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Abstract—In-band spectrum sensing in overlay cognitive radio
networks requires that the secondary users (SU) periodically
suspend their communication in order to determine whether the
primary user (PU) has started to utilize the channel. In contrast,
in spectrum monitoring the SU can detect the emergence of the
PU from its own receiver statistics such as receiver error count
(REC). Previously it is shown that in AWGN channels, a hy-
brid spectrum sensing/spectrum monitoring system significantly
improves channel utilization of the SUs and detection delay of
the PUs. In this paper we investigate the problem of spectrum
monitoring in the presence of fading where the SU employs
diversity combining to mitigate the channel fading effects. We
show that a decision statistic based on the REC alone does not
provide a good performance. Next we introduce new decision
statistics based on the REC and the combiner coefficients. It
is shown that the new decision statistic achieves significant
improvement in the case of maximal ratio combining (MRC).
However, for equal gain combining and selection combining
the inclusion of combiner coefficients does not improve the
performance over REC alone. In the case of MRC we evaluate
the receiver operating characteristics from analysis and compare
the results with those from simulations using a BCH code as well
as a convolutional code. The results show a close match between
analysis and simulation results. Channel utilization and detection
delay are evaluated from simulations which show that with
MRC and the proposed decision statistic, the hybrid spectrum
sensing/spectrum monitoring system significantly outperforms
spectrum sensing alone.

Index Terms—Spectrum sensing, spectrum monitoring, chan-
nel utilization, detection delay, fading channel, diversity combin-
ing.

I. I NTRODUCTION

Vehicular networks are expected to significantly improve
safety and convenience of transportation systems and mitigate
traffic congestion by improving road traffic flow. Dynamic
spectrum access (DSA) has been proposed for vehicular ad-
hoc networks (VANET) to allow access to licensed spectral
bands such as TV white spaces [1]–[5]. In particular, in
the European “DRiVE” project, DSA is the main focus for
spectrum allocation in heterogeneous networks [6].

DSA allows unlicensed secondary users (SU) to utilize the
licensed spectral bands that are not in use by the incumbent
primary users (PU). Cognitive radio (CR), viewed as the
enabling technology for DSA, relies on spectrum sensing (SS)
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to determine whether a given frequency band is vacant of the
PU signal [7]–[9]1. Since during their own communication the
SUs do not sense the channel, they must periodically suspend
their transmission and enter a sensing period so as to determine
whether the PU has emerged or not. In order to protect
the PU against undue interference from the SUs, stringent
requirements are imposed on the detection probability and
maximum detection delay of the SS algorithm (see for example
[11]). Detection probability can be improved by increasingthe
duration of the sensing periods and detection delay can be
reduced by decreasing the duration of the SU’s transmission
periods. Both approaches, however, result in reduced through-
put in the secondary network.

There is an intricate tradeoff between protection of the PU
and the quality of service (QoS) of the SU, referred to as
sensing-throughput tradeoff in [12]. In [13], Tanget al. evalu-
ate the effect of PU traffic on the SU throughput. In [14], Akin
et al. assume statistical QoS and maximize the throughput for
the SU. To improve the SU’s throughput, adaptive scheduling
of spectrum sensing to the primary user activities has been
investigated in [15] and [16]. These approaches, however, are
mainly concerned with spectrum sensing and do not consider
the possibility of sensing while the SU is communicating.

It is clear that during the SU’s transmissions, the emergence
of the PU increases the interference experienced by the SU.
This in turn causes a drop in the SU’s signal-to-noise (plus
interference) ratio (SNR) and it may increase the number of
errors in the SU packets. Therefore, while communicating,
the SU may attempt to detect the emergence of the PU by
monitoring the changes in the receiver’s SNR or the number
of errors in each received packet. Using this idea, in [17], [18]
Boyd et al. introduced spectrum monitoring (SM) in which
the SU utilizes its receiver statistics to detect the emergence
of the PU during the SU’s own communication. In [19] we
proposed a decision statistic for SM based on the receiver
error count (REC)2 and the output of a cyclic redundancy
check (CRC) code and show that for AWGN channels the

1We should point out that this approach is referred to as overlay CR. In
contrast, in underlay CR the SU can always access the licensed spectrum
provided it can regulate its transmit power so as not to cause harmful
interference to the PU. Overlay CR is considered to be more practical since,
in contrast to underlay CR, it does not require instantaneous information on
the interference channel [10].

2REC denotes the number of errors observed in a received packetand is
more carefully defined in Section II-A.
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proposed algorithm significantly improves the throughput3 of
the SU subject to a maximum PU detection delay.

Using receiver statistics to detect the emergence of the PU
would be effective provided that the changes are mainly due
to the emergence of the PU (e.g., in the case of AWGN
channels). However, this approach may not be effective in the
presence of fading in the secondary channel as the changes
in the receiver statistics may be due to the variations of the
channel rather than the interference from the PU signal. In this
paper we investigate the problem of spectrum monitoring in
the case that the secondary channel experiences flat Rayleigh
fading. We first show that approaches which are based on
the REC alone do not perform well. Next we consider the
use of a multi-antenna system to improve the performance
of spectrum monitoring. Multi-antenna systems in conjunction
with diversity combining have been widely used in wireless
communication to combat the deleterious effects of channel
fading. Recently, multi-antenna systems have also been pro-
posed for SS where it is shown that they can significantly
improve the performance of SS techniques [20]–[24]. We
assume that the SU uses a multi-antenna system along with one
of three diversity combining techniques, namely maximal ratio
combining (MRC), equal gain combining (EGC), or selective
combining (SC). We introduce a new decision statistic based
on the REC, a CRC code and the combiner statistics. The
performance of this new decision statistic is evaluated in terms
of detection and false alarm probabilities, channel utilization
and detection delay. We also simulate the proposed system
using two forward error correcting codes, namely a BCH code
and a convolutional code. It is shown that the results from these
simulations are closely matched with those from analysis.

The rest of this paper is organized as follows. The system
model and problem formulation are presented in Section II.
The decision statistic using REC, CRC and combiner statistics
is introduced and analyzed in Section III. Numerical results
are presented in Sections IV and conclusions are drawn in
Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The SU starts with a spectrum sensing interval (SSI) of
durationTs during which it senses the channel. If at the end
of an SSI the channel is found to be occupied, another SSI
begins4 and this continues until the SU finds the channel to
be vacant. At this time a spectrum monitoring interval (SMI)
begins during which the SU transmits a maximum ofKM

packets. After the reception of each packet the SU computes
a decision statistic (described below) in order to detect whether
the PU has emerged in the in-band channel. If it is decided that
the PU has emerged, the SU terminates the SMI and enters
the spectrum sensing phase. Otherwise the channel is deemed
to be vacant and the SU continues its packet transmission. To
allow for periodic sensing of the channel the SU terminates

3In this paper we have used the notions ofthroughput and channel
utilization interchangeably to refer to the average fraction of time thatthe
SU is able to use the channel when the PU is absent.

4We should point out that the results presented here will not change if the
SU moves to another channel once it finds the current channel tobe occupied.

an SMI after the transmission of (at most)KM packets and
starts a new SSI.

LetHη denote the hypothesis of interest whereη = 0 and1
correspond to the absence and the presence of the PU signal,
respectively. We assume that the SU receiver is equipped with
L ≥ 1 identical antenna branches and that, as in [25], theL
branches experience identically distributed, uncorrelated flat
fading. Thenth received symbol at thelth branch of the SU
underHη is given by,

rl,n = snhl + vl,n + ηul,n, l = 1, 2, · · · , L, n = 1, 2, · · · (1)

where {sn} is the sequence of SU’s transmitted symbols,
{vl,n}Ll=1 denoteL independent, identically distributed (i.i.d.)
circularly symmetric Gaussian noise processes with zero mean
and varianceEv, and fork 6= l, {vk,n} and{vl,n} are indepen-
dent, and{ul,n} denotes the sequence of primary user symbols
at the lth branch of the SU receiver. We assume that the PU
symbols{ul,n} have undergone independent flat fading which
is not explicitly shown but is included in the symbols{ul,n}.
Finally, {hl}Ll=1, which denote the (secondary) channel fading
coefficients, are i.i.d. circularly symmetric Gaussian random
variables with mean zero and variance1, i.e.,hl ∼ CN (0, 1).
Let αl , |hl| and letθl , ∠hl.

We assume linear combining in the SU receiver where the
output of the combiner is given by,

rn ,
L
∑

l=1

wlrl,n (2)

and wherewl, l = 1, 2, · · · , L are the combiner weighting
coefficients which are determined by the diversity combining
technique [26]. Table I shows the values ofwl for the three
combining techniques MRC, EGC, and SC.

A. Decision Statistic

At the SU transmitter the information sequence is first
encoded using a CRC code (for error detection) followed by
a forward error correction (FEC) scheme to obtain anN -bit
packet. A block diagram of the receiver is shown in Fig. 1
(with the switchS open for now) where the received packet
is demodulated and decoded. The decoded packet is then
checked by the CRC and also encoded using a replica of the
transmitter’s encoder. The encoder output is compared to the
output of the demodulator5 to calculate the number of errors
referred to as REC and denoted bye in the following. Note that
the actual number of errors in a packet, subsequently denoted
by k, is not always available in the receiver. In particular, when
the packet is not decoded correctly, thene 6= k and therefore
the value ofk is unknown to the receiver. However, if the
packet is decoded correctly, thenk = e.

Remark 1. In today’s communication systems FEC and CRC
are in widespread use to combat channel errors and to verify
whether the packet is correctly decoded or not, respectively
[27]. Therefore there is no loss of throughput due to FEC if it
is already in use by the SU; moreover, the throughput loss due

5If the decoder uses soft decision, then hard decision must be performed
on the demodulator output before comparison with the encoder’s output.
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TABLE I
COMBINER-WEIGHTS, INSTANTANEOUSSNR,AND ITS DISTRIBUTION FORMAXIMAL RATIO COMBINING (MRC), EQUAL GAIN COMBINING (EGC)
AND SELECTION COMBINING (SC) TECHNIQUES. IN THE TABLE, γb,η IS THE AVERAGE SNR OF THE RECEIVED SIGNAL PER BRANCH UNDERHη AND

E
(l)
r IS THE ENERGY OF THE RECEIVED PACKET FOR THElTH BRANCH.

Diversity wl pγη
(x) γη

MRC h∗l
1

(L−1)!γL
b,η

x(L−1)e
−x
γb,η

∑L
l=1 γ

(l)
η

EGC e−jθl L=2: 1
γb,η

e
−2x
γb,η −√

πe
−x
γb,η (

∑L
i=1 αl)

2γb,η
L×

(

1
2
√
xγb,η

−
√

x
γ3
b,η

)

×
(

1− 2Q
√

2x/γb,η

)

,

SC

{

1 E(l)
r > E(k)

r , ∀k 6= l

0 otherwise
L

γb,η

(

1− e−x/γb,η
)(L−1)

×e−x/γb,η max
{

γ
(1)
η , . . . , γ

(L)
η

}

Fig. 1. Proposed model using demodulator statistics and combiner statistics.

to the addition of CRC is very small considering the number
of CRC bits compared to the length of a packet.

Denote byCv andCnv the events that the CRC is validated
and not validated, respectively. The decision statistic inSMI
is defined by,

T (REC) ∼=
{ (

{e ≥ µ(REC)} ∩ Cv
)

∪ Cnv, DecideH1

Otherwise, DecideH0
(3)

where µ(REC) is the REC threshold which is chosen not to
exceedt(FEC), the maximum number of errors in a packet that
the FEC is able to correct. The decision statistic in (3) indicates
the emergence of the PU if the CRC is not validated, or if the
CRC is validated and the RECe exceeds the thresholdµ(REC).
As (3) indicates, the decision statistic in not a function ofthe
actual number of errorsk.

If the packet is decoded correctly, then the CRC will
correctly identify this event (Cv) and in this casee = k.
On the other hand if the decoder fails, then either the CRC
will identify this event (Cnv) or the CRC fails to identify
the decoder failure (Cv). In the former case the SMI will
be terminated. However, in the latter case when the packet
is not decoded correctly and the CRC also fails to identify
this event, the proposed SM scheme may fail for the current

packet. Consequently the SMI may be terminated when PU
is not present (resulting in loss of channel utilization forthe
SU) or it may be continued when PU is present (resulting
in increased detection delay). It is shown in [28] that for
large packets (e.g.N > 100) the probability of failure for an
L−bit CRC is approximately2−L. (Thus for the commonly
used CRCs such as CCITT-16, CRC-32-Castagnoli and CRC-
32-IEEE [29]–[31], the probability of CRC failure is around
1.5× 10−5 and2.3× 10−10, respectively.) It is shown in [19]
that the increase in detection delay due to the CRC failure is
less than2−L×Tp seconds and the loss in channel utilization
for the SU is less than2−L× Ts

Ts+KM×Tp
< 2−L, whereTp is

the packet transmission time. In light of this, in the following
we ignore the event of a decoder failure followed by a CRC
failure.

If Cnv occurs, then the received packet is not correctly
decoded (decoder failure). So,Cnv implies thatk ≥ t(FEC) ≥
µ(REC). On the other hand (ignoring the event that the decoder
and the CRC both fail),Cv implies that the packet is correctly
decoded. Thus from (3) we get

p
((

{e ≥ µ(REC)} ∩ Cv
)

∪ Cnv
)

(4)

= p
((

{k ≥ µ(REC)} ∩ Cv
)

∪
(

{k ≥ µ(REC)} ∩ Cnv
))

= p({k ≥ µ(REC)})

Therefore, (3) is equivalent to,

T (REC) = k
H1

≷
H0

µ(REC). (5)

The probabilities of false alarm and detection in SMI are given
by pf = p({k ≥ µ(REC)} | H0) and pd = p({k ≥ µ(REC)} |
H1), respectively.

It is shown in [23] that, if the modulation scheme of
the PU is a constant modulus scheme such as MPSK, then
after undergoing Rayleigh fading, the received PU sequences
{ul,n}, for l = 1, 2, · · · , L are i.i.d. zero-mean circularly
symmetric complex Gaussian (CSCG) random processes. This
model is also accurate if the PU uses orthogonal frequency
division multiplexing (OFDM) [22]. For other modulation
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schemes with a large constellation this assumption is approx-
imately true [23], [32]. Therefore we model{ul,n} as a zero-
mean CSCG random process with varianceEu. This model
is assumed merely to make the analysis tractable and the
proposed decision statistic does not depend on this assumption.
Other articles using this model include [12] and [33].

From the SU receiver point of view, the PU signal during
SMI is an additive noise. So the SNR for branchl underHη

is given by,

γ(l)η ,
|hl|2Es
Ev + ηEu

(6)

whereEs is the energy of the SU transmitted signal. Note that
for a given packet this SNR is fixed.

In the SU receiver, the signals from different branches are
combined. Letγη, η = 0, 1, denote the SNR at the output
of the combiner and letpγη

(x) denotes its probability density
function. Table I showsγη andpγη

(x) for different combining
techniques [34]. To find the number of bits in error in a packet
of lengthN , we assume that the SU uses BPSK modulation.
The results can be extended to other modulation scheme in
an straightforward manner by substituting the probabilityof
bit error corresponding to the modulation of interest. The
probability of k errors in a packet of lengthN underHη

can now be written as

pk(k|Hη) = Eγη
[pk(k|γη, Hη)]

=

∫ ∞

0

(

N

k

)

pb(x)
k(1− pb(x))

N−kpγη
(x) dx (7)

wherepb(γη) is the bit error probability for SNRγη.
Fig. 2 shows the receiver operating characteristic (ROC)

curves (pd vs. pf ) obtained from analysis as described above
as well as from simulation for three cases of MRC, EGC and
SC. The average SNR per branch underH0 andH1 is fixed
and equal to2 dB and0.6 dB, respectively. In the case of EGC
and forL > 2 branches,pγη

(x) cannot be written in closed
form [34]. Therefore, the performance is only evaluated from
simulations. For comparison we also show the ROC curves for
the decision statistic in (3) over AWGN channel and for the
same SNR values. As Fig. 2 shows, whileT (REC) is effective
in detecting the emergence of the PU in AWGN channels,
in the case of fading channels its performance deteriorates
significantly. This degradation is expected and is due to the
fact thatT (REC) cannot determine whether an increase in the
number of errors in a packet is due to the interference from the
PU signal or is caused by channel fading. This result implies
that for fading channels, using the REC alone as a test statistic
may not provide acceptable performance even when diversity
techniques are used. Hence, alternative decision statistics are
needed.

B. Channel Estimation

The probability in (7) is derived assuming that the com-
biner weighting coefficientswl, l = 1, 2, · · · , L are derived
from precise knowledge of the channel coefficientshl, l =
1, 2, · · · , L. However, in practice the channel coefficients
have to be estimated and there is always an error between

the estimated channel coefficients and their actual values.In
general, channel estimation error is caused by two distinct
channel impairments [35]. One is due to the decorrelation
of the pilots from the signal due to distinct distortions that
the channel imparts on them because of their separation in
time or frequency. The second is due to noise. It can be seen
that the first phenomenon affects the channel estimation in the
same manner whether the PU is present (H1) or not (H0).
The estimation error due to noise, however, will be different
as the SU experiences more noise when PU is present due to
the interference from the PU signal.

Denote byĥl = α̂le
jθ̂l the estimated channel coefficient

corresponding tohl. As in [25] we assume that the channel
estimation errors, defined byℓl , ĥl − hl, are independent of
the channel coefficientshl, and that{ℓl}Ll=1 are independent
and identically distributed (i.i.d.) circularly symmetric com-
plex Gaussian random variables. Given the hypothesisHη,
the complex correlation coefficient̺η betweenhl and ĥl and
its magnitude denoted byρη are defined by

̺η ,
E[hlĥ

∗
l |Hη]

√

E[|hl|2]E[|ĥl|2Hη]
= ̺Rη + j̺Iη (8)

ρ2η , |̺η|2 = (̺Rη )
2 + (̺Iη)

2, η = 0, 1.

where here and subsequently, superscriptsR and I represent
the real and imaginary parts, respectively. From the assump-
tions on{hl}Ll=1 and{ℓl}Ll=1 we conclude that the estimated
channel coefficients{ĥl}Ll=1 are also i.i.d. circularly symmetric
Gaussian random variables and conditioned onHη,

ĥl|Hη ∼ CN (0, 2− ρ2η) for l = 1, 2, · · · , L, (9)

where by X|Λ ∼ CN (m,σ2) we denote the conditional
distribution of X given Λ. Finally we have var(ℓl|Hη) =
var(h)(1− ρ2η).

In the case of imperfect channel estimation, it is shown in
[25] that the probability of observing a bit in error is iden-
tical to the case of perfect channel estimation with effective
SNR γ(eff)

η , (̺Rη )
2γη/(1 + γη(1− ρ2η)). Consequently, when

weighting coefficients are not perfectly estimated, the perfor-
mance of the proposed decision statistic will be equivalentto
that of a system with a lower SNR.

III. D ECISION STATISTICS USING ERRORCOUNTS AND

COMBINER COEFFICIENTS

We saw in the previous section that the REC is not a
good indicator of the presence or absence of the PU signal.
Therefore, in our decision statistic we would like to augment
the REC with the channel state information (CSI) that is
available in the SU receiver in the form of the combiner coef-
ficients. To emphasize the fact that the combiner coefficients
are obtained from an estimate of the CSI (rather than the exact
values), in the following we denote the combiner coefficients
by ŵl, l = 1, 2, · · · , L and let ŵ = (ŵ1, ŵ2, · · · , ŵL). We
define a new decision statistic as follows.

T ∼=
{ ({

p(e,f(ŵ)|H1)
p(e,f(ŵ)|H0)

≥ µ
}

∩ Cv

)

∪ Cnv, DecideH1

Otherwise, DecideH0

(10)
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Fig. 2. Comparison between the performance ofT (REC) in AWGN channel and fading channel for different number of antennas,L, and different diversity
techniques forN = 1024, γb,0 = 2 dB andγb,1 = 0.6 dB and BPSK signaling. (a): Maximal Ratio Combining,T

(REC)
MRC , (b): Equal Gain Combining,T (REC)

EGC
(c): Selection Combining,T (REC)

SC .

wheref(ŵ) is a function of the combiner coefficients to be
determined for each diversity scheme. Fig. 1 (with the switch
S closed) shows the proposed model. Similar to the approach
from (3) to (5), one can show that6 when t(FEC) ≥ µ,

T =
p(k, f(ŵ) | H1)

p(k, f(ŵ) | H0)

H1

≷
H0

µ . (11)

While the receiver implements the decision rule in (10), for
our analysis an in order to determine the functionf(.) for each
combining method, we consider (11) in the following.

A. Maximal Ratio Combining

It is well known that MRC is the optimum diversity tech-
nique in the sense of maximizing the output SNR of the
combiner [36]. In the case of imperfect channel estimation,
the combiner coefficients are given bŷwl = ĥ∗l . To evaluate
the decision statistic in (11), we first find the joint probability
of observingk errors and an estimated channel fading vector
ĥ , (ĥ1, ĥ2, · · · , ĥL) givenHη, i.e.,

p(k, ĥ|Hη) = p(k|ĥ,Hη)p(ĥ|Hη) (12)

We have

p(ĥ|Hη) =
L
∏

l=1

p(ĥRl |Hη)p(ĥ
I
l |Hη), (13)

From (9) and the fact that̂hl’s are i.i.d., we get

p(ĥ|Hη) =
1

[

2π(1− ρ2η/2)
]L

exp

(

−
∑L

l=1 |ĥl|2
2(1− ρ2η/2)

)

(14)

To find p(k|ĥ,Hη), let

ψ ,
Re
(

∑L
l=1 hlĥ

∗
l

)

√

∑L
l=1 |ĥl|2

. (15)

6Ignoring the event that the decoder and the CRC both fail.

Then,

p(k|ĥ,Hη) =

∞
∫

−∞

p(k|ψ, ĥ,Hη)p(ψ|ĥ,Hη)dψ

=

∞
∫

−∞

(

N

k

)

[P (E|ψ, ĥ,Hη)]
k[1− P (E|ψ, ĥ,Hη)]

N−k

× p(ψ|ĥη, Hη) dψ (16)

whereP (E|ψ, ĥ,Hη) is the bit error probability givenψ, ĥ
andHη and is given by, [25]

P (E|ψ, ĥ,Hη) = Q
(

ψ
√

2γη
)

(17)

Moreover, it is shown in Appendix A that,

ψ|ĥ,Hη ∼ N





√

∑L
l=1 |ĥl|2

2− ρ2η
,

1− ρ2η
2(2− ρ2η)



 (18)

By substituting (17) and (18) into (16), we get,

p(k|ĥ,Hη) =

∞
∫

−∞

(

N

k

)

Qk(ψ
√

2γη)(1−Q(ψ
√

2γη))
N−k

× 1
√

π

(

1− ρ2η
2− ρ2η

)

e
− (Â − (2− ρ2η)ψ)

2

(1− ρ2η)(2− ρ2η) dψ (19)

where

Â ,

√

√

√

√

L
∑

l=1

|ĥl|2. (20)

Substituting (14), (19), and (20) into (12), we getp(k, ĥ|Hη).
From (14) and (19) it is evident thatp(k, ĥ|Hη) depends

only on Â and not the values of individual̂hl’s. All combi-
nations of the estimated channel coefficientsĥ1, ĥ2, · · · , ĥL
which result in the same value for̂A are observed with equal
probability at the SU. Consequently, in the case of MRC,
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instead of(k, ĥ) it is sufficient to use the pair(k, Â) in the
decision statistic. Thus we letf(ŵ) , Â and define our
decision statistic by

TMRC ,
p(k, Â | H1)

p(k, Â | H0)

H1

≷
H0

µ(MRC) (21)

where µ(MRC) ≤ t(FEC) is the threshold in the case of
MRC. Analysis of this rule requiresp(k, Â|Hη) which can
be obtained fromp(k, ĥ|Hη). From (14) and (19) we see
that p(k, ĥ|Hη) depends only on||ĥ||. Letting Ξη(k, ||ĥ||) ,
p(k, ĥ|Hη) we get

p(k, Â|Hη) = Ξη(k, Â)S2L(Â) (22)

where

Sn(r) =
2πn/2

Γ(n/2)
rn−1 (23)

is the surface area of then-dimensional hyper-sphere of
radius r [37]. Evaluation of (22) requires the computation
of the integral in (19). In Appendix B an approximation for
p(k, Â|Hη) is derived in closed form which does not involve
any integration. The accuracy of this approximation is verified
by comparing in Section IV the performance results from
analysis (using this approximation) with simulation results.

For an intuitive explanation of the proposed decision rule
in (21), consider the 2D space ofe ∈ N, 0 ≤ e ≤ N ,
and Â ∈ R

+ which is split into two decision regions,Ω0

and Ω1 associated withH0 and H1, respectively. Fig. 3
demonstrates two examples of these decision regions when
γ0 = 6 dB, γ1 = 0 dB, ρ0 = 0.95, ρ1 = 0.85, N = 256 and
L = 2 antennas are employed in the MRC combiner. The two
decision boundaries are plotted for the false alarm probabilities
of pf = 0.01 and 0.05 and the corresponding detection
probabilities,pd = 0.73 and 0.86, respectively. In each case
the area under the curve showsΩ0 and the area above the
curve showsΩ1. Note that when the SU experiences large
fades (smallÂ), it expects to observe a large number of errors
per packet due to fading alone. Therefore, as demonstrated in
Fig. 3, in this case only for a very large number of errors
a decision is made in favor ofH1. On the other hand when
fading is small (largeÂ), only a few errors per packet can be
attributed to fading. As a result, in this case even for a small
number of errors a decision is made in favor ofH1. This is
how the inclusion ofÂ in the decision statistic improves the
performance of spectrum monitoring over fading channels.

By defining the decision regions (Ω0 and Ω1), and from
(21), the probabilities of false alarm and detection in the case
of MRC are given by,

p(MRC)
f ,

∑

∫

(k,Â)∈Ω1

p(k, Â|H0) dÂ (24)

p(MRC)
d ,

∑

∫

(k,Â)∈Ω1

p(k, Â|H1) dÂ (25)

B. Equal Gain Combining

In equal gain combining we first co-phase the signals
on individual branches and then combine them with equal

Fig. 3. The decision regions forTMRC whenN = 256, L = 2, γ0 = 6
dB, γ1 = 0 dB, ρ0 = 0.95, ρ1 = 0.85, and (pf , pd) = (0.01, 0.73) and
(0.05, 0.86).

magnitude. Therefore in this case the combiner coefficients
are given byŵl = e−jθ̂l where θ̂l is the estimated phase of
the fading coefficient on branchl. Consequently, we define the
decision statistic by

TEGC =
p(k, f(θ̂)|H1)

p(k, f(θ̂)|H0)

H1

≷
H0

µ(EGC) (26)

where θ̂ , (θ̂1, θ̂2, · · · , θ̂L). Towards deriving the decision
statistic we consider the following joint distribution.

p(k, θ̂|Hη) = p(k|θ̂, Hη)p(θ̂|Hη) (27)

It is well known that the estimated channel phases
θ̂1, θ̂2, · · · , θ̂L are i.i.d. and uniformly distributed over[0, 2π),
Therefore,

p(θ̂|Hη) =

L
∏

l=1

p(θ̂l|Hη) = (
1

2π
)L,

0 ≤ θ̂l < 2π, for l = 1, 2, · · · , L. (28)

To evaluatep(k|θ̂, Hη) let

ζ ,
Re
(

∑L
l=1 hle

−jθ̂l
)

√
L

. (29)

Then by conditioning onζ, we get

p(k|θ̂, Hη) =

∞
∫

−∞

p(k|ζ, θ̂,Hη) p(ζ|θ̂, Hη) dζ

=

(

N

k

)

∞
∫

−∞

[P (E|ζ, θ̂,Hη)]
k [1− P (E|ζ, θ̂,Hη)]

N−k

× p(ζ|θ̂, Hη) dζ (30)

It is shown in [25] that,

P (E|ζ, θ̂,Hη) = Q(ζ
√

2γη) (31)
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which is independent of̂θ. Moreover, it is proven in Appendix
C that givenHη, ζ is independent of̂θ, i.e., p(ζ|θ̂, Hη) =
p(ζ|Hη). From this we conclude thatp(k|θ̂, Hη) = p(k|Hη).
Finally from (27), (28) we get,

p(k, θ̂|Hη) = p(k|Hη) (32)

So, the decision statistic in the case of EGC is then given by

TEGC =
p(k, f(θ̂)|H1)

p(k, f(θ̂)|H0)
=
p(k|H1)

p(k|H0)
(33)

This shows that, in the case of EGC, the estimated phases
cannot help us decide whether an increase in the REC at the
SU is due to fading or the emergence of the PU signal. In light
of (28), this result in fact makes intuitive sense. We conclude
that in the presence of fading, EGC diversity technique is not
a good option for spectrum monitoring in a fading channel.
This is also demonstrated by the simulation results in Section
IV.

C. Selection Combining

In selection combining, all the weighting coefficients are
zero except for the branch with the highest SNR for which
the coefficient is one. Therefore in this case the weighting co-
efficients do not provide any information about the emergence
of the primary user. In other words,

p({ŵl}Ll=1 | H0) = p({ŵl}Ll=1 | H1). (34)

Therefore in this case

TSC =
p(k, f({ŵl}Ll=1) | H1)

p(k, f({ŵl}Ll=1) | H0)
=
p(k | H1)

p(k | H0)
(35)

Similar to EGC, the CSI from SC combining method does
not enhance the performance of spectrum monitoring over the
REC alone.

Remark 2. We need to discuss the complexity associated
with the proposed spectrum monitoring method. As pointed
out in [18], receiver statistics such as REC are useful in
adaptive transmission protocols where modulation, codingor
transmit power may be adjusted in order to mitigate the effects
of time-varying channel and interference. If REC is already
being collected by the receiver, then no significant additional
hardware is required by the proposed method. If not, then the
receiver is required to implement the CRC check, the FEC
encoder and the hypothesis testing as shown in Fig. 1. The
hardware and computational complexity of CRC and the FEC
encoder is not very high particularly in comparison with the
complexity of the rest of the SU receiver including multiple
RF chains for diversity combining, the demodulator and the
decoder. Hypothesis testing requires the computation ofT in
(11) for which p(k, f(ŵ) | Hη), η = 0, 1, is needed. In the
case of MRC, we evaluate an accurate approximation for
p(k, f(ŵ) | Hη) in Appendix B which alleviates the need
for computation of integrals. In summary the incremental
complexity of the proposed method for the SU receiver is not
significant.

IV. N UMERICAL RESULTS

In this section we provide performance results from simu-
lation and analysis to asses the effectiveness of the proposed
spectrum monitoring methods. We should point out that our
goal here is to demonstrate the advantage of a hybrid spectrum
sensing/spectrum monitoring system over a system that uses
spectrum sensing alone. Therefore we are not concerned with
the specific spectrum sensing method that is being used
and only need to assume its probabilities of detection and
false alarm which, subsequently, are denoted byp̂d and p̂f ,
respectively.

Simulation results are obtained by running at least104 inde-
pendent trials, and analytical results of the proposed spectrum
monitoring for MRC is obtained using the approximation in
Appendix B. The length of the spectrum sensing interval is
identical to the length of a packet, and the transmitter uses
BPSK modulation with rate2 Mbps. In the simulations Jakes’
model [38] with the sum of sinusoids is used to model a flat
Rayleigh fading channel. In particular, we use16 sinusoids
for the Jakes’ model with the maximum Doppler frequency of
90 Hz (corresponding to a mobile speed of54 Km/h and the
carrier frequency of1.8 GHz).

Fig. 4 compares the ROC curve of the proposed decision
statistic for MRC (TMRC) to three other cases which use
diversity combining but make their SM decisions based only
on the REC alone. These three cases are MRC, EGC and SC
denoted byT (REC)

MRC , T (REC)
EGC , andT (REC)

SC , respectively. A remark
is in order here. Although the latter three cases use only REC
to detect the presence of the PU signal, their performance is
not identical as seen in Fig. 4. This is due to the fact that since
the combining techniques are different, the REC’s (under each
hypothesis) are also different in these three cases.

Fig. 4. Comparison from simulations betweenTMRC, T (REC)
MRC , T (REC)

EGC , and
T

(REC)
SC for N = 1024, γ0 = 2 dB, γ1 = −2 dB, ρ0 = 0.95, ρ1 = 0.85,

andL = 4.

As expected,TMRC outperforms the other three test statistics.
For example for probability of false alarmpf = 0.1, the
probability of detection forTMRC is .97 whereas it is below
.62 in the other cases. Due to the fact that the performance of
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T (REC)
MRC , T (REC)

EGC andT (REC)
SC are close to each other (see Figs. 2

and 4), in the following we only consider the decision statistic
T (REC)

MRC for our comparisons.
Channel utilization for the SUs and detection delay of

the PUs can be used to evaluate the efficacy of the hybrid
spectrum sensing/spectrum monitoring systems. As described
previously, channel utilization is defined as the average frac-
tion of time that under hypothesisH0 the SU communicates
over the channel. Detection delay is the average time it takes
to detect the presence of the primary user after it emerges in
the channel. Using Markov chain models in [19] we evaluated
channel utilization and detection delay for a hybrid spectrum
sensing/spectrum monitoring technique for AWGN channel.
For AWGN channels, the event of observingk errors is
independent from packet to packet, and so Markov models can
be employed. In contrast, in the case of fading channels, the
fading coefficients affecting consecutive packets are correlated
(in time). As a result the decision statistics are also correlated
and the Markov model is not applicable. We have not been
able to obtain closed form formulas for channel utilizationand
detection delay in the case of fading channels. The following
results are obtained from extensive simulations.

Figs. 5 and 6 show channel utilization and detection delay
of TMRC and T (REC)

MRC versus the detection probabilitypd of
spectrum monitoring for packet lengthN = 1024, number
of antennasL = 2, γ0 = 2 dB, γ1 = −2 dB, ρ0 = 0.95,
ρ1 = 0.85, and the probabilities of false alarm and detection
for the spectrum sensing method(p̂f , p̂d) = (.1, .9), for
different values ofKM .

Fig. 5. Channel utilization versus the probability of detection for TMRC
and T

(REC)
MRC , N = 1024, L = 2, γ0 = 2 dB, γ1 = −2 dB, ρ0 = 0.95,

ρ1 = 0.85, fm = 90Hz, (p̂f , p̂d) = (0.1, 0.9) andKM= 5, 10, 25, and 50.

Channel utilization is a decreasing function of false alarm
probabilitypf owing to the fact that the portion of time that the
SU has a chance to access the channel decreases withpf . Since
pd is an increasing function ofpf , channel utilization is also a
decreasing function ofpd. Channel utilization increases with
the duration of the spectrum monitoring interval (KM ). This
is due to the fact that, for a fixed spectrum sensing interval,
asKM increases, the fraction of time that the SU is able to

Fig. 6. Detection delay versus the probability of detectionfor TMRC and
T

(REC)
MRC , N = 1024, L = 2, γ0 = 2 dB,γ1 = −2 dB,ρ0 = 0.95, ρ1 = 0.85,

(p̂f , p̂d) = (0.1, 0.9) andfm = 90Hz.

transmit also increases resulting in increased throughputfor
the SU. However, increasingKM will also increase detection
delay. The reason is that for equal probabilities of false
alarm for spectrum monitoring and spectrum sensing, spectrum
sensing has a higher probability of detection. Since increasing
KM (for fixed spectrum sensing intervals) reduces the fraction
of time the SU spends in spectrum sensing, detection delay
increases withKM .

Figs. 5 and 6 also show thatTMRC significantly outperforms
T (REC)

MRC for the same value ofpd. One should note that, to obtain
the same value ofpd, T (REC)

MRC requires significantly higher SNR
thanTMRC as evident from the ROC curves in Fig. 4.

In Fig. 7 we plot channel utilization versus detection de-
lay pd for the hybrid spectrum sensing/spectrum monitoring
techniques usingTMRC and T (REC)

MRC for different values of
KM andL. The performance of the spectrum sensing alone
is also shown. It can be seen that the hybrid technique
significantly outperform spectrum sensing alone. As illustrated
by this figure, for any given channel utilization and fixed
KM , spectrum sensing is equivalent to the hybrid system
with pd = pf = 0, and has the maximum detection delay.
Moreover, the decision statisticTMRC, outperformsT (REC)

MRC . For
example forKM = 25, channel utilization of95% can be
achieved byTMRC andT (REC)

MRC resulting in detection delays of
1.5 and8.2 packets, respectively.

Fig. 8 shows the ROC curves forTMRC for different number
of branches,L. The simulation results are obtained for a SU
which uses one of two error-correcting codes. The first is a
rate1/2 convolutional code with the generator matrix[g(0) =
(716502)8 ; g(1) = (514576)8], [39]. The second code is a
(1023, 503) binary BCH code with rate503/1023 ≈ 1/2. We
also employed the CRC-8 code with the generator polynomial
x8+x7+x6+x4+x2+1. As the plots illustrate the simulation
results using actual coding schemes closely match the results
from analysis. Note that forL = 1, there is no diversity and
Â = |ĥ|. As L increases to2, the performance improves.
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Fig. 7. Channel utilization versus detection delay forTMRC and T
(REC)
MRC ,

N = 1024, L = 2, γ0 = 2 dB, γ1 = −2 dB, ρ0 = 0.95, ρ1 = 0.85,
(p̂f , p̂d) = (0.1, 0.9) andfm = 90Hz .

However, forL = 3 the performance starts to degrade and for
L = 10 the ROC is close to the chance line, i.e.pf = pd.
This behavior is due to the fact that asL increases the SNR at
the output of the combiner improves and the REC is reduced.
For very large values ofL the emergence of the PU does not
cause a significant change in the SNR or the REC. Therefore
in such cases it is difficult for the decision statistic to detect
the emergence of the PU. In Appendix D we present a method
for the judicious selection of the number of antennasL. For
the parameters in Fig. 8, (74) results inL̃ = 2.56 from which
we getLopt =

⌊

L̃
⌋

= 2. This matches the result in Fig. 8.

Fig. 8. ROC for the proposed decision statisticTMRC for N = 1024, γ0 = 6
dB, γ1 = 0 dB, ρ0 = 0.9 andρ1 = 0.8 for L = 1, 2, 3, 5, 10.

Fig. 9 shows detection delay versus channel utilization for
different number of branches andKM whenN = 256, γ0 = 4
dB, γ1 = −1 dB, ρ0 = 0.9 and ρ1 = 0.8. This figure also
shows that the performance improves fromL = 1 to L = 4

but it degrades asL increases to10. From (74) we get̃L = 3.2

andLopt =
⌈

L̃
⌉

= 4.

Fig. 9. Channel utilization versus detection delay forTMRC, N = 256, γ0 =
4 dB, γ1 = −1 dB, ρ0 = 0.9, ρ1 = 0.8, KM = 5, 10 andL = 1, 4, 10.

V. CONCLUSIONS

In this paper we investigate the problem of spectrum
monitoring over Rayleigh fading channels. It is assumed that
the secondary user is equipped with multiple antennas and
uses diversity combining to mitigate the effects of fading.We
consider maximal ratio combining, equal gain combining and
selection combining. It is shown that spectrum monitoring us-
ing REC alone is not as effective in the case of fading channels
as it is in the case of AWGN channels. Next we introduce
new decision statistics based on the REC and the combiner
coefficients for the three combining schemes. It is shown that
only in the case of MRC the combiner coefficients improve
the decision statistic over the REC alone. Numerical results are
presented to compare the performance of the hybrid spectrum
sensing/spectrum monitoring technique with spectrum sensing
alone. The results show that the proposed decision statistic sig-
nificantly outperforms the decision statistic using REC alone.
Moreover the hybrid spectrum sensing/spectrum monitoring
significantly outperforms spectrum sensing alone.

APPENDIX

A. Evaluation ofp(ψ|ĥ,Hη)

First let us findphR
l |ĥR

l
(x|y,Hη). We have

phR
l |ĥR

l
(x|y,Hη) =

pĥR
l |hR

l
(y|x,Hη)phR

l
(x)

pĥR
l
(y,Hη)

=
pℓRl (y − x|Hη)phR

l
(x)

pĥR
l
(y|Hη)

(36)

Note thathRl is independent of the hypothesisHη. It is
discussed in section II that,ℓl and hl are two independent
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zero-mean circular Gaussian random variables. Thus

hRl andhIl ∼ N (0, 1/2) (37)

ℓRl |Hη and ℓIl |Hη ∼ N (0, 1/2− ρ2η/2) (38)

ĥRl |Hη and ĥIl |Hη ∼ N (0, 1− ρ2η) (39)

By substituting (37), (38), and (39) into (36) and after some
manipulations one can show that,

hRl |ĥRl , Hη ∼ N
(

ĥRl
2− ρ2η

,
1− ρ2η

2(2− ρ2η)

)

(40)

Similarly the distribution ofhIl |ĥIl , Hη can be derived. From
(40) we can write,

ĥRl h
R
l

√

∑L
l=1 |ĥl|2

ĥl, Hη (41)

∼ N

















(ĥRl )
2

(2− ρ2η)(

√

√

√

√

L
∑

l=1

|ĥl|2)

,
(1− ρ2η)(ĥ

R
l )

2

2(2− ρ2η)(
L
∑

l=1

|ĥl|2)

















and in the same way, one can rewrite (41) for the imaginary
parts. Let us rewriteψ in (15) as,

ψ =
Re
(

∑L
l=1 hlĥ

∗
l

)

√

∑L
l=1 |ĥl|2

=

∑L
l=1

(

hRl ĥ
R
l + hIl ĥ

I
l

)

√

∑L
l=1 |ĥl|2

(42)

Then (41) and (42) imply that,

ψ|ĥ,Hη ∼ N





√

∑L
l=1 |ĥl|2

2− ρ2η
,

1− ρ2η
2(2− ρ2η)



 (43)

B. The approximation ofp(k, Â|Hη)

To make a decision on the hypothesis, the integral in (16)
should be evaluated and multiplied by (14) and (23).

For 0 < k < N , let us approximate,
(

N

k

)

Qk(x)(1−Q(x))N−k ≈ ae−
(x−m)2

2σ2 (44)

wherem, a andσ are the solutions of following equations,
(

N

k

)

Qk(x)(1−Q(x))N−k
∣

∣

x=m
= a (45)

(

N

k

)

Qk(x)(1−Q(x))N−k

∣

∣

∣

∣

x=m

= 0 (46)
(

N

k

)

Qk(x)(1−Q(x))N−k

∣

∣

∣

∣

x=m

= − a

σ2
(47)

Equations (45), (46) and (47) give

m = Q−1(
k

N
) (48)

a =

(

N

k

)

kk(N − k)N−k

NN
(49)

σ2 = 2π
k2

N2
(
1

k
− 1

N
) exp

(

(Q−1(
k

N
))2
)

(50)

whereQ−1 is inverseQ-function.
For casesk = 0 and k = N , the left hand-side of (44)

is equal to(1 −Q(x))N andQN (x), respectively, which are
approximated byU(x−m0) and1−U(x−mN ), respectively,
whereU(.) is the unit step-function, andm0 andmN are the
solutions of following equations,

(1−Q(x))N
∣

∣

x=m0
=

1

2
(51)

QN (x)
∣

∣

x=mN
=

1

2
(52)

This gives,

(1−Q(x))N ≈ U(x−Q−1(1− N
√

1/2)) (53)

QN (x) ≈ 1− U(x−Q−1( N
√

1/2)) (54)

By substituting (44), (53), and (54) into (19),p(k|ĥ,Hη) is
approximated by

p(k|ĥ,Hη) ≈ (55)






































1√
2πσ́2

η

∫ ∞

m0

e

−(ḿη−x)2

2σ́2
η dx, k = 0

a√
2πσ́2

η

∫ ∞

−∞
e
− (ḿη−x)2

2σ́2
η

− (m−x)2

2σ2
dx, 0 < k < N

1√
2πσ́2

η

∫ mN

−∞
e

−(ḿη−x)2

2σ́2
η dx, k = N

where ḿη ,
Â
√

2γη

2−ρ2
η

and σ́2
η , γη

1−ρ2
η

2−ρ2
η

. Approximation of

p(k|ĥ,Hη) in (55) is found by considering that,
∫ ∞

x

e−t
2/2 dt =

√
2π Q(x) (56)

∫ ∞

−∞
e−(b2t

2 + b1t+ b0) dt =

√

π

b2
e
b21−4b2b0

4b2 (57)

Finally by substituting the approximation ofp(k|ĥ,Hη)
into (12), p(k, Â|Hη) is approximated by (58). Comparision
between the simulation results and analysis results (see Fig.
8) shows the accuracy of this approximation.

p(k, Â|Hη) ≈ (58)














































Q

(

Q−1(1− N
√

1/2)−ḿη

σ́η

)

2Â(2L−1)e
−Â

2/(2−ρ2η)

(2−ρ2
η)

L(L−1)!
, k = 0

aσ́η√
σ2+σ́2

η

exp[
−(m−ḿη)

2

2(σ2+σ́2
η)

] 2Â
(2L−1)e

−Â
2/(2−ρ2η)

(2−ρ2
η)

L(L−1)!
, 0 < k < N

[

1−Q

(

Q−1( N
√

1/2)−ḿη

σ́η

)]

2Â(2L−1)e
−Â

2/(2−ρ2η)

(2−ρ2
η)

L(L−1)!
, k = N

C. Proof of Independence ofζ and θ̂

The goal is to provep(ζ|θ̂, Hη) = p(ζ|Hη). Let us rewrite

ζ =

L
∑

l=1

zl (59)
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where

zl ,
Re
(

hle
−jθ̂l

)

√
L

=
hRl cos θ̂l + hIl sin θ̂l√

L
(60)

Since {hl}Ll=1 are i.i.d. random variables, given̂θ and Hη

the distribution ofζ is the convolution of the distribution of
z1, z2, . . . , zl. Besides,

p(zl|θ̂l, Hη) =

∫ ∞

−∞
p(zl|θ̂l, α̂l, Hη) p(α̂l|θ̂l, Hη) dα̂l (61)

Sinceĥ is circularly symmetric Gaussian, its magnitude,α̂, is
Rayleigh distributed and is independent of its angle,θ̂. Thus

p(α̂l = x|θ̂l, Hη) = p(α̂l = x|Hη) =
2x

2− ρ2η
e
− x2

2−ρ2
η (62)

Moreover, from

hRl = α̂l cos θ̂l − ℓRl (63)

hIl = α̂l sin θ̂l − ℓIl ,

we get

hRl |α̂, θ̂, Hη ∼ N
(

α̂ cos θ̂

2− ρ2η
,

1− ρ2η
2(2− ρ2η)

)

(64)

hIl |α̂, θ̂, Hη ∼ N
(

α̂ sin θ̂

2− ρ2η
,

1− ρ2η
2(2− ρ2η)

)

,

which implies that,

zl|θ̂l, α̂l, Hη ∼ N
(

α̂l√
L(2− ρ2η)

,
1− ρ2η

2L(2− ρ2η)

)

. (65)

It can be seen that for any given̂θ the last distribution
is Gaussian with mean and variance which are independent
of θ̂. Substituting (62) and (65) into (61) and after some
manipulations we get

pzl|θ̂l(x|y,Hη) = pzl(x|Hη) (66)

=
1

√

π
2−ρ2

η

1−ρ2
η

e

−x2(2−ρ2η)

1−ρ2η +
2xe−x2

√

2− ρ2η

Q

(

−
√

2x2

1− ρ2η

)

Finally,

p(ζ|θ̂, Hη) = pz1(.|Hη)⊗ pz2(.|Hη)⊗ · · · ⊗ pzL(.|Hη)

= p(ζ|Hη) (67)

where⊗ is convolution. The last equation implies that given
Hη, ζ and θ̂ are independent.

D. Optimum Number of Diversity Branches in MRC

In this appendix we derive the optimal number of diversity
branches for spectrum monitoring for the MRC receiver. It is
clear that the efficacy of the proposed method relies on the
statistics of the REC in the presence or absence of the PU.
In particular, the performance of the algorithm improves if
the emergence of the primary user causes a higher number

of errors in each packet. Therefore we choose the number of
diversity branches so as to maximize the difference between
the average symbol error probabilities underH1 andH0. More
specifically let

Lopt = argmax
L

D(L) (68)

where D(L) , p̄1(L) − p̄0(L), and wherep̄η(L) for η =
0, 1 is the average (with respect to the channel coefficients)
symbol error probability underHη. Using the boundQ(x) ≤
1/2e−x2/2 we have,

p̄η(L) =

∫ ∞

0

Q

(
√

2γ(eff)
η x2

)

2e−x2

x2L−1

(L− 1)!
dx (69)

≤ 1

(L− 1)!

∫ ∞

0

e−γ(eff)
η x2

e−x2

x2L−1dx

=
1

(L− 1)!

∫ ∞

0

x2L−1 exp
(

−(1 + γ(eff)
η )x2

)

dx

Note that, [40],
∫ ∞

0

xm exp(−βxn)dx =
Γ(m+1

n )

nβ
m+1

n

(70)

Thus we get

p̄η(L) ≤
1

(L− 1)!

Γ(L)

2(1 + γ(eff)
η )

L
=

1

2
(1 + γ(eff)

η )
−L
. (71)

Using the upper bound in (71) we get an approximation for
D(L). Assuming this approximation to be exact we get

D(L) =
1

2

(

(1 + γ(eff)
1 )

−L − (1 + γ(eff)
0 )

−L
)

(72)

TreatingL as a continuous variable, the derivative ofD with
respect toL is given by

∂D

∂L
=
1

2

(

−(1 + γ(eff)
1 )

−L
log (1 + γ(eff)

1 )

+(1 + γ(eff)
0 )

−L
log (1 + γ(eff)

0 )
)

(73)

Setting the derivative to zero and solving forL we get

L̃ = log

(

log (1 + γ(eff)
0 )

log (1 + γ(eff)
1 )

)

/

log

(

1 + γ(eff)
0

1 + γ(eff)
1

)

(74)

Therefore,Lopt is obtained as either
⌊

L̃
⌋

or
⌈

L̃
⌉

.
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