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Abstract—In-band spectrum sensing in overlay cognitive radio to determine whether a given frequency band is vacant of the
networks requires that the secondary users (SU) periodically Py signal [7]—[9]'. Since during their own communication the
suspend their communication in order to determine whether the SUs do not sense the channel, they must periodically suspend

primary user (PU) has started to utilize the channel. In contrast, their t L dent ; iod to date
in spectrum monitoring the SU can detect the emergence of the €Ir transmission and enter a sensing period so as to aagerm

PU from its own receiver statistics such as receiver error count Whether the PU has emerged or not. In order to protect
(REC). Previously it is shown that in AWGN channels, a hy- the PU against undue interference from the SUs, stringent
brid spectrum sensing/spectrum monitoring system significantly requirements are imposed on the detection probability and
improves channel utilization of the SUs and detection delay of maximum detection delay of the SS algorithm (see for example

the PUs. In this paper we investigate the problem of spectrum . . - .
monitoring in the presence of fading where the SU employs [11]). Detection probability can be improved by increasing

diversity combining to mitigate the channel fading effects. We duration of the sensing periods and detection delay can be
show that a decision statistic based on the REC alone does notreduced by decreasing the duration of the SU’s transmission

provide a good performance. Next we introduce new decision periods. Both approaches, however, result in reduced grou
statistics based on the REC and the combiner coefficients. It put in the secondary network.

is shown that the new decision statistic achieves significant
improvement in the case of maximal ratio combining (MRC). There is an intricate tradeoff between protection of the PU
However, for equal gain combining and selection combining anq the quality of service (QoS) of the SU, referred to as

the inclusion of combiner coefficients does not improve the o ; )
performance over REC alone. In the case of MRC we evaluate sensing-throughput tradeoff in [12]. In [13], Taegal. evalu

the receiver operating characteristics from analysis and compar ~ at€ the effect of PU traffic on the SU throughput. In [14], Akin

the results with those from simulations using a BCH code as well et al. assume statistical QoS and maximize the throughput for

as a convolutional code. The results show a close match betweerthe SU. To improve the SU’s throughput, adaptive scheduling

delay are evaluated from simulations which show that with . ; .

MRC and the proposed decision statistic, the hybrid spectrum |nve_)st|gated in [15] E.md [16]. These approaches, however,_a
mainly concerned with spectrum sensing and do not consider

sensing/spectrum monitoring system significantly outperforms N ! ! ! 1oL
spectrum sensing alone. the possibility of sensing while the SU is communicating.

Index Terms—Spectrum sensing, spectrum monitoring, chan- It is clear that during the SU’s transmissions, the emergenc
nel utilization, detection delay, fading channel, diversity combin- of the PU increases the interference experienced by the SU.
ing. This in turn causes a drop in the SU’s signal-to-noise (plus
interference) ratio (SNR) and it may increase the number of
errors in the SU packets. Therefore, while communicating,

. o . the SU may attempt to detect the emergence of the PU by
Vehicular networks are expected to significantly Improvg,qnitoring the changes in the receiver's SNR or the number

safety and convenience of transportation systems andatetig ¢ orrors in each received packet. Using this idea, in [178] [
traffic congestion by improving road traffic flow. DynamiCgqyq et al. introduced spectrum monitoring (SM) in which
spectrum access (DSA) has been proposed for vehicular gds sy yilizes its receiver statistics to detect the enmezge
hoc networks (VANET) to allow access to licensed Spectigf the py during the SU's own communication. In [19] we
bands such as v V‘,’,h'te spaces [1]-[5]. In particular, igronosed a decision statistic for SM based on the receiver
the European “DRIVE" project, DSA is the main focus folgror count (REC) and the output of a cyclic redundancy

spectrum allocation in heterogeneous networks [6]. check (CRC) code and show that for AWGN channels the
DSA allows unlicensed secondary users (SU) to utilize the

licensed spectral bands that are not in use by the incumbent
primary users (PU). Cognitive radio (CR), viewed as the

enabling technology for DSA, relies on spectrum sensing (SSiwe should point out that this approach is referred to as aye@R. In
contrast, in underlay CR the SU can always access the lidesgectrum
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provided it can regulate its transmit power so as not to caumenfal
interference to the PU. Overlay CR is considered to be moretipe since,
in contrast to underlay CR, it does not require instantaséoformation on
the interference channel [10].

2REC denotes the number of errors observed in a received paokeis
more carefully defined in Section II-A.



proposed algorithm significantly improves the througBmft an SMI after the transmission of (at most),; packets and
the SU subject to a maximum PU detection delay. starts a new SSI.

Using receiver statistics to detect the emergence of the PULet H,, denote the hypothesis of interest where- 0 and1
would be effective provided that the changes are mainly daerrespond to the absence and the presence of the PU signal,
to the emergence of the PU (e.g., in the case of AWGId¢spectively. We assume that the SU receiver is equippdd wit
channels). However, this approach may not be effectiveen th, > 1 identical antenna branches and that, as in [25], the
presence of fading in the secondary channel as the chanbesnches experience identically distributed, uncoreelefat
in the receiver statistics may be due to the variations of tifeding. Thenth received symbol at th&h branch of the SU
channel rather than the interference from the PU signahit tunder ,, is given by,
paper we investigate the problem of spectrum monitoring in
the case that the secondary channel experiences flat Rayleig’™ — Snhi & O 0 L =12, Lin = 1,2, (1)
fading. We first show that approaches which are based where {s,} is the sequence of SU’s transmitted symbols,
the REC alone do not perform well. Next we consider thgy, .}~ | denoteL independent, identically distributed (i.i.d.)
use of a multi-antenna system to improve the performanciecularly symmetric Gaussian noise processes with zermmnme
of spectrum monitoring. Multi-antenna systems in conjiorct and variance,, and fork # [, {vy ,,} and{v; ,} are indepen-
with diversity combining have been widely used in wirelesgent, and{«, ,, } denotes the sequence of primary user symbols
communication to combat the deleterious effects of chanratltheith branch of the SU receiver. We assume that the PU
fading. Recently, multi-antenna systems have also been psgmbols{w; ,,} have undergone independent flat fading which
posed for SS where it is shown that they can significantly not explicitly shown but is included in the symbdls; ,, }.
improve the performance of SS techniques [20]-{24]. Weinally, {i;}/,, which denote the (secondary) channel fading
assume that the SU uses a multi-antenna system along with ooefficients, are i.i.d. circularly symmetric Gaussiandam
of three diversity combining techniques, namely maximtbra variables with mean zero and variangei.e., h; ~ CN (0, 1).
combining (MRC), equal gain combining (EGC), or selectiveet a; £ |h;| and letd; £ Zh;.
combining (SC). We introduce a new decision statistic basedwe assume linear combining in the SU receiver where the
on the REC, a CRC code and the combiner statistics. Thetput of the combiner is given by,
performance of this new decision statistic is evaluateeims L
of detection and false alarm probabilities, channel wtlan ry 2 Zwm . )
and detection delay. We also simulate the proposed system P ’
using two forward error correcting codes, namely a BCH code

and a convolutional code. It is shown that the results froeseh 29 Wherew, [ =1,2,--, L are the combiner weighting
: ) : . coefficients which are determined by the diversity comignin
simulations are closely matched with those from analysis.

The rest of this paper is organized as follows. The systetr%Chnlque [26]. Table 1 shows the values wf for the three

model and problem formulation are presented in Section ﬁgmbmmg techniques MRC, EGC, and SC.

The decision statistic using REC, CRC and combiner stedisti o o

is introduced and analyzed in Section Ill. Numerical resulf- Decision Statistic

are presented in Sections IV and conclusions are drawn inAt the SU transmitter the information sequence is first

Section V. encoded using a CRC code (for error detection) followed by

a forward error correction (FEC) scheme to obtain/ésbit

packet. A block diagram of the receiver is shown in Fig. 1

(with the switchS open for now) where the received packet
The SU starts with a spectrum sensing interval (SSI) & demodulated and decoded. The decoded packet is then

duration7s during which it senses the channel. If at the enchecked by the CRC and also encoded using a replica of the

of an SSI the channel is found to be occupied, another Sfdnsmitter's encoder. The encoder output is comparedédo th

begind and this continues until the SU finds the channel toutput of the demodulatdrto calculate the number of errors

be vacant. At this time a spectrum monitoring interval (SMhjeferred to as REC and denoteddin the following. Note that

begins during which the SU transmits a maximumf; the actual number of errors in a packet, subsequently denote

packets. After the reception of each packet the SU compuigsk, is not always available in the receiver. In particular, whe

a decision statistic (described below) in order to detecitir the packet is not decoded correctly, thegt &k and therefore

the PU has emerged in the in-band channel. If it is decided thie value ofk is unknown to the receiver. However, if the

the PU has emerged, the SU terminates the SMI and entpagket is decoded correctly, thén= e.

the spectrum sensing phase. Otherwise the channel is deerg%d , L
to be vacant and the SU continues its packet transmission. mark 1. In today’s communication systems FEC and CRC

allow for periodic sensing of the channel the SU terminat € in widespread use to combat channel errors and to vgrlfy
whether the packet is correctly decoded or not, respegtivel
3n this paper we have used the notions thfoughput and channel [27]. There_fore there is no loss of throughput due to FEC if it
utilization interchangeably to refer to the average fraction of time that iS already in use by the SU; moreover, the throughput loss due
SU is able to use the channel when the PU is absent.

“We should point out that the results presented here will hanhge if the 51f the decoder uses soft decision, then hard decision musetfermed
SU moves to another channel once it finds the current chanihel tecupied. on the demodulator output before comparison with the encedertput.

Il. SYSTEM MODEL AND PROBLEM FORMULATION



TABLE |
COMBINER-WEIGHTS, INSTANTANEOUS SNR,AND ITS DISTRIBUTION FORMAXIMAL RATIO COMBINING (MRC), EQUAL GAIN COMBINING (EGC)
AND SELECTION COMBINING (SC) TECHNIQUES IN THE TABLE, 3, ,, IS THE AVERAGE SNR OF THE RECEIVED SIGNAL PER BRANCH UNDER{,, AND

551) IS THE ENERGY OF THE RECEIVED PACKET FOR THE'™ BRANCH.

Diversity wy Py, () Tn
* , — 'y_m l
MRC h; gt Ve S
EGC et L=2: 5 oemn —ymen | () an)® g
1 _ T L
2\/Tb,n ’Yl?nr
X (1 —2Q\/2% /b ),
(1) (k)
sC 1 &7 >&Y VE#I L _e,m/%,n)(L—l)
0 otherwise oo
xe =%/ bm max {77(,1), o ,%(,L)}
{ > packet. Consequently the SMI may be terminated when PU
1

is not present (resulting in loss of channel utilization foe
i SU) or it may be continued when PU is present (resulting
Validatc ] 0 for C, in increased detection delay). It is shown in [28] that for
CRC large packets (e.gV > 100) the probability of failure for an
L—bit CRC is approximatel2—%. (Thus for the commonly
used CRCs such as CCITT-16, CRC-32-Castagnoli and CRC-

Demodulator
FEC Decoder

€ Caulate L FEC 32-IEEE [29]-[31], the probability of CRC failure is around
(7o ] 1.5 x 1()—_5 and2.3 x 10—10,_respectively.) It is shown in [19]
o h that the increase in detection delay due to the CRC failure is
Combiner B | o for ) less thar2 =% x T,, seconds and the loss in channel utilization
Statisties T?ﬂ“ for the SU is less thad ™" x 7——z=~7 < 27%, whereT,, is
S the packet transmission time. In I|ght of this, in the follmy
we ignore the event of a decoder failure followed by a CRC

Fig. 1. Proposed model using demodulator statistics and canbtatistics. failure

If C, occurs, then the received packet is not correctly
decoded (decoder failure). S6,, implies thatk > #FE) >
1®REC)On the other hand (ignoring the event that the decoder
and the CRC both fail);, implies that the packet is correctly
Denote byCy andCy, the events that the CRC is validatedjecoded. Thus from (3) we get
and not validated, respectively. The decision statistiSl

to the addition of CRC is very small considering the numb
of CRC bits compared to the length of a packet.

is defined by, P (({e > H(REC)} N Cv) U Cnv) (4)
[(REC) o ({e > uREOYNC,) UCH, DecideH; 3) =p(({k > 1®EN ne) U ({k > 1FEN NC))
~ | Otherwise Decide H,, =p({k > M(REC)})

where R=9) is the REC threshold which is chosen not tq-
exceedt(FC), the maximum number of errors in a packet that
the FEC is able to correct. The decision statistic in (3)daths
the emergence of the PU if the CRC is not validated, or if the
CRC is validated and the RE€exceeds the thresho}dRE©),

As (3) indicates, the decision statistic in not a functiortrif  The probabilities of false alarm and detection in SMI areegiv

herefore, (3) is equivalent to,

Hy
T(REC) _ . 5 REC) )
0

actual number of error. by p; = p({k > u®ES} | Hy) andpy = p({k > pREC} |
If the packet is decoded correctly, then the CRC will{;), respectively.
correctly identify this eventd,) and in this cases = k. It is shown in [23] that, if the modulation scheme of

On the other hand if the decoder fails, then either the CRfie PU is a constant modulus scheme such as MPSK, then
will identify this event (C.,) or the CRC fails to identify after undergoing Rayleigh fading, the received PU sequence

the decoder failure). In the former case the SMI will {v;,}, for I = 1,2,---,L are ii.d. zero-mean circularly

be terminated. However, in the latter case when the paclkgimmetric complex Gaussian (CSCG) random processes. This
is not decoded correctly and the CRC also fails to identifynodel is also accurate if the PU uses orthogonal frequency
this event, the proposed SM scheme may fail for the curredivision multiplexing (OFDM) [22]. For other modulation



schemes with a large constellation this assumption is apprahe estimated channel coefficients and their actual values.
imately true [23], [32]. Therefore we modél ,, } as a zero- general, channel estimation error is caused by two distinct
mean CSCG random process with variarGe This model channel impairments [35]. One is due to the decorrelation
is assumed merely to make the analysis tractable and tifethe pilots from the signal due to distinct distortions ttha
proposed decision statistic does not depend on this asearmptthe channel imparts on them because of their separation in
Other articles using this model include [12] and [33]. time or frequency. The second is due to noise. It can be seen
From the SU receiver point of view, the PU signal duringhat the first phenomenon affects the channel estimationein t
SMI is an additive noise. So the SNR for brancbnderd,, same manner whether the PU is presefi{)(or not (Hy).
is given by, The estimation error due to noise, however, will be différen
Iha|2E as the SU experiences more noise when PU is present due to
g ﬁ (6) the interference from the PU signal.

v T u Denote byh; = &;e/% the estimated channel coefficient
where&, is the energy of the SU transmitted signal. Note thaborresponding to;. As in [25] we assume that the channel
for a given packet this SNR is fixed. estimation errors, defined by £ h, — h;, are independent of

In the SU receiver, the signals from different branches atiee channel coefficients;, and that{&}le are independent
combined. Lety,,n = 0,1, denote the SNR at the outputand identically distributed (i.i.d.) circularly symmetrcom-
of the combiner and let., (z) denotes its probability density plex Gaussian random variables. Given the hypothéajs
function. Table | shows;, andp., (z) for different combining the complex correlation coefficient, betweenh; and i, and

techniques [34]. To find the number of bits in error in a pack@s magnitude denoted by, are defined by
of length N, we assume that the SU uses BPSK modulation. -
E[hlhl ‘Hn]

(>

The results can be extended to other modulation scheme in i = 9717% +jQ£ (8)
an straightforward manner by substituting the probabitity \/E[|hl|2]E[|iLl‘2‘H77]

bit error corresponding to the modulation of interest. The 9 A ) o o

probability of £ errors in a packet of lengtdv under H,, Py = lonl” = ()" + ()", n=0,1.

can now be written as where here and subsequently, superscriptand I represent

_ the real and imaginary parts, respectively. From the assump
pk(km")oo_ By, i (Kl v, Hy)) tions on{h}}~, and{/}%-, we conclude that the estimated
- / <N>pb(x)k(l —pb(x))N’kp% (z) dz  (7) chann(_el coef‘ficient{;hl]_»f:1 are also i.i.d_. _circularly symmetric
0 k Gaussian random variables and conditionedrhn
wherep,(v,) is the bit error probability for SNRy,. hy|H,) ~ CN(0,2 — p2) for 1=1,2,---, L, (9)

Fig. 2 shows the receiver operating characteristic (ROC) ) N
curves f, vs. py) obtained from analysis as described aboW¥here by X|A ~ CN(m,o") we denote the conditional
as well as from simulation for three cases of MRC, EGC arflistribution 20f X given A. Finally we have vet|H,) =
SC. The average SNR per branch undgy and H, is fixed Va(h)(1—pp). S _
and equal t@ dB and0.6 dB, respectively. In the case of EGC In the case of imperfect channel estimation, it is shown in
and for L > 2 branchesp,, (x) cannot be written in closed [_25] that the probability of observing a_bit i.n error is ider]-
form [34]. Therefore, the performance is only evaluatedrfro fic@ to(eg;eA CaZGQOf perfect channzel estimation with effecti
simulations. For comparison we also show the ROC curves foNR 7 = (€)™ /(1 + (1 — p;)). Consequently, when
the decision statistic in (3) over AWGN channel and for th@€ighting coefficients are not perfectly estimated, theigrer
same SNR values. As Fig. 2 shows, whil€REO) is effective Mance of the proposed decision statistic will be equivalent
in detecting the emergence of the PU in AWGN channeldiat of a system with a lower SNR.
in the case of fading channels its performance deteriorateﬁI
significantly. This degradation is expected and is due to the
fact that7(REC) cannot determine whether an increase in the _ _ _ .
number of errors in a packet is due to the interference fram th W& saw in the previous section that the REC is not a
PU signal or is caused by channel fading. This result impli@90d indicator of the presence or absence of the PU signal.
that for fading channels, using the REC alone as a testtitatid nerefore, in our decision statistic we would like to augimen

may not provide acceptable performance even when diverdfyg REC with the channel state information (CSI) that is
techniques are used. Hence, alternative decision statiate available in the SU receiver in the form of the combiner coef-

needed. ficients. To emphasize the fact that the combiner coeffisient
are obtained from an estimate of the CSI (rather than thetexac
values), in the following we denote the combiner coefficgent
by @w;,l = 1,2,--- L and letw = (wy,ws,- - ,ws). We
The probability in (7) is derived assuming that the comdefine a new decision statistic as follows.

D ECISION STATISTICS USING ERRORCOUNTS AND
COMBINER COEFFICIENTS

B. Channel Estimation

biner weighting coefficientsv;,l = 1,2,--- | L are derived ({p(e F(W)|Hy) } ) :

J ) ) 4y ) o e L2l >
from precise knowledge of the channel coefficiehisl = T = { ple,f(w)|Ho) = pyNC) UG, Dec?deHl
1,2,---,L. However, in practice the channel coefficients Otherwise Decide Ho

have to be estimated and there is always an error between (10)
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Fig. 2. Comparison between the performance/8§tc©) in AWGN channel and fading channel for different number of angs, L, and different dlver5|ty
techniques forV = 1024, v, o = 2 dB andv;,; = 0.6 dB and BPSK signaling. (a): Maximal Ratio Comblnlr@&REc) (b): Equal Gain ComblnlngTEGC
(c): Selection Combiningl‘éFéEC).

where f(w) is a function of the combiner coefficients to beThen,

determined for each diversity scheme. Fig. 1 (with the dwitc 0o

S closed) shows the proposed model. Similar to the approach, .15 f7 ) — / Ll b H B Hd
from (3) to (5), one can show tifawhen tFEC) > bl ;) p(R[Y, by Hy)p(l, Hy)dy

. T IN . . B
_ plkf(%) | ) ay = (V) e@ebmyrn - e b
(k f ) | HO) Hyg oo
While the receiver implements the decision rule in (10), for X p(w|ﬁn,Hn) dy (16)
our analysis an in order to determine the functjdn) for each . , , o .
combining method, we consider (11) in the following. where P(E|y, h, Hy) is the bit error probability given), h
and H,, and is given by, [25]

A. Maximal Ratio Combining P(EJ, b, Hy) = Q (¥1/27,) 17)

It is well known that MRC is the optimum diversity tech-Moreover, it is shown in Appendix A that,

nigue in the sense of maximizing the output SNR of the T
combiner [36]. In the case of imperfect channel estimation, Ol Hy ~ N V2l [l? 1- P%

the combiner coefficients are given kiy = ;. To evaluate = 2-p2 7 22-p2) (18)
the decision statistic in (11), we first find the joint probipi
of observmgk errors and an estimated channel fading vect®y substituting (17) and (18) into (16), we get,
= (hl,h2,~ hL) given H,, i.e., 0o
N . N 7 _ N\ Ak _ N—k
p(k, h|H,) = p(klh, H,)p(h|H,) (1) Plklh Hy) = / (k)Q (v/2m) (1 = Q(¥/27))
We have (/\ —(2- P?,W)Q
. Lo . 1 S A=p2)2-p2
p(hiHy) = [ (il )p(hd 1), (13) e Lom@=em) ay a9
=1 n
. <2 - p?,)
From (9) and the fact thdt;’s are i.i.d., we get
R where
' 1 S il
p(h|H,) = —————Fexp | =5 | (14) L.
T fen(1 - p2/2)]" 201 =p3/2) S lhul2. (20)
. 1=1
To find p(k|h, Hy), let .
Substituting (14), (19), and (20) into (12), we gk, h|H,).
Re(Zle hlﬁ;) From (14) and (19) it is evident that(k, h|H,) depends
¥ = = (15) only on A and not the values of individud;’s. All combi-
\/ 2=y [l nations of the estimated channel coefficiehts s, - - - , hz

which result in the same value fot are observed W|th equal
8ignoring the event that the decoder and the CRC both fail. probability at the SU. Consequently, in the case of MRC,



instead of(k, h) it is sufficient to use the paifk, A) in the |5 0
decision statistic. Thus we lef(w) = A and define our 1

decision statistic by
100F

A p(k’w‘l \ Hl) Iil (MRC)
p(k, A| Ho) 1,

where pMRC) < +FEC) s the threshold in the case of €

MRC. Analysis of this rule requirep(k,.A|H,,) which can

be obtained frornp(k:,ﬁ|H,7). From (14) and (19) we see

that p(k, h|H,) depends only or|i||. Letting =, (k, ||A||) £ a0f

p(k,ﬁlHn) we get

p(kv A|H77) =

Tvrc (21)

80F

60F

[1]

o (ky A)Sar (A) (22) 20f

where

1.6 2

n/2
2m n—1

Sp(r) = ———r
. . . Fig. 3. The decision regions féfyrc Wwhen N = 256, L = 2, v = 6
is the surface area of the-dimensional hyper-sphere ofqg, 4, = 0 dB, po = 0.95, p1 = 0.85, and (ps, pa) = (0.01,0.73) and

radius r [37]. Evaluation of (22) requires the computatiori0.05,0.86).
of the integral in (19). In Appendix B an approximation for
k, A|H,) is derived in closed form which does not involve . . . . -
gfw’ iﬁegnr;tion The accuracy of this approximation is fili magnitude. Therefore in this case the combiner coefficients
. . ~ _ _;9 o . .
by comparing in Section IV the performance results frofj'© 9Iven by =€ 7% where, is the estimated ph.ase of
analysis (using this approximation) with simulation résul the _fa_dlng co_eff_|C|ent on brandh Consequently, we define the
For an intuitive explanation of the proposed decision ruf€cision statistic by
in (21), consider the 2D space ef € N, 0 < e < N,
and A € R™ which is split into two decision regions) Teen — P > €c0) (26)
and ; associated withH, and Hq, respe_c_tively. Fig. 3 EGC p(k’f(é)u{o) §0
demonstrates two examples of these decision regions when . = . . R . "
~o =6 dB, v = 0 dB, py = 0.95, p1 — 0.85, N = 256 and where = (01,6,,---,61). Towards deriving the decision
L = 2 antennas are employed in the MRC combiner. The tv\%atistic we consider the following joint distribution.

decision boundaries are plotted for the false alarm prditiabi p(k, 0| H,) = p(k|0, H,)p(0] H,) (27)
of py = 0.01 and 0.05 and the corresponding detection . ,
probabilities, p; — 0.73 and 0.86, respectively. In each casell IS Well known that the estimated channel phases
the area under the curve shodl)y and the area above the91’92’ -, 0 areiid. and uniformly distributed oves, 27),
curve shows(2;. Note that when the SU experiences |arg'e[herefore,

fades (smalld), it expects to observe a large number of errors R Lo 1
per packet due to fading alone. Therefore, as demonstrated i p(0|Hy) = Hp(al\Hn) = (g)Lv
Fig. 3, in this case only for a very large number of errors =1
a decision is made in favor aff;. On the other hand when 0
fading is small (larged), only a few errors per packet can beT

<0
i i . o evaluatep(k|d, H,) let
attributed to fading. As a result, in this case even for a bmal ep(k|0, Hy)

(23)

p(k, f(O)|H) H:

<2m, forli=1,2,--- L. (28)

number of errors a decision is made in favoriéf. This is Re (EzL:1 hle_jél)
how the inclusion ofA4 in the decision statistic improves the C& (29)
performance of spectrum monitoring over fading channels. o VL
By defining the decision region€)¢ and ), and from Then by conditioning org, we get

(21), the probabilities of false alarm and detection in thsec 0o
of MRC are given by, (10, Hy) = [ p(KC.0.Hy) p(c16. H,) d¢

(MRC) & / i i —o0

p = p(k, AlHo) dA (24)
I Z (k,A)e

N 70 j k 5 N—k
. . = P(E|(,0,H 1-P(E|IC,0,H
e [ eamad @9 (’“)m (PUBIGB, Hy ) 1~ PUEIG,. Hy)
J(k,A)en, N
. - x p(Cl0, Hy) d¢ (30)
B. Equal Gain Combining it is shown in [25] that,

In equal gain combining we first co-phase the signals .
on individual branches and then combine them with equal P(E|C,0, Hy) = Q(C/27m) (31)



which is independent of. Moreover, it is proven in Appendix IV. NUMERICAL RESULTS
C that givenH,, ¢ is independent ob, i.e., p(C|0, H,) =
p(C|H,). From this we conclude that(k|d, H,) = p(k|H,).
Finally from (27), (28) we get,

In this section we provide performance results from simu-
lation and analysis to asses the effectiveness of the pedpos
spectrum monitoring methods. We should point out that our

ok, élHn) = p(k|H,) (32) goal here is to demonstrate the advantage of a hybrid spectru
- sensing/spectrum monitoring system over a system that uses
So, the decision statistic in the case of EGC is then given Bpectrum sensing alone. Therefore we are not concerned with
R the specific spectrum sensing method that is being used
p(k, f(O)|Hy) _ p(k|H)) (33) and only need to assume its probabilities of detection and
p(k, f(0)|Ho)  p(k[Ho) false alarm which, subsequently, are denotedppyand py,

. . . respectively.
This shows that, in the case of EGC, the estimated phase imulation results are obtained by running at leagtinde-

cannot help us decide whether an increase in the REC at hh . .
SU is due to fading or the emergence of the PU signal. In lig ?%dent trials, and analytical resilts of the proposedteprec

of (28), this result in fact makes intuitive sense. We codelu fmonitoring for MRC is obtained using the approximation in

that in the presence of fading, EGC diversity technique is néppendm B. The length of the spectrum sensing interval is

X A . Identical to the length of a packet, and the transmitter uses
a good option for spectrum monitoring in a fading chann PSK modulation with rat€ Mbps. In the simulations Jakes’
This is also demonstrated by the simulation results in 8ecti )

Y model [38] with the sum of sinusoids is used to model a flat
: Rayleigh fading channel. In particular, we u$é sinusoids
for the Jakes’ model with the maximum Doppler frequency of
C. Selection Combining 90 Hz (corresponding to a mobile speedfaf Km/h and the
In selection combining, all the weighting coefficients argarrier frequency of.8 GHz).
' Fig. 4 compares the ROC curve of the proposed decision

zero except for the branch with the highest SNR for Whlcgtatistic for MRC {yrc) to three other cases which use

B elre I I case e 0120 sty combining Dt ke thtr SH deciions based oy
. P y 8 on the REC alone. These three cases are MRC, EGC and SC
of the primary user. In other words,

denoted byl;{RES), TREC) and TRE®), respectively. A remark

p({an}, | Ho) = p({an} 2, | Hy). (34) s inorder here. Although the latter three cases use only REC
- - to detect the presence of the PU signal, their performance is
Therefore in this case not identical as seen in Fig. 4. This is due to the fact thatesin
k, o e VI H ElH the combining techniques are different, the REC’s (undehea
sc= plk, flinbicy) | Hh) _ p(k | By (35) hypothesis) are also different in these three cases.

~ p(k, f({dny ) [ Ho) — p(k | Ho)

Similar to EGC, the CSI from SC combining method does 1 T To—
not enhance the performance of spectrum monitoring overth g9

REC alone.
0.8 /

Remark 2. We need to discuss the complexity associatec . .
with the proposed spectrum monitoring method. As pointe(% X e it
out in [18], receiver statistics such as REC are useful in £ 06 g =
adaptive transmission protocols where modulation, coding >
transmit power may be adjusted in order to mitigate the &ffec
of time-varying channel and interference. If REC is already < 0. P
being collected by the receiver, then no significant addélo 0 3 5 o7
hardware is required by the proposed method. If not, then the Dgﬂéa - T’\(AI?ECC)

receiver is required to implement the CRC check, the FEC 0~%§§? MRC 1

0.1

0.

ility of D

y—-Onu‘
52 3}\‘1‘
X

Prob

wre TREC)
" Teac

encoder and the hypothesis testing as shown in Fig. 1. Th e
or®

hardware and computational complexity of CRC and the FEC 5
encoder is not very high particularly in comparison with the 0.02 0.04 006 008 0.1 012 014 016 0.18 02
complexity of the rest of the SU receiver including multiple Probability of False Alarm
Eecona Eopneas s wmen e oo " Coreonfon s e, 159 159

n D : ) T for N = 1024, 40 = 2 dB, 1 = —2 dB, po = 0.95, p1 = 0.85,
(11) for which p(k, f(W) | H,), n = 0,1, is needed. In the andr, — 4.
case of MRC, we evaluate an accurate approximation for
p(k, f(W) | H,) in Appendix B which alleviates the need As expected]urc outperforms the other three test statistics.
for computation of integrals. In summary the incrementdtor example for probability of false alarm; = 0.1, the
complexity of the proposed method for the SU receiver is rnaobability of detection forliyrc is .97 whereas it is below
significant. .62 in the other cases. Due to the fact that the performance of




TR, TRES) and TRED are close to each other (see Figs. 2 T(R?EC)

and 4), in the following we only consider the decision statis 30 MRC T e
T,REC) for our comparisons. e
Channel utilization for the SUs and detection delay ofgz5
the PUs can be used to evaluate the efficacy of the hybri1—§ \
spectrum sensing/spectrum monitoring systems. As destrib &,
previously, channel utilization is defined as the average-fr K35
tion of time that under hypothesid, the SU communicates A& s . M Ky=10
over the channel. Detection delay is the average time itstake § "~ A\
to detect the presence of the primary user after it emerges i'§ \
the channel. Using Markov chain models in [19] we evaluatec 2 Y SN
channel utilization and detection delay for a hybrid speotr
sensing/spectrum monitoring technique for AWGN channel.  5p==% Wy
For AWGN channels, the event of observirig errors is %’-‘?-EEEEE
independent from packet to packet, and so Markov modelsca i i
be employed. In contrast, in the case of fading channels, th 0 0.2 04 06 08 1
fading coefficients affecting consecutive packets areetated Probability of Detection
(in time). As a result the decision statistics are also datgel Fig. 6. Detection delay versus the probability of detection Tire and
and the Markov model is not applicable. We have not be@fff, N = 1024, L = 2,70 = 2dB,y1 = —2dB, po = 0.95, p1 = 0.85,
able to obtain closed form formulas for channel utilizatiord ~ (Ps7a) = (0.1,0.9) and fm = 90Hz.
detection delay in the case of fading channels. The follgwin
results are obtained from extensive simulations.
Figs. 5 and 6 show channel utilization and detection del&@gnsmit also increases resulting in increased througfgut
of Tyrc and T,\(,,F;ECC) versus the detection probability; of the SU. However, increasing ; will also increase detection
spectrum monitoring for packet lengtN = 1024, number delay. The reason is that for equal probabilities of false

KM:JO

elay

D

~
=

of antennasL = 2, vo = 2 dB, v = —2 dB, py = 0.95, alarm for spectrum monitoring and spectrum sensing, spectr
p1 = 0.85, and the probabilities of false alarm and detectiopensing has a higher probability of detection. Since irsnep
for the spectrum sensing methdd;,p,) = (.1,.9), for K (for fixed spectrum sensing intervals) reduces the fraction
different values ofK ;. of time the SU spends in spectrum sensing, detection delay

increases withi ;.
1

Figs. 5 and 6 also show th@krc significantly outperforms
0.95 — Ny TR for the same value qf,;. One should note that, to obtain
' g Ve N \\\ the same value gf,, T{es" requires significantly higher SNR
0.9 ==¢ m— SR than Tyrc as evident from the ROC curves in Fig. 4.
g | NN\ Tl 5\ In Fig. 7 we plot channel utilization versus detection de-
§O085 B SNy By lay pq for the hybrid spectrum sensing/spectrum monitoring
g os RN i &:\ techniques usinglyre and TS for different values of
i VA VA U U N | K, and L. The performance of the spectrum sensing alone
8 Ky =50 i DY : ; )
§075 Ky=25 I | is also shown. It can be seen that the hybrid technique
g ’ Ky=10 ) significantly outperform spectrum sensing alone. As itiaigtd
Ky=5 AN . . . .- . .
0.7 \ by this figure, for any given channel utilization and fixed
JREC) \ Ky, spectrum sensing is equivalent to the hybrid system
0.65f V¢ i with p; = py = 0, and has the maximum detection delay.
o Tyre — Moreover, the decision statistiurc, outperforms7 o). For

0 01 02 03 04 05 06 07 08 09 1 example forK,, = 25, channel utilization 0f95% can be
Probability of Detection achieved byTyrc and T,\(,,RRECC) resulting in detection delays of

Fig. 5. Channel utilizati he probability of déin f 1.5 and 8.2 packets, respectively.
9. 5. annel utilization versus the probability of dei@e for Tiyrc . )
and TREO, N = 1024, L = 2,70 = 2 dB, 1 = —2 dB, py = 0.95, Fig. 8 shows the ROC curves ffrc for different number

p1 = 0.85, fm = 90HZ, (57, pa) = (0.1,0.9) and K= 5, 10, 25, and 50. Of branchesL. The simulation results are obtained for a SU
which uses one of two error-correcting codes. The first is a
Channel utilization is a decreasing function of false alarmate1/2 convolutional code with the generator matfix® =
probabilityp s owing to the fact that the portion of time that the(716502)s ; gV = (514576)g), [39]. The second code is a
SU has a chance to access the channel decreasgs,wiiince (1023, 503) binary BCH code with raté03/1023 ~ 1/2. We
pa 1S an increasing function gf;, channel utilization is also a also employed the CRC-8 code with the generator polynomial
decreasing function of;. Channel utilization increases withaz® +27 425+ 2% 422 +1. As the plots illustrate the simulation
the duration of the spectrum monitoring intervé{ ;). This results using actual coding schemes closely match thetsesul
is due to the fact that, for a fixed spectrum sensing intervélom analysis. Note that fof. = 1, there is no diversity and
as K, increases, the fraction of time that the SU is able td = |B|. As L increases t®, the performance improves.



0.95 = _;.é--—o:g:; : but it degrad?s ab increases ta0. From (74) we gef. = 3.2
0 P P I and Lop = [ L] = 4.
. 7’ okt
ey
085 frf g K25
g o0s et 0.9 P p——
= - Kn=10 L e
cf] d /. i - Tl K,=10
= 0.75 H }{ 0.85 - m
= ——= A~ n o O Omgy 3
2> 07 Ky=5 08
E [ )-_( Kn=5
g 0.65[ £075 5
= =4 o —
© 06 2 07
= |4 Kn=3
0.55 —o— Spectrum Sensing = 0.65H
/ —— Spectrum Sensing/Spectrum Monitorin, 7 - % 0.6
0.5 MRC 5 o6f
J: =-0--Spectrum Sensing/Spectrum Monitorin, 7, \(/ﬁic) ©
0.45 - 0.55
0 2 4 6 8 10 12 14
Detection Delay [Packet] 05
——L=1
Fig. 7. Channel utilization versus detection delay Tfirc and 7\ re, 045 :::L:4
N =1024, L = 2,7 = 2dB, v1 = —2 dB, po = 0.95, p; = 0.85, 04 L=10
(Pf,Pa) = (0.1,0.9) and fm = 90Hz . B 15 2 25 3 35 4 45

Detection Delay [packet]

However, forL = 3 the performance starts to degrade and fd:fg 9. Channel utilization versus detection delayTefrc, N = 256, 0 =
L = 10 the ROC is close to the chance line, 8. = pq. B.m=—14dB,p =09, p1 =08 Kpr =510 andL =1,4,10.
This behavior is due to the fact that Adncreases the SNR at
the output of the combiner improves and the REC is reduced.
For very large values of. the emergence of the PU does not
cause a significant change in the SNR or the REC. Therefordn this paper we investigate the problem of spectrum
in such cases it is difficult for the decision statistic toet monitoring over Rayleigh fading channels. It is assumed tha
the emergence of the PU. In Appendix D we present a meththed secondary user is equipped with multiple antennas and
for the judicious selection of the number of antendas-or uses diversity combining to mitigate the effects of fadivide
the parameters in Fig. 8, (74) resultsfin= 2.56 from which consider maximal ratio combining, equal gain combining and
we get Lopt = FJ = 2. This matches the result in Fig. 8. selection combining. It is shown that spectrum monitorisg u
ing REC alone is not as effective in the case of fading channel

V. CONCLUSIONS

; i as it is in the case of AWGN channels. Next we introduce
new decision statistics based on the REC and the combiner
- coefficients for the three combining schemes. It is showh tha
= only in the case of MRC the combiner coefficients improve
r’g the decision statistic over the REC alone. Numerical resak:
%Q presented to compare the performance of the hybrid spectrum
o 4 W . . . . . .
2 os 4 sensing/spectrum monitoring technique with spectrumisgns
3 / R alone. The results show that the proposed decision statigti
a > L=1 - . e .
5 07 % =2 nificantly outperforms the decision statistic using RECnalo
2 7 \ ézg Moreover the hybrid spectrum sensing/spectrum monitoring
£ 7 =10 significantly outperforms spectrum sensing alone.
& 0.6
o f APPENDIX
[ : 7
05 ' / — Analysis A. Evaluation ofp(¢|h, Hy)
i [ }/ 2o Sutaton, Convoluional Code First let us findp,r ;.x (z]y, H,). We have
05 0.05 0.1 015 02 025 03 035 04 045 0.5
Probabilitv of False Alarm piLIR‘th (y|x, Hn)pth (l’)
. .. . ph,RUALR(x‘y’ H7]) = o
Fig. 8. ROC for the proposed decision statisfigrc for N = 1024, v = 6 L Ppr (Y, 71)
dB,v1 = 0dB, po = 0.9 andp; = 0.8 for L = 1, 2,3, 5, 10.
7 PO and p1 or - p(;R( —x|H )ph ( ) )
Fig. 9 shows detection delay versus channel utilization for o pﬁﬁ(ylHn)

different number of branches arid,; when N = 256, v = 4
dB, v = —1 dB, pp = 0.9 and p; = 0.8. This figure also  Note thath/® is independent of the hypothesi$,. It is
shows that the performance improves frdm= 1 to L = 4 discussed in section Il that; and h; are two independent
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zero-mean circular Gaussian random variables. Thus where@~! is inverseQ-function.
For casesk = 0 and k = N, the left hand-side of (44)

R I
" hi* and hll N(0.1/2) ) (37) is equal to(1 — Q(z))" and Q™ (x), respectively, which are
0| Hy and ) |Hy ~ N(0,1/2 — p;, /2) (38)  approximated by/(z —mg) and1—U(z—my), respectively,
h{|H,, and hf |H,) ~ N(0,1 - p2) (39) whereU(.) is the unit step-function, anchy andmy are the

solutions of following equations,
By substituting (37), (38), and (39) into (36) and after some 9ed

manipulations one can show that, 1-Q(z) N‘x:mo _1 (51)
hE\RE, H,y ~ N ( i , Ll > (40) QN (z)| - i (52)
—py 2(2-p3) e=my 9
Similarly the distribution ot/ |1, H, can be derived. From This gives,
(40) we can write, 1-Q) ~U(x—Q'(1— Y/1/2))  (53)
MM, (41) Q@) ~1-U-Q ' (V1/2)  (54)

\V ZIL=1 |}All|2

By substituting (44), (53), and (54) into (1&}3(k|ﬁ, H,)is
approximated by

N (hf')? (1= A (h)? p(klh, Hy) ~ (5)
L ’ = oo =(ihy—a)®
(2 p2)( Z 2(2—p3) Zlhz ﬁ/ e 2% da, k=0
=1 =1 ! . _(hy—2)®  (m—w)®
and in the same way, one can rewrite (41) for the imaginary\ \/2‘;7 e 20 2% dr, 0<k<N
parts. Let us rewrite) in (15) as, ! —ZON (o —2)
. N A T262 0 g, _
Re(Sof mhi) iy (nfthft+nif) aal e k=N
V= = (42) o
L 712 L 702 ~
V2l ful V 21z [l where i, £ AQ[EZ" and 62 £ 7,,;:22. Approximation of
Then (41) and (42) imply that, p(k|h, H,) in (55) is found by considering that,
. /ZL: ‘i”|2 1— 2 ©
G|h, H, NN( 21 1p2 30 ’Zg) (43) / e /2 a4t = \or Q(z) (56)
- - T
! ! oo 9 T bi—dbabo
R / ef(bgt + blt + bO) dt — — e 4b2 (57)
B. The approximation of(k, A|H,)) —oo V b2
To make a decision on the hypothesis, the integral in (16) Finally by subst|tut|ng the approximation Qf(k|h H,)
should be evaluated and multiplied by (14) and (23). into (12), p(k, A\H ) is approximated by (58). Comparision
For0 <k < N, let us approximate, between the simulation results and analysis results (sge Fi
(z—m)* 8) shows the accuracy of this approximation.
(})@@a- e ~a @) ) ohe ’ PP
. : _ p(k,AlH,) ~ (58)
wherem, a ando are the solutions of following equations, I ) X o g
Q Q' (1— a’/1/2)—m,77 2 AL—1) ;— AT/ (2=ry) E=0
M @@ - e, =a (45) e
k r=m
N _ ad, —(m—1hy)? 2 ACL-D) A%/ —pT)
(k)Qk(z)(l ~QE)T =0 (46) | Vorizz o0l s | A s 0 < k<N
N _ a
(})e@a-am | -5 @ (R CE I | PIEE
a=m G C=p)rL-nr "7
Equations (45), (46) and (47) give !
1,k .
m=Q l(ﬁ) (48) c. Proof of Independence gfand §
. <N) EF(N — E)N-F (49) The goal is to prove)(¢|d, H,) = p(¢|H,,). Let us rewrite
k NN

L
2
7 =2min - e (QEP) 60 (=2 = (59)
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where of errors in each packet. Therefore we choose the number of
Re (h 7jél) . L diversity branches so as to maximize the difference between
L8 e _ hf*cos b + h sin 6, (60) the average symbol error probabilities undgrand H,. More

NG B NG specifically let
Since {h;}%_, are i.i.d. random variables, givefi and H, Lopt = argmax D (L) (68)
the distribution of( is the convolution of the distribution of L
21, 22,...,%. Besides, where ®(L) £ pi(L) — po(L), and wherep, (L) for n =

. o0 . o R 0,1 is the average (with respect to the channel coefficients)
p(z|0:, Hy) = [ (2|0, éu, Hy) p(éulbr, Hy) déq (1) symbol error probability undeff,. Using the bound)(z) <
R - 1/2¢=2"/2 we have,
Sinceh is circularly symmetric Gaussian, its magnitude,is

. - . . . oo 9e—7" 2L—1
Rayleigh distributed and is independent of its angleThus 5y(L) = / 0 ( /QW%eff)xz > dx (69)
0

. =1

N A . 20 -5 o0

p(éu = |0, Hy) = p(éu = z|H,) = 5 2° 2P (62) < ;/ o= 022 —a? 201 g
Py —(L-1D!J
1 o0
Moreover, from ) = 7% / 2?tVexp (—(1+7EM)2?) dx
th = cosl; — ElR (63) (L=1!Jo
th — &y sinf, — é{, Note that, [40],
00 I(m+L
we get / x™exp(—px")dx = (ﬁﬁ 1) (70)
0 nB n
. Acosf 11— p?
th|@797Hn N (gcosf’ 5 p,72)> (64) Thus we get
L (D) € T L em
<A asing 1-—p L) = =5 " .
hlllavevHﬂN (2[)2’2(2/:72)) ’ (L 1).2(1_’_75]61?)) 2

o K K Using the upper bound in (71) we get an approximation for

which implies that, D(L). Assuming this approximation to be exact we get
5 a 1—p; _ 1 (efyy ~L (effyy ~L
21101, &y, Hy ~ N , . (65) DL)=5(A+n") =T+ ") (72)
K VL2 - p2) 2L(2 - p}) 2 ( )

R Treating L as a continuous variable, the derivative®fwith
It can be seen that for any giveft the last distribution respect toL is given by

is Gaussian with mean and variance which are independent

of 6. Substituting (62) and (65) into (61) and after some 99 :1 (—(1 +fy§eﬁ))_Llog(1 +7§eff>)
manipulations we get oL 2 (ef) L (ef)
(1t log (1+ ™)) 73
P (wly. Hy) = pa, (2l Hy) (66) e es e )
) —e20,2) o 57 Setting the derivative to zero and solving fbrwe get
= T (— T 2> ~ log (1 +7&") L+5"
7T2—p§7 A2 — p% Pn L =log 7(()&_0 /log ﬁ (74)
=0 log (14+~17) L+
Therefore,Lop is obtained as eithekiJ or [ﬂ
Finally,
P(C|é7 Hy) = p.,([Hy) @pa, (| Hy) @ @ps, ([ Hy) REFERENCES
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