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Abstract—Wireless sensor networks are prone to node mis- the fusion center (FC). Sensors under an adversary’s dontro
behavior arising from tampering by an adversary (Byzantine are often referred to as Byzantine nodes.
attack), or due to other factors such as node failure resulting fom In binary hypothesis testing, in order to lower their band-
hardware or software degradation. In this paper we consider the . . ’ -
problem of decentralized detection in wireless sensor networks width reqwremem .and e”efgy expenditures, the sensces oft
in the presence of one or more classes of misbehaving nodesmMake a local decision regarding the state of the hypothesis a
Binary hypothesis testing is considered where the honest nodesonly send their binary decision to the FC. Having receives th
transmit their binary decisions to the fusion center (FC), while  messages from all the nodes, the FC will detect the hypathesi
the misbehaving nodes transmit fictitious messages. The goal Ofusing a judicious decision rule [2].

the FC is to identify the misbehaving nodes and to detect the Th bl fd tralized detecti in th

state of nature. We identify each class of nodes with an operating e prc_) em of decentra 'Z? e. ection n the presence
point (false alarm and detection probabilities) on the ROC Of Byzantine nodes has been investigated by several authors
(receiver operating characteristic) curve. Maximum likelihood [3]-[6]. In [4], it is assumed that through collaboratiohgt
estimation of the nodes’ operating points is then formulated and Byzantine nodes are aware of the true hypothesis. The author
solved using the expectation maximization (EM) algorithm with ¢4 mulate the problem in the context of Kullback-Leibler

the nodes’ identities as latent variables. The solution from the di d obtai timal attacki distributi foe t
EM algorithm is then used to classify the nodes and to solve lvergence and obtain optimal attacking distribution 1oe

the decentralized hypothesis testing problem. Numerical results Byzantine nodes using a water-filling procedure. In [5], the
compared with those from the reputation-based schemes show aauthors consider data fusion schemes in a network under

significant improvement in both classification of the nodes and Byzantine attack and propose techniques for identifying th

hypothesis testing results. We also discuss an inherent ambiguity yajicious users. In [6], the authors consider adding stetiha

in the node classification problem which can be resolved if the . . .

honest nodes are in majority. resonance noise at. the honest and/or Byzantines in order to
enhance the detection performance.

Cooperative spectrum sensing in cognitive radio networks
'(CRN) is another example of decentralized hypothesisnigsti
where the secondary (unlicensed) users make a binary decisi
on whether a channel is vacant of the primary (licensed)

. INTRODUCTION user or not, and transmit that decision to the FC. The FC

Wireless sensor networks (WSNs) consist of a large numiben processes the received data from all the secondary user
of tiny battery-powered sensors that are densely deployadd decides on the state of the channel. This problem is
to sense their environment and report their findings to identical to the classical decentralized detection anénty
central processor (fusion center) over wireless links. Diseveral papers have considered cooperative spectrunmgensi
to size and energy constraints, sensor nodes have limitedhe presence of Byzantine attacks (spectrum sensing data
processing, storage and communication capabilities. &mgel falsification) [7]-[13]. In [7], sequential probability tia test
network of such sensors many nodes may fail due to hardw#senodified via a reputation-based mechanism in order ta filte
degradation or environmental effects. While in some case®uat the false data and only accept reliable messages. In [12]
faulty node stops operating altogether, in other casesytlmea the authors present a scheme for identifying the Byzantine
misbehaving and reporting false data as in the case of stuickiodes and strategies for best fusion rule. In [14], a method
faults [1]. is presented to detect the Byzantine nodes based on how

Sensor networks are also vulnerable to tampering. The n#teir transmissions compare with those expected from hiones
works are envisioned to be distributed over a large geographodes. These approaches are often categorized as reputatio
area with unattended sensor nodes which may be captured based fusion rules [12], [15]. We note that in cooperative
reprogrammed by an adversary. An adversary can also depé@gctrum sensing we may also have more than one class
its own sensor nodes to transmit false data in order to cenfus unreliable nodes. While some malicious users may send

Copyright (c) 2012 IEEE. Personal use of this material is peechi false data in Qrder o gain unfair access to the Chanr.]elr.S)the
However, permission to use this material for any other purpaosest be may be sending incorrect data due to the malfunctioning of
obtained from the IEEE by sending a request to pubs-permis@deee.org. their sensing terminal. We should also point out that while
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always be scalable for WSNs. However, the proposed methiogpothesis vectoh = (hy,ha, ..., hr), [12], [14] 1. From
in this paper is also applicable in the case of cooperatitteese assumptions it follows that given the hypothesisovect
spectrum sensing in CRNs. h, the sensor decisiong,! = 1,2,...,L,t = 1,2,...,T

In this paper we assume that there may be more thare conditionally independent.
one class of misbehaving nodes. We show that from theWhile an honest nodé e ¢; will transmit its decisionr; ;
point of view of the FC each class can be identified witto the FC, nodes in other classes may choose to do differently
a (operating) point on the receiver operating characteristn particular, letd;, € {0,1} denote the message received at
(ROC) that corresponds to the decision rule of the sendbe FC from nod€ at timet¢ and define
nodes in that class. We first estimate the operating points a
of each class. For a fixed hypothesis vector, we formulate po(k) = Pldye = 1fri, = 0,1 € ci), ©)
this problem as a maximum likelihood estimation problem pi(k) £ P(dis = 1)ris = 1,1 € cx). (4)
with latent variables that correspond to the class idertfty
the nodes. This problem is then solved using the expectatigtfarly for honest nodegy (1) =0 andp, (1) = 1. Let

maxim_izati(_)n algorithm. Following this step we detect the_ pa(k) & P(dyy = 1)he = Hi,1 € cx)
class identity of each node and also detect the hypothesis ~ ~
vector. = p1(k)pa(k) + po(k)(1 — pa(k)), (5)

The rest of this paper is organized as follows. The systesmnd
model is presented in Section Il. In Section lll, the progbse A
node classifier is introduced, and in Section 1V, the problem ps(k) = P(de = 1{he = Ho, L € cx)
of counterpart networks for node classification is presknte = p1(k)ps (k) + po(k)(1 — ps(k)). (6)
Our performance metrics are introduced in Section V, a%

numerical results are provided and conclusions are drawn ] e may viewp(k) and p, (k) as the detection and false
. P ) alarm probabilities “perceived” by the FC for nodes in class
Sections VI and VI, respectively.

Ck

Recently in [13], the authors consider the problem of
Il. SYSTEM MODEL detecting statistical attacks in cognitive radios usindjebe

We consider a wireless sensor network consistingLof Propagation. This approach is similar to the reputatioseda
nodes employed to detect the state of natire {Hy, H; }. rr.1et'hod of [12], [15]. The modeling assumptions in [13] are
It is assumed that there ar& classes of nodesC — similar but somewhat simpler than those presented here. In
{c1,¢2,-+ ,cx}, wheree, is the class of honest nodes andparticular two types of attackers are assumed. If nbdis
¢, - ,ci denote the othetk — 1 classes of (honest or Of Type-1, the_n it attempts to cor}fuse th_e FC only_when
misbehaving) nodes. Each node samples the environment ofideothesisH, is detected by sending @ with probability
per unit time and makes a local decision on the stat@/of "+ @nd al with probability 1 —r;. On the other hand, if node
It then transmits its binary decision to the FC which, aftef IS Of Type-2, it tries to confuse the FC when the detected
receiving a number of transmissions from the nodes, atemfyPothesis isHy by sending al with probability 7, and a0

to classify the nodes and also decide on the statdf of with probgbilityl—rk. Note thatr), = Qcorresponds to honest
Denote byh, € {Hy, Hy} the state ofH at time ¢ = nodes. Itis a}l_so assumed that there is a subset of trustexs nod

1,2,---,7 and letr, € {0,1},] = 1,2,--- L.t = whose identities are .kncl)wn to the F_C. In contrast, we do not

1,2,---,T denote the decision of th&h node at timer assume that such prior information is available at the FC and

regarding the state ofi,. Since all the nodes in a class our attacker model is more general in that the malicious siode

are identical, the probabilities of detection and falseralgor MaY try to confuse the FC under both hypotheses.

classcy, are, respectively, given by Remark 1. In Section Ill, we present our method for esti-
mating (ps(k),pa(k)) for k = 1,2,---, K. Our approach

pak) = P(rie =1k = Hy, L€ cx), @) does not depend on how these probabilities are arrived at. In
and particular it includes the case that Byzantines, after dtte
(k) = P(riy = 1|hy = Ho,l € c). ) the hypothesis, flip their decisions and send it to the FCs Thi

corresponds tq(k) = 1 — pa(k) and py(k) = 1 — ps(k).

As in [4], [5], [12]-[14] we assume that the ByzantineFurthermore, we have assumed error free channels between
nodes do not collaborate. While collaboration can improwee sensors and the FC. However, the model presented here
the effectiveness of the adversary’s attack, it has its ovamso includes noisy channel models between sensors and the
drawbacks. Collaboration requires additional infragitee FC. The effect of the channel transition probabilities can b
such as a FC to coordinate the attacks, as well as increaseduded in the parametersy (k) and p; (k).
commqmcaﬂon which can quickly deplete the resou_rceseaf th The receiver operating characteristic (ROC) of a node in
Byzantine nodes. In the absence of such collaboration, we ca . . ~ -

. . class ¢, is denoted byUy, i.e., pa(k) = Ur(pg(k)). In
assume that, given the hypothesig,(or H;), for any time the following we refer to the pointp;(k), pa(k)) as the
t the sensor decisions ;,/ = 1,2,..., L are conditionally 9 POINtps(R), Pa
mdelp.endent [15]__[17]- In addltpr_], We assume that the@ens 17ps assumption holds for example when the sensors’ obsengaticross
decisions across time are conditionally independent gitien time are contaminated by white noise.



operating pointof a node in clasg;. For the honest nodes,results are compared with the Cramer-Rao lower bound and
pa(k) = pa(k) and ps(k) = ps(k), and so their operating show a close match.
point is (p¢(k), Ux(ps(k)). We show in Appendix A that for
other nodes, the operating point is in a region bounded by
(B (k‘), Uk(pf( )) and (pf( )7Vk(pf( )), whereVj,(z) is the A. Estimation of Class Parameters
reflection of Uy (z) with respect to the point0.5,0.5), i.e., From (8), it is evident that to dete# we need to first esti-
Vi(z) = 1-U(1—x). These nodes can achieve any operatingate the operating point® (k), pa(k)) for k = 1,2,--- | K.
point in this region by choosing appropriate values fgfk) Note that in the following it is assumed that the hypothesis
and p; (k). vector h is fixed and all the probabilities are conditioned on
h. For ease of notation, however, we drop this condition from
Il. CLASSIFICATION OF THENODES our notations.
Let Z = [zi4), 20 € {01} for I = Lk = In addition to the operating points of each class, the FC

1.2,--- . K denote the identification matrlx of the nodes's also unaware of the fraction of nodes in each class. Let

where 2e = 1if 1 € ¢ and 0, otherwise. To identify the 7 = P(z1,; = 1) denote the probability that nodebelong to
nodes, the FC collects messages from each node and storelassc’“ and define the matrix of class parametdfs, where
them in a matrixD = [d;4], | =1,2,--- ,L, t=1,2,---,T Its kth row is given by
sub;e_quently_ referred to as the decis_ion r_n_atri_x. Using the 0(k) 2 [po(k), pa(k), 7(k)]. 9)
decision matrix the FC must detect the identification marix
and the hypothesis vectdr = (hq, ho, -+ , 7). We would like to estimate the class paramet®s from

The maximum likelihood detection rule f¢Z, h) is given the observation matri¥D. Since the conditional probability
by P(D|®) is not given, we may write the maximum likelihood

Loa estimate for® as,
(Z,h) = argmax P(D|Z,h). (7)
Z.,h

Evaluation of (7) requires the likelihood functid”(D|Z, h)
which is computed below. For a given hypothesis vedior
denote the number dffy’'s andH,;'sin h by N andM =T —
N, respectively. Also denote the number of correct decisio
of the ith node on hypothesed, and H, by n; andm;, 0 <
[ < L, respectively. In other words, out éf occurrences of
Hy in h, nodel correctly detectsy; of them, and out of\/ L(®;D,Z) £ log P(D, Z|©) (11)
occurrences off; in h, it correctly detectsn; of them. We
note that for a given hypothesis vecthr n; andm; can be Due to the fact thatZ is latent, with EM we consider the

®* =argmax ¥ P(D,Z|O®). 10
gn > P(D,Z|®) (10)

This may be viewed as a mixture model (withas the latent
variables since the nodes are not identified) and can be ef-
'ﬂ?ctwely solved using the iterative Expectation Maxintiaa
(EM) algorithm [19]. Let us define the log-likelihood funati,

calculated from thdth row of D. We have, conditional expectation of (11) under the posterior disttion
of Z givenD and®. This is the expectation step of EM. In the
P(D|Z,h) = H H ( {1 = po(k)) =m0 ©) maximization step, this expectation is maximized with sxtp
I=1k=1

to ®. Denote the current and the revised estimate®oby
. (M=) ©°d and ©"", respectively. The two steps of EM algorithm
pa(k)™ (1 = pa(k)) l ) are described below.
1) Expectation: Using the current estimate of the matrix
of class parameter®°9, find the posterior distribution o
ivenD and ®°, Using this distribution find the expectation
f the log likelihood function in (11) for an arbitra® given

wherep.(k) £ 1—p;(k) is the probability of correct rejection.
It can be seen from (8) that the likelihood func-

tion P(D|Z,h) depends on the unknown paramete

(py(k),pa(k)) for k = 1,2,--- , K. Therefore for the de-

tection problem in (7) the Baye5|an or the Neyman- Pearsox

rule cannot be implemented. Generalized likelihood ragit t Q(©;0° £ F,[L(0: D, Z)|D, ©% (12)

(GLRT) is often used in detection problems with unknown old

parameters [18]. However, for our problem GLRT is not :ZP(ZD’@ ) x L(©;D, Z).

mathematically tractable. Therefore, in this paper, we fol z

low the following process. For a given hypothesis vector 2) Maximization: Revise the estimate of class parameters

h we first estimate the operating points;(k),ps(k)) for to maximize the expectation calculated in the previous,step

k= 1,2,--- K. Using the estimated operating points, wge., let

can implement the maximum a posteriori (MAP) classification

rule for Z. The estimated operating points and identification O™ = arg max Q(©; ©°). (13)

matrix Z are then used to implement the maximum likelihood ©

detection rule for the hypothesis vecthr We have not been It has been shown that each update of the EM algorithm is

able to prove the optimality of the proposed method due tmaranteed to increase the log-likelihood function [2(jisT

its mathematical intractability. In section VI our simutat implies that the EM algorithm will converge regardless daf th



initial value of ®, [19], [21]. We now present the two stepswhich after some manipulations results in,
of EM algorithm for the problem at hand.

L
1 ny
L(©:;D,Z) = log P(D, Z|©) (14) (k) = 7 > CkD), (21)
— log[P(D|Z, ©)P(Z|®)] ) o
L X new(ry = — S 20 @k, 1). 22
= IOgH H ﬂ-zk,l [ (k)™ (1 _pc(k))(Nim) pt) L ; M 0 2
I=1k=1
Finally, we should maximizeQ(®;®°9) with respect to
m o (M—my) ’
pa(k)™ (1 = pa(k)) l 7, with the constraint thaty ), , m, = 1. This can be
L K achieved using Lagrange multiplier method by maximizing th
= Z 211 [log T + ny log pe(k) Lagrangian
=1k
K
+ (N — )log(l — pc(k‘)) + my logpd(k:) Q(@’ v eold) A Q(@, G)old) + V[Z T — 1]. (23)
+ (M —my)log(1 —pa(k)) ]. k=1

To calculateQ(®; ®@°9) in (12) for the expectation step, oneWe have

should find the conditional expectation &f©®;D,Z) with 20 L &l k
. — = = 24
respect toZ. Hence, e Z 0 (24)
Q(©;0%) = . . .
Multiplying both sides byr, and summing ovek we get
ZZE[%’”D’@old] llog 7, + n; log pe(k) v = —L which results in
1 e L
=1 k=1 new k
W= = 25
+ (N = ) log(1 — po(k)) + m log pa(k) o #)
+ (M —my)log(1 —pa(k)) ]. (15) Since thelog(.) function is concave andé(l, k) > 0, Vi, k,

can be seen from (15) th}(®; ©°) is a concave function
fwk’s (in ®T). This followed by the fact that the constraint
Zk:ﬂk = 1 is linear in 7y’s implies that the Lagrange
¢(l,k) £ E(z,|D,0%) = P(z; = 1|2;; ©°%)  (16) multiplier method in (24) achieves the optimal solution][22

B W,(Cmd) P(zi|lzi6 =1, G(O'd)(k;))

= N B. Classification of the Nodes
Z]K ) J(Old)P(ICl|Zl,j _ I;O(OId)(j))

We now need to perform the maximization step in (15ij
Denotingz; £ (n;,my), 1 <1< L, we have

Let ®* denote the matrix of class parameters estimated by

where, the EM algorithm. Giver®*, the conditional probability that
P(zi) 2 = 1;0°9 (k) (17) nodel belongs to classy, is given by
= [pD (k)™ [ — D (k)] V") Pz = 1]ay; 07 (k) (26)
X [ (k)™ (L= p (k) M), __ miPulag = 1,67(k)
and whered©9 (k) (the kth row of ®°9) is the current vector Zﬁ; mi Pz =15 0(j))

of parameters for théth class. The quantit¥(l, k) can be where#* (k) is the kth row of ®*. The denominator in (26)

interpreted as the probability that class is responsible for js independent of. Therefore, the maximum a posteriori
the decisions made by thiéh node. So, the effective numberc|assification rule for nodé (given ®*) is given by

of nodes assigned to clagg, denoted byLy, is given by,
k* = argmax {7 P(x|zp = 1;0%(k)), k=1,2,--- | K},
k

L
Ly 2 €(Lk). (18) (27)
o - o and we set

The estimation of the probability of correct rejection and ; .
the probability of detection for any < k£ < K can be found 2 = { 1 or k= k* (28)
by solving (13) as, ' 0 for & # k.

L

0Q(8;0°%) @Old ZQ‘S (I, k) [ ™ N —mn } _ 0 C. Estimation of the Hypothesis Vector

Ope(k ) 1 —pe(k) ’

In the previous section we showed how to estimate the class
(19) parameter®* and obtain the node identification mat#x for
5@( @om L my M —my a given hypothesis vectdr. Therefore, in the sequel we denote
Z &l { TR } =0 these parameters " (h) = [z, (h)] and ©®*(h). Similarly
(k) 1= palk) N, M, n;, andm; are substituted by (h), M (h), n;(h), and
(20) my(h), respectively. The maximum likelihood detection rule

Opa(k —



for h obtained from the observation matrR given Z*(h) yet be much smaller thah (in which case overfitting will not
and ®*(h) is now given by occur). If the actual number of classes is smaller, the psagb
. . . algorithm will not assign any nodes to the fictitious classes
h:arg}rlnaxP(D|Z (h); ©%(h)) (29 | decentralized detection schemes such as ours, it is
assumed that the nodes only transmit a (binary) quantized
version of their measurement to the FC (instead of their
P(D|Z*(h); ©*(h)) = (30) actual measurement). A question then arises as to how the
FC can identify the nodes. While the nodes can transmit
H (p;f(k;h)’”(h)(l _pz(k;h»(N(h)fm(h)) a label for identificati_on,.t.he qverhead associat.ed. withs thi
ey approach may not be justified given the severely limitedgner
215 (h) and transmission capability of the sensors. We believe that
pi(k; b)) (1 *pZ(k;h))(M(h)fm’(h)v o this issue can be resolved using the media access control
mechanism. Clearly the sensors need some form of arbitratio
mechanism to access the channel. The information from that
mechanism can be used by the FC to identify the nodes and
determine which received bit corresponds to which node. For
: : i _example the FC may use round-robin scheduling to collect the
. The entire procedure is summarized ™odes’ messages. The information from the nodes’ turn in the
schedule can be used to identify them.

where,

=l

and where[p}(k;h), p5(k;h), 7*(k;h)] is the kth row of
®*(h) denoting the estimated parameters of ttta class
for the hypothesis vectoh. The final estimation of all the
network parameters is given i, Z, ©) whereZ = Z*(h)
and ® = ©*(h)
Algorithm 1.

Data: Decision matrix,D . )
Result Estimation of identification matrixZ, the matrix ~ D- Complexity

of class parameter®, and hypothesis vectds For a given hypothesis vector, the EM algorithm is very
fast and converges in only a few steps. However, for a vector

begflcr:ra” the possible hypothesis vectois,e {0, 1}, of T decision§ from the sensors the EM algqrithm must be
do performed2” times corresponding to th#" possible hypoth-
Estimate the matrix of class paramete@®: (h), esis vectors. This increases the comp_lexit_y of the algorith
using EM-Algorithm: exponentially in terms of the observation interval. Howeve
Assume an initial value fo@®°: as discussed in the numerical section, the proposed digorit
while H@)new_ @)oldH > ¢ do converges much faster than the reputation—based algarithm
E Step: Find&(l, k) using (16); in ter_rng of the number Qf observation §amp1§s(A br!gf
M Step: Estimate®® (p1eW(), p"e*(k) and descrlptllon of the reputa}tlon-based algorlthms is pravide '
1) using (21), (22), and (25); Appendix B). Another point t_o observe is that the rate at \Whlc_
end the state of nature changes is much lower than the rate ahwhic
Classify the nodes by computiri* (h): for each the sensors sample the eqvironment. In other words, during
node! find &* using (27); an observation time df’ decisions from the sensors, the state
end of nature will not change more than a few times. In such a
Detect the hypothesis vectds, from (29); case the nl_meer of vectoh_;fo_r which the EM algorithm is
Find the(fl i (;)) where7, — Z*(fl) and performed_ is only polynomial iff". For exam!ole, in order to
6 @*(fl)’ ’ Qetect a single change ln(from H, to H, or vice versa), EM
end ' is performed for on\27" possible vectord. Furthermore, the

complexity of the proposed algorithm is linear in the number
Algorithm 1: Calculation of the identification matrix, the of nodesZ and quadratic in the number of class&s Given
matrix of class parameters, and the hypothesis vector eia #hat sensor networks are expected to consist of hundreds or
EM algorithm. thousands of nodes, the linear complexity in the number of
nodes is significant.

Remark 2. We have assumed that the FC is aware of the

number of classe&’. The issue of how to select the number of IV. COUNTERPARTNETWORKS
classes known as model order selection is a well known prob-
lem in classification. While criteria such as Akaike infotioa
criterion (AIC) or Bayesian information criterion (BIC) ka
been proposed, they do not always work satisfactorily and te
to favor overly simple models [21]. The main issue in mod
selection is under- or overfitting the data. However, in &rg
sensor networks this will not be an issue owing to the fadt tha c (e (c) c

the expected number of class&sis much smgller than the o' )(k) - [pg )(k)’pd (k)’ﬁ( )(k)] (31)
number of sensoré. ThereforeK may be overestimated and = [1 =pa(k),1 = pe(k), = (k)]

In this section we will show that any decision matiix is
equally likely to be generated by one of two different netkgor
which we refer to as counterpart networks. For any matrix of
8|ass parameter® we can define a counterpart matri®,,
whosekth row, 1 < k < K, is given by



Also define the counterpart hypothesis vecidf) £ 1 —h problem is difficult due to the mixture model which involves
where 17 is a vector of all ones with lengtfi’. It can be the latent variableZ and the hypothesis vectdr. However,
verified that, CLRB can be computed for the case that the identification
B © () matrix Z and the hypothesis vectarare known. This provides
P(D|Z,©,h) = P(D|Z,©0%,h') (32) a lower bound to the estimation errors of the proposed method

The intuition behind (32) is that the probability of transtinig in which Z andh are not assumed to be known a priori. For
a one (or a zero) for a node with the operating pajit, p;) 9iven Z and h, we define¢,. = >.,° zi0, M = >0, Iy,
underH,,, i € {0,1}, is the same as a node with the operatingnd A" = T — M. Let Dy be derived fromD by removing
point (p4, py) under H,_,,. Therefore any observed decisior@ny row j if z;j, 7 1 and letDy, be obtained fromDy
matrix D is equally likely to be generated by one of twdPy removing any columr such thath, # 1. Itis clear that
networks, namely{Z, ©} under the hypothesis vectar, or the dimension ofDj o and Dy, are (x x A" and ¢ x M,
{Z,©} under the hypothesis vectoé®). This implies that respectively. Finally, denote by o (resp.dy. 1) the 1 x (x N
regardless of the method used, there are always two saiutiéffSP-1 x (M) vector formed by stacking rows &y, (resp.
for the estimation of the class parameters and the detecldd 1) next to each other. For any unbiased estinfgig:), the
hypothesis vector. conditional variance op¢ (k) is bounded by [25],

The ambiguity described above can be resolved by assuming 97 —1
some prior information on the network. In practice, the eper a5, (k M > | B 91n P(dx0 1|ps(K)) 36

me pr . var{p; (k)lps (k)} > o (36)
ating point of the honest nodép (1), p4(1)) will be above py (k)
the chance lin@, = py [23]. If it is known that the class of . o
honest nodes is the largest class, then the ambiguity Can\g)here 1 is a column vector of alll's with length G\

. . . ibiasedness of the proposed algorithm has been shown
resolved by choosmg.the solution for which the IarQGStSr’laﬁﬁrough extensive simulations some of which is presented in
is above the chance line.

Section VI. For knownZ andh, we have

V. PERFORMANCEASSESSMENTMETRICS P(drol = Llps) = [pp(k)]*[1 — py(k)]=N 2, (37)

To assess the performance of classifiers, two metricBssf Therefore after some manipulations we get
criminability andreliability are often used [24]. Discriminabil- 9
ity shows how well the classifier distinguishes the differen g { In P(dk0|pf):| (38)
classes, whereas reliability indicates how well the pdaster Ipy (k) ’

ili i i N
probability that a node belongs to a class is estimated by Ck (CkN) 2+ CN2[py (k)2 — 20GNpy (k)

the proposed method. To show the discriminability of the =

. 2—¢ _ 27(1?./\/:%6
classifier, we define the misclassification rate by, [20], S [ ()L = py (F)]
L K - kN
! : ~ pp(k)(1 = py(k))
Az = ﬁzzm,k—%w (33) ps( Ps
=1 k=1 Following the same approach fps(k), the Cramer-Rao lower
Similarly the performance of our hypothesis detection swhe bounds are given by
is evaluated by théwypothesis discriminabilitgiven by EV(1 — pe(k
\ var(is ()]s (0 = EC 2B g
1 .
Ag & = |he — hy). (34) R k)(1— k
3 var(ga(0)lpa()) = PP )
To estimate the accuracy of the estimation of the nodes’
operating points we define the following measure based on VI. NUMERICAL RESULTS
the normalized Euclidean distance between the estimatéd an|n this section, employing the metrics in Section V, we
actual operating points, i.e., evaluate the performance of the proposed method referred to

1K as maximum-likelihood classifier (MLC) and also compare our
App & — Zﬂk\/(pd(k) —pa(k))? + (pr(k) — ps(k))2.  results with the reputation-based classifier (RBC) alparit
\/ikzl [12], [26]. In RBC when the network parameters (e.g., the
(35) nodes’ operating points) are known, the optimabut-of-L
Note that the three measure in (33)-(35) are appropriatéi)® c&n be computed (see for example [16], [27]). However,
normalized so as to be in the interval 1]. when the FC is not awa_re_of all the network parameters
as is the case here, majority rule has been used in [12]
and is also used here for our comparisons. In addition, in
(45) the threshold\ can be set following a Neyman-Pearson
To evaluate the efficacy of the expectation maximizatioeriterion, for example by setting a threshold on the proligbi
algorithm in estimating the class parameters we would liked misclassifying the honest nodes as Byzantines. Moredver
to compare our results with the Cramer-Rao lower bouride fraction of honest nodes is known to the FC as in [12], then
(CRLB). However, computation of CRLB for our estimation\ can be set to minimize the probability of classification erro

A. The Cramer-Rao Bound



TABLE |

CLASS PARAMETERS OF EAGH SET OF OPERATING POINTS number of received decisions, It is evident that the accuracy
Set | 77 e p of node classification and the estimation of the operatingtpo
01 |09 |06 improve with7". Moreover the proposed algorithm converges
OP1 ; .
09 |03 |04 much faster than the reputation-based method requiringrfew
OoP2 8:3 815 8:2 number of observation samples. Note that since RBC can only
02 |07 |04 discriminate nodes into two classes, in the case of @QR3
op3 | 99 | 0151 0.15 is not defined. The figures also show that the performance of
8:85 8:85 8:35 classifiers for OP1 is better than for OP2 and OP3. The reason

is that the misbehaving nodes are more capable in the latter
two cases. In particular in the case of OP2, the RBC method
, _ fails completely. This is due to the fact that even thougtyonl

In our case, however, the FC is not aware of the fraction Qfio; of the nodes are Byzantine, because of their operating
hon_est nodes. Therefp_re we set the thresb}oid_ﬁ. I_:or th's_ _point (0.9,0.15) vs. the operating point of the honest nodes
choice of)\ the probability that an honest node is m'SCIaSS'f'eg)%Q,Oﬂ), collectively the Byzantine nodes are more capable
as Byzantine is the same as the probability that a Byzanti n the honest nodes and can mislead the EC.

node is misclassified as honest. Other values of the thréshol

can favor the classification of honest nodes as Byzantines ¢ 1

. -&-RBC, OP1

vice versa. -%-RBC, OP2
Simulation results are obtained from at least indepen- -4-RBC, OP3

dent trials. The EM algorithm is assumed to have convergec %[ —&-MLC, OPI

when ||@"" — ©°4|| < ¢ = 10~%. Moreover, to overcome :ﬁig gii

the ambiguity of the counterpart networks, we assume tha ;

the honest nodes are in majority. This implies that for a 0.6

network consisting of two classes the break down point o1<8

the algorithm is at 5@ [28]. In Figs. 1, 2 and 9-12 where %

a performance metric is presented VB, the number of 048 **\

possible hypothesis vecto® is too large to evaluate (29) A e e M

exhaustively. Therefore in these cases it is assumed thiagdu

the observation period there is at most one change in th 021

hypothesis vectoh which may occur at random anywhere

from time 2 to T'— 1. This assumption, which as mentioned in

Section IlI-D is applicable in practice, is only made to reelu 4 10 20 30 40 50 60
the computational complexity of our simulations. However,
the efficacy of the proposed method is not affected by thiy. 1. Error in the estimation of the operating points ¥sfor I = 100
assumption as other figures verify. nodes.
Three sets of operating points, denoted OP1, OP2 and
OP3, are considered. Table | shows the class paramete~ _
corresponding to each operating point. For OP1 and OP:;
there are two classes of honest and Byzantine nodes. The F
perceives the operating point of the Byzanting@s;, pq), to 107¢
be that listed in Table I. One may view the Byzantines as
having anactual operating poinfl —ps, 1 —pq), but flipping of
their decisions before transmission to the FC. Comparing
the operating point of honest nodes and the actual operatin
point of Byzantine nodes in OP2 reveals that the Byzantine<® 10°F
nodes are more capable of detecting the event under boi
hypotheses (i.e., with smaller probability of false alarnda
higher probability of detection). For OP3, four classesades
are considered. The first class with the operating point7)
comprises the honest nodes. The second class are Byzanti 107}

-=-RBC, OPI
—%-RBC, OP2 [f
-8-MLC, OPI
——MLC, OP2
—-2-MLC, OP3

107

nodes with the operating poirt9, .15), while the third and e
fourth classes are “almost-always-yes” and “almost-atway 1oL ) ) ) ) )
no” nodes. The almost-always-yes nodes try to convince th 4 10 20 30 40 50 60

FC that the hypothesis i&; by transmitting al most of the

times, and increase the overall false alarm rate of the ®ysterig. 2. Misclassification rate v&’ for L = 100 nodes.

In contrast, the almost-always-no nodes transmiitraost of

the time and decrease the overall probability of detection.  Figs. 3 and 4 compare the performance of the classifiers
Figs. 1 and 2 show the performance of the classifiers vs. th& the ratio of the honest nodes to the total number of nodes



(denoted bya) for T = 10. The operating points are OP1
and OP2 shown in Table I. As expected the performance o
the classifiers improves with. It is seen that while RBC
can effectively classify the nodes in the case of OP1, the
computation of the operating points is not very accurate,
Moreover for OP2 the performance of RBC is not acceptable

10

*
*
*
* 4
*
*
*
*

*
¥* 1
k3

-1

and fails completely for < .6.

F 107
0.7
-&-RBC, OP1
-%-RBC, OP2
0.6f -=-MLC, OP1
—*-MLC, OP2 2N
0.5F -8-RBC, OP1 |f
TN -%-RBC, OP2
5 —=MLC, OP1
0.4} ‘\* —*-MLC, OP2
5 90 100
<
03f %,
\* Fig. 5. Hypothesis discriminability va. for T' = 4.
0.2} T ;
R * e 1
. = B = & & = 5 1 ,
01t B - -&-RBC, OP1
' 0.9} ~#-RBC, OP2
= — % e —=-MLC, OP1
L 1 L 1 1 1 1 L —— ML P2
(?.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 08 .0
o
0.7f
Fig. 3. Error in the estimation of the operating points asfor 7" = 10 and
L = 100. 0.6
=]
j)
< o5}
0 % sk s sk % s k- ¥ %k w5 %
10 T ¥ ¥ ¥ ¥ ¥ ¥ x ¥ ¥ * *
T ~&-RBC, OP1 04r
*. -%-RBC, OP2
“y - MLC, OPI 03
—-MLC, OP2 S
. . g8 88—
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Fig. 6. Error in the estimation of the operating points &sfor T = 4.

0.75 0.8
a

0.6 0.65 0.7

0.85 0.9 0.95

Fig. 4. Misclassification rate vex for 7' = 10 and L = 100.

accuracy of the estimation increases as number of obsangati
or number of nodes increases.

To show the robustness of the proposed method to pos-
sible time varying behavior of the Byzantine nodes, we
consider a case where the Byzantines change their operating
point during the observation period. Two classes of nodes
are considered. The honest nodes have an operating point
(pf,pa) = (0.1,0.8). For Byzantine nodes, for each tintg

In Figs. 5, 6 and 7 we compare the performance of thhe probabilities of false alarm and detection are chosen at
classifiers vs. the number of nodésfor 7' = 4 samples. For random with uniform distribution of.75—.2, 0.75+ .2] and
OP1, as the number of nodes increases, the classifier erfor3 —.2, 0.3+ .2], respectively. Moreover, these probabilities
converge to zero. Again for OP2, the error for RBC does nate independent for each tinmie= 1,2,...,7 and for each
converge to zero due to the fact that in this case the Byzantimode. Finally the fraction of the Byzantine nodesris= 0.4.
nodes are collectively more capable than the honest nodesFigs. 10, 11 and 12 shoxop, Az andA g versusT’, respec-

Figs. 8 and 9 show the efficacy of the proposed estimatitively. In evaluatingAop for Byzantines we have compared
method by comparing the variance of the estimated faldee mean of their operating point given loyr5,.3) with the
alarm probability of the honest nodes and the Cramer-Rastimated operating point. We also show the results for the
lower bound of Section V-A. As these figures demonstrate, thase where the operating point of the Byzantines is fixed and
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Fig. 9. The variance op;(1) and the Cramer-Rao lower bound V&.for
Fig. 7. Misclassification rate vd. for T' = 4. L=1

—o—RBC, Fixed OP
-%-RBC, Random OP ||
——MLC, Fixed OP
-%-MLC, Random OP

45xlo'3

4R 0.16F

0.14r

0.12r

0.1p

AOI’

0.08f

0.06r

0.04r

0.021
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L

i ] Fig. 10. Comparison of the error in the estimation of the ojegapoints
Fig. 8. The variance of;(1) and the Cramer-Rao lower bound Vs.for  vs. T for fixed and randomly varying Byzantine operating points.
T = 10.

_ ) _ results are presented that show the proposed algorithnf-sign
is equal to(.75,.3). It can be seen that, as in the case of fixeflyyy outperforms the reputation-based methods in itlass
operating points, the proposed method outperforms the REGinn of the nodes as well as the detection of the hypotheses

method. Moreover, the performances are very close for tbe tWhe estimated operating points are compared to the Cramer-

cases of fixed and randomly varying operating points. This C®ao lower bound which shows the efficacy of the proposed

be explained by the fact that the estimation of probabdité method

false alarm and detection in EM are obtained by evaluating '

the averagenumber of ones transmitted und&l; and H, as

shown in (21) and (22). , ~ APPENDIX
A. Operating Region of Misbehaving Nodes

Consider a node in class, with the operating point
(ps(k),Ux(ps(k))) on its ROC curve. We show that by
We consider the problem of decentralized detection in tlapropriate selection ofy(k) and p; (k) in (5)-(6), a desired
presence of one or more classes of misbehaving nodes. Dperating point(ps(k), pa(k)) can be achieved in the region
fusion center first estimates the nodes’ operating poirts€f bounded by(p¢(k), Ui(ps(k))) and(ps(k), Vi(ps(k))) where

alarm and detection probabilities) on the ROC curve and thép(z) = 1 — Ui (1 — z).

uses this estimation to classify the nodes and to detect theConsider Fig. 13. Denote byl = (p;(k),pq(k)) the
state of nature. We formulate and solve this problem in tloperating point of a node and by = (1 — ps(k), 1 — pa(k))
framework of expectation maximization algorithm. Numatic the reflection ofA at (0.5,0.5). We consider two cases.

VII. CONCLUSION
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0.09 ' | | C
—o—RBC, Fixed OP
Xl - RBC, Random OP
0.08 Y —MLC, Fixed OP || 0.9} ey
-%- MLC, Random OP
0.07F N
0.06F N
0.05f N
N
<
| a0 0.5
0.03F y
0.02f N
0.01f N
)
0 0.1 (pwl)‘\(\b
. (Po,p1)=(0,0)

(0] 0.1 02 03 04 05 06 07 08 09 1
Fig. 11. Comparison of the misclassification rate’dor fixed and randomly Py
varying Byzantine operating points.

Fig. 13. Region of achievable operating points for the nodes

02— =
015l L=10 ——RBC, Fixed OP ||
. -»-RBC, Random OP L. .
otel ~-MLC, Fixed OP_ || Comblnl_ng the_ two cases abov_e we see that the loci of
' * MLC, Random O the operating point of the node will be in the parallelogram
0.14¢ 1 OAC B where point®) andC correspond teg (k) = p1(k) =
i 0 and po(k) = p1(k) = 1, respectively.
' i =0 R ® Consider a Byzantine nodén classc;.. With its transmitted
& odf 1 messagel; ;, this node attempts to mislead the FC regarding
0.08- l the state ofh;. For this, however, the Byzantine must first
detect the sate df, as represented by ;. There is an ROC
0.06 and an operating point (denoted by (k), p4(k)) in Section
0.04} II) associated with this detection rule. Since the trantdit
messagel;  must be based on this detection ), the above
0.021 results show that the operating point as perceived by the FC
0 (pf(k),pa(k)) cannot be arbitrary and must lie in the region

25 30 35 40 A
described above.

Fig. 12. Comparison c_Jf hypothe_sis discriminability \E. for fixed and B. Reputation-Based Node Classifier
randomly varying Byzantine operating points.
\oting rules org-out-of-L rules [2] are commonly employed
in the FC to detect the occurrence of an event in decentcalize
1) Fixed po(k): From (5) and (6), for fixegho(k) = & we sensing [10], [11], [26], [29], [30]. Based on this rule, the
get detected hypothesis i if at leastq out of L nodes vote in
_ _ favor of this event. Wher = 1, ¢ = L andq = L/2, this
pa(k) =mapy (k) +0(1 —ms), (41) rule is denoted by “OR-rule”, “AND-rule”, and the “{\/Iajori{y
where ms; 2 Z;Ef; is the slope of the line between therule”, respectively.
origin and A =" (p;(k), Ux(ps(k))). Therefore in this case The operating point of théth node,1 < I < L, can be
(ps(k),pa(k)) is located on a set of parallel lines with slopeestimated using the transmitted decisions of the node under
ms and they-intercept starting from the origin (correspondinghe estimated hypothesis, i.e.,

to 0 = 0) up to 1 — my; (corresponding t@ = 1).

T .
2) Fixed p;(k): Similar to the previous case, for fixed pr(l) = 2= (1 _Thfzdli (43)
p1(k) = p and using (5) and (6), one can write T—3_1ht
o
pa(k) = mgps(k) + B(1 —mp) (42) pa(l) = M (44)
_ . h
wheremg = i:i;gg is the slope of lineOB. As a result, i P

in this case the region of operating poirfis; (k), pa(k)) is a whereh;, 1 < t < T is the detected hypothesis from the
set of parallel lines with slopg:s and they-intercept starting voting rule at timef, andd; , is the corresponding transmitted
from the origin 3 = 0) and up tol —mg (8 = 1). decision of thelth node.
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The reputation-based classification [12] is based on th®] S. M. Kay, Fundamentals of Statistical Signal Processing: Detection
reputation metricR;, given by

20]
In other words, a node belongs to the class of honest noées

o T=30 ldis — [19]

- T

Honest
=

Ry A (45)

Byzantine

if the fraction of its decisions that do not match the detéctd21]
hypotheses is less than some threshpld

(1]

(2]
(3]

(4]
(5]

(6]

(7]

(8]

(9]

[20]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
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