path loss and shadow fading. It does not, how-
ever, overcome the fast fluctuations of the signal power associ-
ated with Rayleigh fading [1]. The propagation loss of a user in
cell is modeled as the product of theth power of distance and
a log-normal component representing shadowing losses. Now
let denote the Rayleigh random variable that represents the
fading on the path from this user to cell. The average of
is the log-normal fading on that path, i.e.,
[20], where is the decibel attenuation due to shadowing and is
a Gaussian random variable with zero mean and standard devi-
ation . Consequently, the relative average interference at cell

caused by all users in cellis given by [21]

(1)

The expectation is calculated as follows:

E E E

E E

E (2)

Let , where is a Gaussian random variable with zero
mean and variance equal to 2since and are independent.
Substituting in (2), we get

E E

(3)

where . Substituting the result back into (1)

(4)
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Let denote the per-user intercell interference factor of cell
to cell , i.e., . Note that in our model, equals
zero.

Equation (4) is used to calculate the relative average inter-
cell interference for a uniform user distribution, i.e., when the
relative user density at in cell is . For a nonuni-
form user distribution, let be the relative user density at

. A hot spot is a region of a cell with a higher relative user
density than the rest of the cell. The relative average intercell in-
terference at cellcaused by all users from cellfor the general
case becomes

(5)

The s will be used to determine the reverse-link capacity. A
closed-form expression can be derived for for the case of
a uniform user distribution and a specific cell geometry (e.g.,
hexagonal). However, since for the case of nonuniform user dis-
tribution we evaluate in (5) numerically, we have used the
same approach for the uniform case and have not obtained the
closed-form solution for (4).

III. CDMA N ETWORK CAPACITY

Consider a multicell CDMA network with spread signal
bandwidth of , information rate of bits/s, voice activity
factor of , and background noise spectral density of.
Assuming a total of cells with users in cell , the bit
energy to interference density ratio in cellis given by [22]

for (6)

To achieve a required bit error rate we must have
for some constant. Thus, rewriting (6), the number of users in
every cell must satisfy

for (7)

A set of users satisfying the above equations
is said to be a feasible user configuration, i.e., one that satisfies
the constraint. The right-hand side of (7) is a constant,
determined by system parameters and by the desired maximum
bit error rate, and can be regarded as the total number of effec-
tive channels available to the system. As can be seen from
(7), the capacities of the CDMA cells in a network must be con-
sidered jointly. Thus the notion of capacity in a CDMA network
is that of a capacity region, which indicates all tradeoffs in ca-
pacity between the cells in the network.

We define equal capacity as the requirement that all cells have
an equal number of users, i.e., for all . For the equal
capacity case, the network capacityis equal to , where

(8)

In general, for a given fixed configuration of user distribution,
a feasible user configuration yields a network capacitythat
is the solution to the following optimization problem

subject to

for (9)

We should point out that the pilot-signal strengths and the base-
station locations affect the values of the set of factorsand
thereby affect the decision variablesin (9).

The optimization problem in (9) is an integer programming
(IP) problem. One technique to solve the IP problem is based
on dividing the problem into a number of smaller problems in
a method called branch and bound [23]. Branch and bound is a
systematic method for implicitly enumerating all possible com-
binations of the integer variables in a model. The number of sub-
problems and branches required can become extremely large.

If the integer variables , , are relaxed and as-
sumed to be continuous variables, then (9) becomes a linear pro-
gramming (LP) problem whose solution can be obtained by any
general LP technique, e.g., the simplex method [24]. We should
point out that (9) is a convex optimization problem, and there-
fore, the approach described above does converge to a global
optimal solution. It should also be noted that although the op-
timization problem in (9) maximizes the total network capacity
and provides an improvement over that obtained from (8), the
capacity of individual cells that results from (9) may vary sig-
nificantly.

In Section VI, we provide results to the continuous relaxation
of (9), which give an upper bound on the optimal value. We
give the rounded-down solution (rounding down the solution
of the continuous relaxation problem), which in general is not
the optimal solution of the IP problem. We also solve the IP
problem and provide the optimal solution as well as the number
of branches required to arrive at the solution.

IV. SENSITIVITY ANALYSIS

Having formulated the optimization problem that calculates
network capacity, we now investigate the effect of changing the
transmission power of the mobiles, the pilot-signal powers, and
the locations of the base stations on this capacity. Consider a
network with a large cell adjacent to a small cell, and consider
two users and both located at the boundary of these two
cells as shown in Fig. 1. Userwill cause a lot of interference to
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Fig. 1. Effect of a large cell adjacent to a small cell.

user because mobiles’ transmit power is proportional to their
distance from the base station raised to the path-loss exponent.
Thus, a small cell adjacent to a large cell will experience a great
deal of interference—which causes a significant reduction in the
capacity of the small cell.

This problem can be resolved by adjusting the nominal power
of the mobiles in every cell by the PCF in order to make the SIR
in small cells comparable to that in large cells. If cellhas a
PCF , its mobiles’ signal powers have increased by a factor
of . Thus, the new relative average intercell interference of
cell to cell becomes

(10)

As a result, the new intercell interference factor per user be-
comes . Thus, once the original intercell interference fac-
tors have been calculated (for PCFs equal to one), changing the
PCFs for the cells does not require recalculation of the original

since is linear in .
Let be the received nominal power at base stationwithout

PCF. Then, . With PCF, the received power at base
station is . Now, . The ratio of bit energy to
interference density is

(11)

To achieve a required bit error rate, we must have ,
yielding

(12)

Rearranging terms

(13)

Let

for (14)

Assuming that the variables, , are relaxed to be
continuous variables, the derivative ofwith respect to is

if

if . (15)

The above derivatives will be used in the solution to the opti-
mization problems (31)–(34).

A. Sensitivity with Respect to Power Compensation Factors

Increasing the PCF of a cell increases the SIR of that cell,
thereby increasing the capacity of that cell. On the other hand, it
will also increase the interference into its adjacent cells, thereby
reducing the capacity of those cells. Therefore, we wish to find
the optimal values for the PCFs that will maximize the capacity
of the entire network. The PCFs also provide flexibility in the
allocation of capacity. By changing the PCFs, capacity can be
exchanged between cells. Our approach is to first calculate the
derivatives of the network capacity with respect to the PCFs
and to use them in an optimization algorithm. These derivatives
capture the effect of increases in the PCF of one cell on the
capacity of the entire network.

Combining (8) and (13), the equal capacity case becomes

(16)

Let denote the index that minimizes (16). For numerical pur-
poses, we allow to be a real number. The derivative ofwith
respect to a PCF is

if

if

(17)

where .
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For the general case where the capacity in each cell may be
different, the derivative of with respect to is

if

if .

(18)

The above derivatives will be used in the solution to the opti-
mization problems (31) and (34).

B. Sensitivity with Respect to Transmitted Pilot-Signal Power

In a CDMA network, it is important to control the intercell
interference. Increasing the pilot-signal power of a base sta-
tion expands the coverage area of that cell, thereby increasing
the number of users in that cell and thus the intracell interfer-
ence. On the other hand, it will decrease the number of users in
the adjacent cells, thus decreasing the intercell interference on
this base station. The opposite effect takes place in the adjacent
cells. The intercell interference into these cells increases and
the intracell interference decreases. Therefore, we wish to find
the optimal values of the transmitted pilot-signal powers that
will maximize the capacity of the entire network. Let and

be the coordinates of base stationand the transmitted
pilot-signal power of base station. For brevity, we use the no-
tation , . Let denote the set of base stations
adjacent to base station. Given a path-loss model, the region of
cell , , is completely determined by , , , ,

, and for .
For example, consider two adjacent cellsand . Let be

the point on the straight line connecting and , where the
received pilot power from base stationequals the received pilot
power from base station. Then, using the COST-231 model for
path loss [25]

(19)

where is the distance between base stationsand and
is a constant that depends on the average base-station antenna
height and the average mobile antenna height.is the region
enclosed in the polygon whose sides pass throughand are
perpendicular to the line connecting to for (ig-
noring edge effects).

To find the optimal values of the transmitted pilot-signal
powers that will maximize the capacity of the entire network,
we calculate the derivatives of the network capacity with
respect to s and use them in an optimization algorithm. They
capture the effect of increases in the transmitted pilot-signal
power of one base station on the capacity of the entire network.

The derivative of with respect to the intercell interference
factor is

(20)

if and , and zero otherwise. From (4)

(21)

where

(22)

The region of cell , , is a function of the independent vari-
ables , , , and , where . Thus the partial deriva-
tive of with respect to is given by

(23)

if or , and zero otherwise. The intercell interference
factors for , are a function of .
Also, the intercell interference factors for

and , are a function of . Thus, the derivative
of with respect to the transmitted pilot-signal poweris

(24)

For the general case, the derivative ofwith respect to is

if and

otherwise.
(25)

The derivative of with respect to is

(26)

The above derivatives will be used in the solution to the opti-
mization problems (32) and (34).

C. Sensitivity with Respect to Base Station Location

Another way we can control the intracell and the intercell in-
terferences is by controlling the locations of the base stations.
Changing the location of a base station changes the coverage re-
gion of that cell and the coverage regions of the adjacent cells.
Thus, we wish to find the derivatives of the network capacity
with respect to base-station location and use them in an opti-
mization algorithm. They capture the effect of changing the co-
ordinates of one base stationon the capacity of the entire net-
work.

We start by finding the partial derivative of with respect
to

(27)

if or , and

(28)
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if and , and zero otherwise. The intercell interfer-
ence factors for , are a function of

.The intercell interference factors for
and , are a function of . Also, the intercell in-
terference factors for and are
a function of . Thus, the derivative of the network capacity
with respect to the-coordinate of base stationis

(29)

We have a similar expression for .
For the general case, the derivative ofwith respect to

is

(30)

The above derivatives will be used in the solution to the opti-
mization problems (33) and (34).

D. Complexity

In this section, we evaluate the complexity—the number of
multiplications and additions used in the calculations of the rel-
ative average intercell interference and the sensitivity analysis.
Assume that the coverage region of a cell is approximated by
a circle. Let be the average radius of a cell. Then for
an -cell network, the area of the network is proportional to

. To calculate the integrals in (4) and (5), the network is
divided into grid points. The relative interference from a mobile
located at the center of that grid point to every base station is
calculated. The total relative interference is the sum of the inte-
grals from each grid point. The complexity to calculate the total
relative average intercell interference is .

The complexity to calculate the minimum of elements
is [25]. Given the intercell interference factors, the
complexity to calculate the capacity of the network from (8)
is . The complexity to calculate the
sensitivity with respect to one PCF from (17) is . Let

be the average cardinality of the set of adjacent base sta-
tions . Then the complexity to calculate the sensitivity with
respect to one pilot-signal power from (24) is .
The complexity for the calculation of the sensitivity with re-
spect to one base-station location coordinate from (29) is also

.

V. MAXIMIZATION OF CAPACITY

Having derived the sensitivity of network capacity with re-
spect to PCFs, pilot-signal powers, and base-station locations,
we modify the optimization problem (9) to include these pa-

rameters. The first optimization problem formed has the PCFs
as the independent variables

subject to

for (31)

The value of , , should be chosen so that
the required transmit power of the mobiles in celldoes not
exceed the maximum power that a mobile can transmit. Thus,
values of are different and inversely proportional to the
radius of cell since the transmit power of the mobiles is directly
proportional to the radius of the cells. The solution for the above
optimization problem gives the total network capacity and the
optimizing values of the power compensation factors.

We form another optimization problem where the indepen-
dent variables are the transmitted pilot-signal powers. The opti-
mization problem is

subject to

for (32)

Another possible optimization is for the case when the inde-
pendent variables are the base-station locations. The optimiza-
tion problem is

subject to

for (33)

Finally, we maximize the network capacity by optimizing si-
multaneously the power compensation factors, the transmitted
pilot-signal powers, and the base-station locations. The com-
bined optimization problem is

subject to

for (34)

The optimization problems (31)–(34) are mixed integer pro-
gramming (MIP) problems. The branch-and-bound method is
used to arrive at integer solutions for, .



AKL et al.: MULTICELL CDMA NETWORK DESIGN 717

By relaxing the integer variables, , to contin-
uous variables, the optimizations in (31)–(34) are solved using a
sequential quadratic programming method [27]. In this method,
a quadratic programming subproblem is solved at each itera-
tion. An estimate of the Hessian of the Lagrangian is updated
at each iteration using the Broyden–Fletcher–Goldfarb–Shanno
formula [28]. A line search is performed using a merit function
[29]. The quadratic programming subproblem is solved using
an active set strategy [30].

In Section VI, we provide results for the optimization prob-
lems in (31)–(34) (with the continuous relaxation assumption),
which give an upper bound on the optimal value. What is pre-
sented is the rounded-down version of the solution. We also
solve the MIP problems and provide the number of branches
required to arrive at the solution.

We note that unlike (9), (31)–(34) are not convex optimization
problems, and so it may be possible for the approaches described
above not to converge to a global optimal solution. To ensure
that this did not occur, we verified the results of the optimization
using simulated annealing (SA) [31], which has many attractive
features. In particular, SA can statistically guarantee finding a
global optimal solution [32]. On the other hand, it can be quite
time consuming to use SA to find an optimal solution, and it
is difficult to fine tune. We use an adaptive simulated annealing
(ASA) algorithm, which is based on an associated proof that the
parameter space can be sampled much more efficiently than by
other previous SA algorithms.1 Our initial capacity vector used
in ASA is the solution returned by the optimization problems
(31)–(34). The generating probability density function, the ac-
ceptance probability density function, and the cooling temper-
ature schedule used were the default values provided by the al-
gorithm itself.

VI. NUMERICAL RESULTS

We assume the following for the analysis. The COST-231
propagation model with a carrier frequency of 1800 MHz, av-
erage base-station height of 30 m, and average mobile height of
1.5 m is used to determine the coverage region. The path-loss
coefficient is four. The shadow-fading standard deviation
is 6 dB. The processing gain is 21.1 dB. (This corresponds
to the processing gain in IS-95.) The bit energy to interference
ratio threshold is 9.2 dB. The interference to background noise
ratio is 10 dB. The voice activity factor is 0.375. The
whole area is divided into small grids of size 150 by 150 m.

In what follows, we will study an example with a uniform
and nonuniform user distribution in detail and show how the
optimization techniques described in this paper, i.e., (9) and
(31)–(34), maximize the capacity profile of such a network. The
following results have been obtained for the 27-cell CDMA net-
work shown in Fig. 2. The base stations are located at the centers
of a hexagonal grid whose radius is 1732 m. Base station 1 is
located at the origin. The base stations are numbered consecu-
tively in a spiral pattern. The pilot-signal power of every base
station is 1 W.

1The ASA code and ample documentation are publicly available at
http://www.ingber.com/

Fig. 2. Capacity in a 27-cell CDMA network with uniform user distribution.

A. Uniform User Distribution

Fora uniform userdistribution and power compensation factor
equal to one in every cell, the equal capacity of this network cal-
culated from (8) is 18 users per cell, giving a network capacity
of 486. This network capacity becomes 565 if the optimization
given in (9) is used. If the capacity of every cell is rounded down
to an integer (rounded-down capacity), the capacity of the net-
work is 548. The IP solution of (9) yields a network capacity of
559 (with 56 635 branches). The capacities of the individual cells

are given in parentheses in Fig. 2. It can be seen that for cells
on theouteredgesof thecoveragearea, thecapacityhas increased
significantly. This is due to the fact that the intercell interference
for these cells is smaller than that for the cells in the interior of the
coverage area. Also note that the increase in capacity of the cells
on the outer edges increases the intercell interference into their
adjacent cells, thereby reducing the capacity of some of those
cells from 18 to 17. The overall network capacity, however, has
increased from 486 to 559.

After running the optimization for PCFs, pilot-signal powers,
and base-station locations, i.e., the optimizations described in
(31)–(34), the network remains unchanged. Thus, as expected,
for a uniform user distribution, a uniform network layout with
equal PCFs, equal pilot-signal powers, and equal distances be-
tween base stations is optimal. Intuitively, this is not the case for
a nonuniform user distribution.

B. Nonuniform User Distribution

We considered three hot-spot clusters, as shown in Fig. 3. In a
cell with a hot spot, the user distribution is no longer uniform. A
relative user density assigned to each hot spot specifies how the
users in the cell are distributed. The first hot-spot cluster (seven
hot spots) is circular in shape. Its center is located at (4500,
2598) m, which coincides with base station 15 and has a radius
of 3000 m. The second hot-spot cluster (five hot spots) is rect-
angular in shape. The lower left corner is at (4600, 4200) m,
and the upper right corner is at (1400,1200) m. The third
hot-spot cluster (four hot spots) is square in shape. The lower
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Fig. 3. Capacity in the 27-cell CDMA network with three hot spots.

left corner is at (1600, 1000) m, and the upper right corner is
at (6100, 3500) m. All the hot spots have the same relative user
density per grid point, which is five times that of a grid point
with no hot spot.

The equal capacity of this network calculated from (8) is 13
users per cell, giving a network capacity of 351. The network
capacity obtained from (9) is 540 (the rounded-down capacity
is 528). The IP solution of (9) yields a network capacity of 536
(with 106 610 branches). The capacity in each cell is shown in
parentheses in Fig. 3. The capacity of cells 4, 15, and 19, which
are inside the hot-spot clusters, has decreased from 18 to 3, 17
to 1, and 17 to 9, respectively. These cells lose the most capacity
due to the increase in intracell and intercell interference because
of the nonuniform user distribution. The network capacity opti-
mization tries to increase the sum of the capacities of the cells
by adjusting the physical parameters of power compensation
factors, pilot-signal powers, and base-station locations. We now
examine the advantages of adjusting these parameters in our op-
timization.

1) Optimization Using Power Compensation Factors:From
(31), the maximization of network capacity with respect to PCFs
increases the network capacity to 560 (the rounded-down ca-
pacity is 546). The MIP solution of (31) yields a network ca-
pacity equal to 555 (with 129 357 branches) and the cell capaci-
ties given in Fig. 4. The values of the optimized PCFs are shown
in brackets and the cell capacities are shown in parentheses.
After optimization, the capacity of cells 4, 15, and 19 increases
from 3 to 12, 1 to 9, and 9 to 14, respectively. Even though the
capacity in a few cells has decreased, the smallest capacity in
any cell has increased from 1 to 9. Without the power compen-
sation optimization, the cells with high interference have very
small capacity.

The optimization increases the power compensation factors
of the cells with high interference. This results in a PCF of 1.64
for cell 4, 1.71 for cell 15, and 1.56 for cell 19. Increasing the
PCF of a cell increases its signal-to-noise ratio, thus increasing
the cell’s capacity.

Fig. 4. Capacity in the 27-cell CDMA network, which is optimized using
power compensation factors.

Fig. 5. Capacity in the 27-cell CDMA network, which is optimized using
pilot-signal powers.

2) Optimization Using Pilot-Signal Powers:The maximiza-
tion of network capacity with respect to pilot-signal powers [see
(32)] increases the network capacity to 552 (the rounded-down
capacity is 539). The MIP solution of (32) yields a network ca-
pacity equal to 546 (with 262 604 branches) and the cell capac-
ities given in Fig. 5. The values of the optimized pilot-signal
powers in watts are shown in brackets, and the capacity is shown
in parentheses. After running the optimization, the capacity of
cells 4, 15, and 19 increases from 3 to 11, 1 to 9, and 9 to 16, re-
spectively. The pilot-signal powers of base stations 4, 15, and 19
increase from 1 W to 1.45, 1.55, and 1.25 W, respectively. This
increase in pilot power and thus coverage region does increase
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Fig. 6. Capacity in the 27-cell CDMA network, which is optimized using
base-station locations.

the intracell interference further, but the intercell interference
now decreases more, giving a reduction in total interference.
These base stations are essentially taking on the users that have
been causing the high intercell interference and controlling their
power levels, thus reducing the total interference and resulting
in a higher capacity. The optimization has increased the smallest
capacity in any cell to nine.

3) Optimization Using Base-Station Locations:The maxi-
mization of network capacity with respect to base-station lo-
cations [see (33)] produces a network capacity equal to 555
(the rounded-down capacity is equal to 541). The MIP solu-
tion of (33) yields a network capacity equal to 549 (with 90 194
branches) and the cell capacities given in Fig. 6. The optimiza-
tion moves base stations 3, 13, 11, and 12 closer and places them
inside the hot-spot cluster. A similar relocation takes place for
base stations 2, 7, 8, and 19 that are now placed almost uni-
formly inside the hot-spot cluster. The high demand area is thus
being serviced by more base stations, and the interference to
each cell in the hot-spot cluster is comparable. After running the
optimization, the capacity of cells 4, 15, and 19 increases from
3 to 14, 1 to 8, and 9 to 17, respectively. The network capacity
increases to 556, and the smallest capacity in any cell increases
to eight.

4) Combined Optimization:Finally, we solve (34), which
maximizes network capacity by optimizing simultaneously
the power compensation factors, pilot-signal powers, and
base-station locations. The network capacity increases to 576
(the rounded-down capacity is 560). The MIP solution of (34)
yields a network capacity equal to 565 (with 758 877 branches)
and the cell capacities given in Fig. 7. The optimization in-
creases the smallest cell capacity in the network to 13. Thus, the
optimization achieves the very important goal of increasing the
capacity of the individual cells that have very high interference.
This results in an increase in total network capacity, and equally
important, in an increase in the smallest cell capacity in the
network.

Fig. 7. Capacity in the 27-cell CDMA network, which is optimized using
base-station locations, pilot-signal powers, and power compensation factors.

Fig. 8. Network capacity versus relative user density for the 27-cell network.

Fig. 8 summarizes the previous results and presents the values
of the network capacity returned from the different optimiza-
tions as the relative user density is varied from one to ten. A
relative user density of one means no hot spot, i.e., a uniform
user distribution. (Recall that the example that was presented in
detail in Figs. 3–7 is for a relative user density of five.) Fig. 8
demonstrates clearly the increase in network capacity as a result
of optimizing the power compensation factors, the pilot-signal
powers, or the base-station locations. It also shows the signifi-
cant gains in network capacity achieved from the combined op-
timization approach. In all our examples, the IP/MIP solution
improved the rounded-down solution only slightly (around 2%)
but at a cost of considerable computational complexity.

Fig. 9 presents the results of the optimizations for the equal
capacity case. The-axis is the capacity in every cell. We see
the same trend as in Fig. 8.

The examples above suggest the following observation. For
a uniform network layout with a nonuniform user distribution
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Fig. 9. Capacity in every cell for the equal capacity case versus relative user
density for the 27-cell network.

Fig. 10. Smallest cell capacity in the network versus relative user density for
the 27-cell network.

and with a relative user density in the hot spots equal to four
and higher, the capacity of the cells inside the hot spot clusters
drops to one. This is because we are maximizing the total
network capacity, i.e., the total number of users in all the cells.
Thus, the capacity of a cell inside a hot-spot cluster with a
lot of interference is decreased to minimize its effect. This
allows for a large increase in the capacities of its neighbors,
resulting in the maximization of the total network capacity. This
effect is highlighted in Fig. 10, which depicts the smallest cell
capacity in the network obtained from optimizations (9) and
(31)–(34). Even though the optimizations are not specifically
attempting to increase the capacity of any individual cells,
the results show a significant increase in the capacity of the
cells that have a very small capacity in the uniform network
layout case. This motivates a new optimization problem, where
we wish to maximize the network capacity while providing a
minimum capacity (mc) per cell. In this approach, we first
calculate the equal capacity, using (8). We denote this by.

Fig. 11. Smallest cell capacity in the network for the uniform network
and combined optimization cases with and without the minimum capacity
constraint.

The network capacity is now the solution to the following
optimization problem:

subject to

for (35)

In this way, (35) is guaranteed to have a feasible solution and
every cell is guaranteed to have a minimum capacity of .
The new combined optimization problem using the power com-
pensation factors, pilot-signal powers, and base-station loca-
tions becomes

subject to

for (36)

Fig. 11 compares the smallest capacity in a cell in the net-
work for the four cases of uniform network [uniform network
topology with capacity calculated using (9)], combined opti-
mization [optimized network topology and capacity calculated
using (34)], uniform network (mc) [uniform network topology
and capacity calculated using (35)], and combined optimiza-
tion (mc) [optimized network topology and capacity calculated
using (36)]. Fig. 12 compares the total network capacity for
these four cases. Fig. 11 shows that significant improvement
can be achieved by imposing the minimum capacity constraint
in (35) and (36). In particular, using the combined optimization
approach with the minimum capacity constraint, a minimum ca-
pacity of 17 users per cell can be achieved. Moreover, as Fig. 12
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Fig. 12. Network capacity for the uniform network and combined optimization
cases with and without the minimum capacity constraint.

Fig. 13. Capacity in the 27-cell CDMA network, which is optimized using
base-station locations, pilot-signal powers, and power compensation factors
with a minimum capacity constraint.

shows, this is achieved at a small cost in total network capacity.
In fact, for relative user densities larger than four, the difference
between the total network capacity from combined optimization
and combined optimization (mc) is around three. We would like
to point out that, as Fig. 12 also shows, there is a larger drop
in total network capacity between the two cases of uniform net-
work and uniform network (mc). Adding the minimum capacity
constraint in (35) without the optimization of PCFs, pilot signal
powers, and base-station locations causes a larger reduction in
the total network capacity. We should also point out that the
amount of reduction depends on the number of hot spots in the
network. An increase in the number of hot spots and an increase
in the relative user density in the hot spots causes a greater re-
duction in the total network capacity.

Finally, the capacity of the cells for the relative user density
of five is given in Fig. 13 in parentheses. The smallest capacity
in any cell is 17, as opposed to 13 in Fig. 7. The MIP solution
yields a network capacity of 564, which is only one less than

the capacity achieved previously using (34). Thus, our results
show that maximizing the network capacity, with a minimum
capacity constraint, by varying the PCFs, base-station locations,
and pilot-signal powers, is the best way to increase capacity in
the cells individually and in the network as a whole.

VII. CONCLUSION

We show how to increase the reverse-link capacity in a
CDMA network by varying the transmission power of the
mobiles, the pilot-signal powers, and the base-station locations.
We calculate the derivative of the reverse-link network capacity
with respect to pilot-signal powers, base-station locations, and
power compensation factors. These derivatives are then used in
an optimization procedure to maximize the network capacity.
The results confirm that for a uniform user distribution, a
uniform network layout with equal-sized cells is optimal.
For a nonuniform distribution, more cells need to be located
inside the hot-spot cluster. If pilot-signal power is the only
variable parameter, then an increase in pilot-signal powers of
congested cells increases network capacity. Even though the
intracell interference increases, a greater reduction in intercell
interference is achieved, which yields an increase in the overall
capacity. We also construct and solve constrained optimization
problems, which guarantee a minimum capacity for every indi-
vidual cell while maximizing the total network capacity. These
results indicate that including a hard constraint on the minimum
capacity of individual cells has little effect on network capacity
given the flexibility of optimizing the transmission power
of the mobiles, the pilot-signal powers, and the location of
the base stations. However, without such flexibility, the hard
constraint on cell capacity imposes a significant penalty on
network capacity. The network design technique introduced
accommodates postdeployment design changes in response to
changes in demand, particularly by changing the PCFs and the
pilot-signal powers.
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