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Abstract—Wireless sensor networks are prone to node mis-
behavior arising from tampering by an adversary (Byzantine
attack), or due to other factors such as node failure resulting from
hardware or software degradation. In this paper we consider the
problem of decentralized detection in wireless sensor networks
in the presence of one or more classes of misbehaving nodes.
Binary hypothesis testing is considered where the honest nodes
transmit their binary decisions to the fusion center (FC), while
the misbehaving nodes transmit fictitious messages. The goal of
the FC is to identify the misbehaving nodes and to detect the
state of nature. We identify each class of nodes with an operating
point (false alarm and detection probabilities) on the ROC
(receiver operating characteristic) curve. Maximum likelihood
estimation of the nodes’ operating points is then formulated and
solved using the expectation maximization (EM) algorithm with
the nodes’ identities as latent variables. The solution from the
EM algorithm is then used to classify the nodes and to solve
the decentralized hypothesis testing problem. Numerical results
compared with those from the reputation-based schemes show a
significant improvement in both classification of the nodes and
hypothesis testing results. We also discuss an inherent ambiguity
in the node classification problem which can be resolved if the
honest nodes are in majority.

Index Terms—Wireless sensor networks, decentralized hypoth-
esis testing, expectation maximization, sensor node classification,
Byzantine attack.

I. I NTRODUCTION

Wireless sensor networks (WSNs) consist of a large number
of tiny battery-powered sensors that are densely deployed
to sense their environment and report their findings to a
central processor (fusion center) over wireless links. Due
to size and energy constraints, sensor nodes have limited
processing, storage and communication capabilities. In a large
network of such sensors many nodes may fail due to hardware
degradation or environmental effects. While in some cases a
faulty node stops operating altogether, in other cases it may be
misbehaving and reporting false data as in the case of stuck-at
faults [1].

Sensor networks are also vulnerable to tampering. The net-
works are envisioned to be distributed over a large geographic
area with unattended sensor nodes which may be captured and
reprogrammed by an adversary. An adversary can also deploy
its own sensor nodes to transmit false data in order to confuse
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the fusion center (FC). Sensors under an adversary’s control
are often referred to as Byzantine nodes.

In binary hypothesis testing, in order to lower their band-
width requirement and energy expenditures, the sensors often
make a local decision regarding the state of the hypothesis and
only send their binary decision to the FC. Having received the
messages from all the nodes, the FC will detect the hypothesis
using a judicious decision rule [2].

The problem of decentralized detection in the presence
of Byzantine nodes has been investigated by several authors
[3]–[6]. In [4], it is assumed that through collaboration, the
Byzantine nodes are aware of the true hypothesis. The authors
formulate the problem in the context of Kullback-Leibler
divergence and obtain optimal attacking distribution for the
Byzantine nodes using a water-filling procedure. In [5], the
authors consider data fusion schemes in a network under
Byzantine attack and propose techniques for identifying the
malicious users. In [6], the authors consider adding stochastic
resonance noise at the honest and/or Byzantines in order to
enhance the detection performance.

Cooperative spectrum sensing in cognitive radio networks
(CRN) is another example of decentralized hypothesis testing
where the secondary (unlicensed) users make a binary decision
on whether a channel is vacant of the primary (licensed)
user or not, and transmit that decision to the FC. The FC
then processes the received data from all the secondary users
and decides on the state of the channel. This problem is
identical to the classical decentralized detection and recently
several papers have considered cooperative spectrum sensing
in the presence of Byzantine attacks (spectrum sensing data
falsification) [7]–[13]. In [7], sequential probability ratio test
is modified via a reputation-based mechanism in order to filter
out the false data and only accept reliable messages. In [12],
the authors present a scheme for identifying the Byzantine
nodes and strategies for best fusion rule. In [14], a method
is presented to detect the Byzantine nodes based on how
their transmissions compare with those expected from honest
nodes. These approaches are often categorized as reputation-
based fusion rules [12], [15]. We note that in cooperative
spectrum sensing we may also have more than one class
of unreliable nodes. While some malicious users may send
false data in order to gain unfair access to the channel, others
may be sending incorrect data due to the malfunctioning of
their sensing terminal. We should also point out that while
a collaborative CRN may consist of at most tens of radios,
a sensor network may comprise of hundreds or thousands of
nodes. Therefore the proposed algorithms for CRNs may not
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always be scalable for WSNs. However, the proposed method
in this paper is also applicable in the case of cooperative
spectrum sensing in CRNs.

In this paper we assume that there may be more than
one class of misbehaving nodes. We show that from the
point of view of the FC each class can be identified with
a (operating) point on the receiver operating characteristic
(ROC) that corresponds to the decision rule of the sensor
nodes in that class. We first estimate the operating points
of each class. For a fixed hypothesis vector, we formulate
this problem as a maximum likelihood estimation problem
with latent variables that correspond to the class identityof
the nodes. This problem is then solved using the expectation
maximization algorithm. Following this step we detect the
class identity of each node and also detect the hypothesis
vector.

The rest of this paper is organized as follows. The system
model is presented in Section II. In Section III, the proposed
node classifier is introduced, and in Section IV, the problem
of counterpart networks for node classification is presented.
Our performance metrics are introduced in Section V, and
numerical results are provided and conclusions are drawn in
Sections VI and VII, respectively.

II. SYSTEM MODEL

We consider a wireless sensor network consisting ofL
nodes employed to detect the state of natureH ∈ {H0, H1}.
It is assumed that there areK classes of nodes,C =
{c1, c2, · · · , cK}, wherec1 is the class of honest nodes and
c2, · · · , cK denote the otherK − 1 classes of (honest or
misbehaving) nodes. Each node samples the environment once
per unit time and makes a local decision on the state ofH.
It then transmits its binary decision to the FC which, after
receiving a number of transmissions from the nodes, attempts
to classify the nodes and also decide on the state ofH.

Denote byht ∈ {H0, H1} the state ofH at time t =
1, 2, · · · , T and let rl,t ∈ {0, 1}, l = 1, 2, · · · , L, t =
1, 2, · · · , T denote the decision of thelth node at timet
regarding the state ofht. Since all the nodes in a classck
are identical, the probabilities of detection and false alarm for
classck are, respectively, given by

p̃d(k) = P (rl,t = 1|ht = H1, l ∈ ck), (1)

and
p̃f (k) = P (rl,t = 1|ht = H0, l ∈ ck). (2)

As in [4], [5], [12]–[14] we assume that the Byzantine
nodes do not collaborate. While collaboration can improve
the effectiveness of the adversary’s attack, it has its own
drawbacks. Collaboration requires additional infrastructure
such as a FC to coordinate the attacks, as well as increased
communication which can quickly deplete the resources of the
Byzantine nodes. In the absence of such collaboration, we can
assume that, given the hypothesis (H0 or H1), for any time
t the sensor decisionsrl,t, l = 1, 2, . . . , L are conditionally
independent [15]–[17]. In addition, we assume that the sensor
decisions across time are conditionally independent giventhe

hypothesis vectorh = (h1, h2, . . . , hT ), [12], [14] 1. From
these assumptions it follows that given the hypothesis vector
h, the sensor decisionsrl,t, l = 1, 2, . . . , L, t = 1, 2, . . . , T
are conditionally independent.

While an honest nodel ∈ c1 will transmit its decisionrl,t
to the FC, nodes in other classes may choose to do differently.
In particular, letdl,t ∈ {0, 1} denote the message received at
the FC from nodel at time t and define

ρ0(k) , P (dl,t = 1|rl,t = 0, l ∈ ck), (3)

ρ1(k) , P (dl,t = 1|rl,t = 1, l ∈ ck). (4)

Clearly for honest nodes,ρ0(1) = 0 andρ1(1) = 1. Let

pd(k) , P (dl,t = 1|ht = H1, l ∈ ck)

= ρ1(k)p̃d(k) + ρ0(k)(1− p̃d(k)), (5)

and

pf (k) , P (dl,t = 1|ht = H0, l ∈ ck)

= ρ1(k)p̃f (k) + ρ0(k)(1− p̃f (k)). (6)

One may viewpd(k) and pf (k) as the detection and false
alarm probabilities “perceived” by the FC for nodes in class
ck.

Recently in [13], the authors consider the problem of
detecting statistical attacks in cognitive radios using belief
propagation. This approach is similar to the reputation-based
method of [12], [15]. The modeling assumptions in [13] are
similar but somewhat simpler than those presented here. In
particular two types of attackers are assumed. If nodek is
of Type-1, then it attempts to confuse the FC only when
hypothesisH1 is detected by sending a0 with probability
rk and a1 with probability1− rk. On the other hand, if node
k is of Type-2, it tries to confuse the FC when the detected
hypothesis isH0 by sending a1 with probability rk and a0
with probability1−rk. Note thatrk = 0 corresponds to honest
nodes. It is also assumed that there is a subset of trusted nodes
whose identities are known to the FC. In contrast, we do not
assume that such prior information is available at the FC and
our attacker model is more general in that the malicious nodes
may try to confuse the FC under both hypotheses.

Remark 1. In Section III, we present our method for esti-
mating (pf (k), pd(k)) for k = 1, 2, · · · ,K. Our approach
does not depend on how these probabilities are arrived at. In
particular it includes the case that Byzantines, after detecting
the hypothesis, flip their decisions and send it to the FC. This
corresponds topd(k) = 1 − p̃d(k) and pf (k) = 1 − p̃f (k).
Furthermore, we have assumed error free channels between
the sensors and the FC. However, the model presented here
also includes noisy channel models between sensors and the
FC. The effect of the channel transition probabilities can be
included in the parametersρ0(k) and ρ1(k).

The receiver operating characteristic (ROC) of a node in
class ck is denoted byUk, i.e., p̃d(k) = Uk(p̃f (k)). In
the following we refer to the point(pf (k), pd(k)) as the

1This assumption holds for example when the sensors’ observations across
time are contaminated by white noise.
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operating pointof a node in classck. For the honest nodes,
pd(k) = p̃d(k) and pf (k) = p̃f (k), and so their operating
point is (p̃f (k), Uk(p̃f (k)). We show in Appendix A that for
other nodes, the operating point is in a region bounded by
(p̃f (k), Uk(p̃f (k)) and(p̃f (k), Vk(p̃f (k)), whereVk(x) is the
reflection ofUk(x) with respect to the point(0.5, 0.5), i.e.,
Vk(x) = 1−Uk(1−x). These nodes can achieve any operating
point in this region by choosing appropriate values forρ0(k)
andρ1(k).

III. C LASSIFICATION OF THENODES

Let Z = [zl,k], zl,k ∈ {0, 1} for l = 1, 2, · · · , L, k =
1, 2, · · · ,K denote the identification matrix of the nodes
where zl,k = 1 if l ∈ ck and 0, otherwise. To identify the
nodes, the FC collectsT messages from each node and stores
them in a matrixD = [dl,t], l = 1, 2, · · · , L, t = 1, 2, · · · , T
subsequently referred to as the decision matrix. Using the
decision matrix the FC must detect the identification matrixZ

and the hypothesis vectorh = (h1, h2, · · · , hT ).
The maximum likelihood detection rule for(Z,h) is given

by

(Ẑ, ĥ) = argmax
Z,h

P (D|Z,h). (7)

Evaluation of (7) requires the likelihood functionP (D|Z,h)
which is computed below. For a given hypothesis vectorh,
denote the number ofH0’s andH1’s in h by N andM = T−
N , respectively. Also denote the number of correct decisions
of the lth node on hypothesesH0 andH1 by nl andml, 0 ≤
l ≤ L, respectively. In other words, out ofN occurrences of
H0 in h, nodel correctly detectsnl of them, and out ofM
occurrences ofH1 in h, it correctly detectsml of them. We
note that for a given hypothesis vectorh, nl andml can be
calculated from thelth row of D. We have,

P (D|Z,h) =
L
∏

l=1

K
∏

k=1

(

pc(k)
nl(1− pc(k))

(N−nl) (8)

pd(k)
ml(1− pd(k))

(M−ml)
)zl,k

wherepc(k) , 1−pf (k) is the probability of correct rejection.
It can be seen from (8) that the likelihood func-

tion P (D|Z,h) depends on the unknown parameters
(pf (k), pd(k)) for k = 1, 2, · · · ,K. Therefore for the de-
tection problem in (7) the Bayesian or the Neyman-Pearson
rule cannot be implemented. Generalized likelihood ratio test
(GLRT) is often used in detection problems with unknown
parameters [18]. However, for our problem GLRT is not
mathematically tractable. Therefore, in this paper, we fol-
low the following process. For a given hypothesis vector
h we first estimate the operating points(pf (k), pd(k)) for
k = 1, 2, · · · ,K. Using the estimated operating points, we
can implement the maximum a posteriori (MAP) classification
rule for Z. The estimated operating points and identification
matrixZ are then used to implement the maximum likelihood
detection rule for the hypothesis vectorh. We have not been
able to prove the optimality of the proposed method due to
its mathematical intractability. In section VI our simulation

results are compared with the Cramer-Rao lower bound and
show a close match.

A. Estimation of Class Parameters

From (8), it is evident that to detectZ we need to first esti-
mate the operating points(pf (k), pd(k)) for k = 1, 2, · · · ,K.
Note that in the following it is assumed that the hypothesis
vectorh is fixed and all the probabilities are conditioned on
h. For ease of notation, however, we drop this condition from
our notations.

In addition to the operating points of each class, the FC
is also unaware of the fraction of nodes in each class. Let
πk = P (zk,l = 1) denote the probability that nodel belong to
classck and define the matrix of class parameters,Θ, where
its kth row is given by

θ(k) , [pc(k), pd(k), π(k)]. (9)

We would like to estimate the class parametersΘ from
the observation matrixD. Since the conditional probability
P (D|Θ) is not given, we may write the maximum likelihood
estimate forΘ as,

Θ
∗ = argmax

Θ

∑

Z

P (D,Z|Θ). (10)

This may be viewed as a mixture model (withZ as the latent
variables since the nodes are not identified) and can be ef-
fectively solved using the iterative Expectation Maximization
(EM) algorithm [19]. Let us define the log-likelihood function,

L(Θ;D,Z) , logP (D,Z|Θ) (11)

Due to the fact thatZ is latent, with EM we consider the
conditional expectation of (11) under the posterior distribution
of Z givenD andΘ. This is the expectation step of EM. In the
maximization step, this expectation is maximized with respect
to Θ. Denote the current and the revised estimate ofΘ by
Θ

old andΘ
new, respectively. The two steps of EM algorithm

are described below.
1) Expectation: Using the current estimate of the matrix

of class parameters,Θold, find the posterior distribution ofZ
givenD andΘold. Using this distribution find the expectation
of the log likelihood function in (11) for an arbitraryΘ given
by

Q(Θ;Θold) , EZ[L(Θ;D,Z)|D,Θold] (12)

=
∑

Z

P (Z|D,Θold)× L(Θ;D,Z).

2) Maximization: Revise the estimate of class parameters
to maximize the expectation calculated in the previous step,
i.e., let

Θ
new = argmax

Θ

Q(Θ;Θold). (13)

It has been shown that each update of the EM algorithm is
guaranteed to increase the log-likelihood function [20]. This
implies that the EM algorithm will converge regardless of the
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initial value of Θ, [19], [21]. We now present the two steps
of EM algorithm for the problem at hand.

L(Θ;D,Z) = logP (D,Z|Θ) (14)

= log[P (D|Z,Θ)P (Z|Θ)]

= log

L
∏

l=1

K
∏

k=1

π
zk,l

k

[

pc(k)
nl(1− pc(k))

(N−nl)

pd(k)
ml(1− pd(k))

(M−ml)
]zk,l

=
L
∑

l=1

K
∑

k=1

zk,l [log πk + nl log pc(k)

+ (N − nl) log(1− pc(k)) +ml log pd(k)

+ (M −ml) log(1− pd(k)) ] .

To calculateQ(Θ;Θold) in (12) for the expectation step, one
should find the conditional expectation ofL(Θ;D,Z) with
respect toZ. Hence,

Q(Θ;Θold) =
L
∑

l=1

K
∑

k=1

E[zk,l|D,Θold] [log πk + nl log pc(k)

+ (N − nl) log(1− pc(k)) +ml log pd(k)

+ (M −ml) log(1− pd(k)) ] . (15)

We now need to perform the maximization step in (15).
Denotingxl , (nl,ml), 1 ≤ l ≤ L, we have

E(l, k) , E(zk,l|D,Θold) = P (zl,k = 1|xl;Θ
old) (16)

=
π
(old)
k P (xl|zl,k = 1;θ(old)(k))

∑K
j=1 π

(old)
j P (xl|zl,j = 1;θ(old)(j))

,

where,

P (xl|zl,k = 1;θ(old)(k)) (17)

= [p(old)
c (k)]nl [1− p(old)

c (k)](N−nl)

× [p
(old)
d (k)]ml [1− p

(old)
d (k)](M−ml),

and whereθ(old)(k) (thekth row ofΘold) is the current vector
of parameters for thekth class. The quantityE(l, k) can be
interpreted as the probability that classck is responsible for
the decisions made by thelth node. So, the effective number
of nodes assigned to classck, denoted byLk, is given by,

Lk ,
L
∑

l=1

E(l, k). (18)

The estimation of the probability of correct rejection and
the probability of detection for any1 ≤ k ≤ K can be found
by solving (13) as,

∂Q(Θ;Θold)

∂pc(k)
=

L
∑

l=1

E(l, k)

[

nl

pc(k)
− N − nl

1− pc(k)

]

= 0,

(19)

∂Q(Θ;Θold)

∂pd(k)
=

L
∑

l=1

E(l, k)

[

ml

pd(k)
− M −ml

1− pd(k)

]

= 0,

(20)

which after some manipulations results in,

pnew
c (k) =

1

Lk

L
∑

l=1

nl

N
E(k, l), (21)

pnew
d (k) =

1

Lk

L
∑

l=1

ml

M
E(k, l). (22)

Finally, we should maximizeQ(Θ;Θold) with respect to
πk with the constraint that

∑K
k=1 πk = 1. This can be

achieved using Lagrange multiplier method by maximizing the
Lagrangian

Q̃(Θ, ν;Θold) , Q(Θ;Θold) + ν[

K
∑

k=1

πk − 1]. (23)

We have

∂Q̃

∂πk

=

L
∑

l=1

E(l, k)

πk

+ ν = 0 (24)

Multiplying both sides byπk and summing overk we get
ν = −L which results in

πnew
k =

Lk

L
(25)

Since thelog(.) function is concave andE(l, k) ≥ 0, ∀l, k,
it can be seen from (15) thatQ(Θ;Θold) is a concave function
of πk’s (in ℜ+). This followed by the fact that the constraint
∑K

k=1 πk = 1 is linear in πk’s implies that the Lagrange
multiplier method in (24) achieves the optimal solution [22].

B. Classification of the Nodes

Let Θ∗ denote the matrix of class parameters estimated by
the EM algorithm. GivenΘ∗, the conditional probability that
nodel belongs to classck is given by

P (zl,k = 1|xl;θ
∗(k)) (26)

=
π∗
kP (xl|zl,k = 1;θ∗(k))

∑K
j=1 π

∗
jP (xl|zl,j = 1;θ∗(j))

,

whereθ∗(k) is thekth row of Θ∗. The denominator in (26)
is independent ofk. Therefore, the maximum a posteriori
classification rule for nodel (givenΘ

∗) is given by

k∗ = argmax
k

{π∗
kP (xl|zl,k = 1;θ∗(k)), k = 1, 2, · · · ,K},

(27)

and we set

z∗l,k =

{

1 for k = k∗

0 for k 6= k∗.
(28)

C. Estimation of the Hypothesis Vector

In the previous section we showed how to estimate the class
parametersΘ∗ and obtain the node identification matrixZ∗ for
a given hypothesis vectorh. Therefore, in the sequel we denote
these parameters byZ∗(h) = [z∗l,k(h)] andΘ

∗(h). Similarly
N , M , nl, andml are substituted byN(h), M(h), nl(h), and
ml(h), respectively. The maximum likelihood detection rule
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for h obtained from the observation matrixD given Z
∗(h)

andΘ∗(h) is now given by

ĥ = argmax
h

P (D|Z∗(h);Θ∗(h)) (29)

where,

P (D|Z∗(h);Θ∗(h)) = (30)
L
∏

l=1

K
∏

k=1

(

p∗c(k;h)
nl(h)(1− p∗c(k;h))

(N(h)−nl(h))

p∗d(k;h)
ml(h)(1− p∗d(k;h))

(M(h)−ml(h))
)zl,k(h)

,

and where[p∗c(k;h), p
∗
d(k;h), π

∗(k;h)] is the kth row of
Θ

∗(h) denoting the estimated parameters of thekth class
for the hypothesis vectorh. The final estimation of all the
network parameters is given by(ĥ, Ẑ, Θ̂) whereẐ = Z

∗(ĥ)
and Θ̂ = Θ

∗(ĥ). The entire procedure is summarized in
Algorithm 1.

Data: Decision matrix,D
Result: Estimation of identification matrix,̂Z, the matrix

of class parameterŝΘ, and hypothesis vector̂h

begin
forall the possible hypothesis vectors,h ∈ {0, 1}T ,
do

Estimate the matrix of class parameters,Θ
∗(h),

using EM-Algorithm:
Assume an initial value forΘold;
while

∥

∥Θ
new−Θ

old
∥

∥ ≥ ǫ do
E Step: FindE(l, k) using (16);
M Step: EstimateΘnew (pnew

c (k), pnew
d (k) and

πnew
k ) using (21), (22), and (25);

end
Classify the nodes by computingZ∗(h): for each
nodel find k∗ using (27);

end
Detect the hypothesis vector,ĥ from (29);
Find the(ĥ, Ẑ, Θ̂) whereẐ = Z

∗(ĥ) and
Θ̂ = Θ

∗(ĥ).
end

Algorithm 1: Calculation of the identification matrix, the
matrix of class parameters, and the hypothesis vector via the
EM algorithm.

Remark 2. We have assumed that the FC is aware of the
number of classesK. The issue of how to select the number of
classes known as model order selection is a well known prob-
lem in classification. While criteria such as Akaike information
criterion (AIC) or Bayesian information criterion (BIC) have
been proposed, they do not always work satisfactorily and tend
to favor overly simple models [21]. The main issue in model
selection is under- or overfitting the data. However, in large
sensor networks this will not be an issue owing to the fact that
the expected number of classesK is much smaller than the
number of sensorsL. ThereforeK may be overestimated and

yet be much smaller thanL (in which case overfitting will not
occur). If the actual number of classes is smaller, the proposed
algorithm will not assign any nodes to the fictitious classes.

In decentralized detection schemes such as ours, it is
assumed that the nodes only transmit a (binary) quantized
version of their measurement to the FC (instead of their
actual measurement). A question then arises as to how the
FC can identify the nodes. While the nodes can transmit
a label for identification, the overhead associated with this
approach may not be justified given the severely limited energy
and transmission capability of the sensors. We believe that
this issue can be resolved using the media access control
mechanism. Clearly the sensors need some form of arbitration
mechanism to access the channel. The information from that
mechanism can be used by the FC to identify the nodes and
determine which received bit corresponds to which node. For
example the FC may use round-robin scheduling to collect the
nodes’ messages. The information from the nodes’ turn in the
schedule can be used to identify them.

D. Complexity

For a given hypothesis vector, the EM algorithm is very
fast and converges in only a few steps. However, for a vector
of T decisions from the sensors the EM algorithm must be
performed2T times corresponding to the2T possible hypoth-
esis vectors. This increases the complexity of the algorithm
exponentially in terms of the observation interval. However,
as discussed in the numerical section, the proposed algorithm
converges much faster than the reputation-based algorithms
in terms of the number of observation samplesT (A brief
description of the reputation-based algorithms is provided in
Appendix B). Another point to observe is that the rate at which
the state of nature changes is much lower than the rate at which
the sensors sample the environment. In other words, during
an observation time ofT decisions from the sensors, the state
of nature will not change more than a few times. In such a
case the number of vectorsh for which the EM algorithm is
performed is only polynomial inT . For example, in order to
detect a single change inh (from H0 to H1 or vice versa), EM
is performed for only2T possible vectorsh. Furthermore, the
complexity of the proposed algorithm is linear in the number
of nodesL and quadratic in the number of classesK. Given
that sensor networks are expected to consist of hundreds or
thousands of nodes, the linear complexity in the number of
nodes is significant.

IV. COUNTERPARTNETWORKS

In this section we will show that any decision matrixD is
equally likely to be generated by one of two different networks
which we refer to as counterpart networks. For any matrix of
class parametersΘ we can define a counterpart matrix,Θ

(c),
whosekth row, 1 ≤ k ≤ K, is given by

θ
(c)(k) = [p(c)c (k), p

(c)
d (k), π(c)(k)] (31)

= [1− pd(k), 1− pc(k), π(k)]
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Also define the counterpart hypothesis vector,h
(c) , 1T − h

where 1T is a vector of all ones with lengthT . It can be
verified that,

P (D|Z,Θ,h) = P (D|Z,Θ(c),h(c)) (32)

The intuition behind (32) is that the probability of transmitting
a one (or a zero) for a node with the operating point(pf , pd)
underHη, η ∈ {0, 1}, is the same as a node with the operating
point (pd, pf ) underH1−η. Therefore any observed decision
matrix D is equally likely to be generated by one of two
networks, namely{Z,Θ} under the hypothesis vectorh, or
{Z,Θ(c)} under the hypothesis vectorsh(c). This implies that
regardless of the method used, there are always two solutions
for the estimation of the class parameters and the detected
hypothesis vector.

The ambiguity described above can be resolved by assuming
some prior information on the network. In practice, the oper-
ating point of the honest nodes(pf (1), pd(1)) will be above
the chance linepd = pf [23]. If it is known that the class of
honest nodes is the largest class, then the ambiguity can be
resolved by choosing the solution for which the largest class
is above the chance line.

V. PERFORMANCEASSESSMENTMETRICS

To assess the performance of classifiers, two metrics ofdis-
criminability andreliability are often used [24]. Discriminabil-
ity shows how well the classifier distinguishes the different
classes, whereas reliability indicates how well the posterior
probability that a node belongs to a class is estimated by
the proposed method. To show the discriminability of the
classifier, we define the misclassification rate by, [20],

∆Z ,
1

2L

L
∑

l=1

K
∑

k=1

|zl,k − ẑl,k|. (33)

Similarly the performance of our hypothesis detection scheme
is evaluated by thehypothesis discriminabilitygiven by

∆H ,
1

T

T
∑

t=1

|ht − ĥt|. (34)

To estimate the accuracy of the estimation of the nodes’
operating points we define the following measure based on
the normalized Euclidean distance between the estimated and
actual operating points, i.e.,

∆OP ,
1√
2

K
∑

k=1

πk

√

(pd(k)− p̂d(k))2 + (pf (k)− p̂f (k))2.

(35)

Note that the three measure in (33)-(35) are appropriately
normalized so as to be in the interval[0, 1].

A. The Cramer-Rao Bound

To evaluate the efficacy of the expectation maximization
algorithm in estimating the class parameters we would like
to compare our results with the Cramer-Rao lower bound
(CRLB). However, computation of CRLB for our estimation

problem is difficult due to the mixture model which involves
the latent variablesZ and the hypothesis vectorh. However,
CLRB can be computed for the case that the identification
matrixZ and the hypothesis vectorh are known. This provides
a lower bound to the estimation errors of the proposed method
in which Z andh are not assumed to be known a priori. For
given Z and h, we defineζk =

∑L
l=1 zl,k, M =

∑T
t=1 ht,

andN = T − M. Let Dk be derived fromD by removing
any row j if zj,k 6= 1 and letDk,η be obtained fromDk

by removing any columnt such thatht 6= η. It is clear that
the dimension ofDk,0 and Dk,1 are ζk × N and ζk × M,
respectively. Finally, denote bydk,0 (resp.dk,1) the 1× ζkN
(resp.1×ζkM) vector formed by stacking rows ofDk,0 (resp.
Dk,1) next to each other. For any unbiased estimatep̂f (k), the
conditional variance of̂pf (k) is bounded by [25],

var{p̂f (k)|pf (k)} ≥
[

E

[

∂ lnP (dk,0 1|pf (k))
∂pf (k)

]2
]−1

(36)

where 1 is a column vector of all1’s with length ζkN .
Unbiasedness of the proposed algorithm has been shown
through extensive simulations some of which is presented in
Section VI. For knownZ andh, we have

P (dk,0 1 = ℓ|pf ) = [pf (k)]
ℓ[1− pf (k)]

ζkN−ℓ. (37)

Therefore after some manipulations we get

E

[

∂

∂pf (k)
lnP (dk,0|pf )

]2

(38)

=

ζkN
∑

ℓ=0

(

ζkN
ℓ

)

ℓ2 + ζ2kN 2[pf (k)]
2 − 2ℓζkNpf (k)

[pf (k)]2−ℓ[1− pf (k)]2−ζkN+ℓ

=
ζkN

pf (k)(1− pf (k))

Following the same approach forp̂d(k), the Cramer-Rao lower
bounds are given by

var{p̂f (k)|pf (k)} ≥ pf (k)(1− pf (k))

ζkN
, (39)

var{p̂d(k)|pd(k)} ≥ pd(k)(1− pd(k))

ζkM
. (40)

VI. N UMERICAL RESULTS

In this section, employing the metrics in Section V, we
evaluate the performance of the proposed method referred to
as maximum-likelihood classifier (MLC) and also compare our
results with the reputation-based classifier (RBC) algorithm
[12], [26]. In RBC when the network parameters (e.g., the
nodes’ operating points) are known, the optimalq-out-of-L
rule can be computed (see for example [16], [27]). However,
when the FC is not aware of all the network parameters
as is the case here, majority rule has been used in [12]
and is also used here for our comparisons. In addition, in
(45) the thresholdλ can be set following a Neyman-Pearson
criterion, for example by setting a threshold on the probability
of misclassifying the honest nodes as Byzantines. Moreover, if
the fraction of honest nodes is known to the FC as in [12], then
λ can be set to minimize the probability of classification error.
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TABLE I
CLASS PARAMETERS OF EACH SET OF OPERATING POINTS

Set pf pd π

OP1
0.1 0.9 0.6
0.9 0.3 0.4

OP2
0.2 0.7 0.6
0.9 0.15 0.4

OP3

0.2 0.7 0.4
0.9 0.15 0.15
0.9 0.9 0.2
0.05 0.05 0.25

In our case, however, the FC is not aware of the fraction of
honest nodes. Therefore we set the thresholdλ = .5. For this
choice ofλ the probability that an honest node is misclassified
as Byzantine is the same as the probability that a Byzantine
node is misclassified as honest. Other values of the threshold
can favor the classification of honest nodes as Byzantines or
vice versa.

Simulation results are obtained from at least104 indepen-
dent trials. The EM algorithm is assumed to have converged
when

∥

∥Θ
new−Θ

old
∥

∥ < ǫ = 10−3. Moreover, to overcome
the ambiguity of the counterpart networks, we assume that
the honest nodes are in majority. This implies that for a
network consisting of two classes the break down point of
the algorithm is at 50% [28]. In Figs. 1, 2 and 9-12 where
a performance metric is presented vs.T , the number of
possible hypothesis vectors2T is too large to evaluate (29)
exhaustively. Therefore in these cases it is assumed that during
the observation period there is at most one change in the
hypothesis vectorh which may occur at random anywhere
from time2 to T −1. This assumption, which as mentioned in
Section III-D is applicable in practice, is only made to reduce
the computational complexity of our simulations. However,
the efficacy of the proposed method is not affected by this
assumption as other figures verify.

Three sets of operating points, denoted OP1, OP2 and
OP3, are considered. Table I shows the class parameters
corresponding to each operating point. For OP1 and OP2
there are two classes of honest and Byzantine nodes. The FC
perceives the operating point of the Byzantines,(pf , pd), to
be that listed in Table I. One may view the Byzantines as
having anactual operating point(1−pf , 1−pd), but flipping
their decisions before transmission to the FC. Comparing
the operating point of honest nodes and the actual operating
point of Byzantine nodes in OP2 reveals that the Byzantine
nodes are more capable of detecting the event under both
hypotheses (i.e., with smaller probability of false alarm and
higher probability of detection). For OP3, four classes of nodes
are considered. The first class with the operating point(.2, .7)
comprises the honest nodes. The second class are Byzantine
nodes with the operating point(.9, .15), while the third and
fourth classes are “almost-always-yes” and “almost-always-
no” nodes. The almost-always-yes nodes try to convince the
FC that the hypothesis isH1 by transmitting a1 most of the
times, and increase the overall false alarm rate of the system.
In contrast, the almost-always-no nodes transmit a0 most of
the time and decrease the overall probability of detection.

Figs. 1 and 2 show the performance of the classifiers vs. the

number of received decisions,T . It is evident that the accuracy
of node classification and the estimation of the operating points
improve withT . Moreover the proposed algorithm converges
much faster than the reputation-based method requiring fewer
number of observation samples. Note that since RBC can only
discriminate nodes into two classes, in the case of OP3∆Z

is not defined. The figures also show that the performance of
classifiers for OP1 is better than for OP2 and OP3. The reason
is that the misbehaving nodes are more capable in the latter
two cases. In particular in the case of OP2, the RBC method
fails completely. This is due to the fact that even though only
40% of the nodes are Byzantine, because of their operating
point (0.9, 0.15) vs. the operating point of the honest nodes
(0.2, 0.7), collectively the Byzantine nodes are more capable
than the honest nodes and can mislead the FC.

Fig. 1. Error in the estimation of the operating points vs.T for L = 100
nodes.

Fig. 2. Misclassification rate vs.T for L = 100 nodes.

Figs. 3 and 4 compare the performance of the classifiers
vs. the ratio of the honest nodes to the total number of nodes
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(denoted byα) for T = 10. The operating points are OP1
and OP2 shown in Table I. As expected the performance of
the classifiers improves withα. It is seen that while RBC
can effectively classify the nodes in the case of OP1, the
computation of the operating points is not very accurate.
Moreover for OP2 the performance of RBC is not acceptable
and fails completely forα ≤ .6.

Fig. 3. Error in the estimation of the operating points vs.α for T = 10 and
L = 100.

Fig. 4. Misclassification rate vs.α for T = 10 andL = 100.

In Figs. 5, 6 and 7 we compare the performance of the
classifiers vs. the number of nodesL for T = 4 samples. For
OP1, as the number of nodes increases, the classifier errors
converge to zero. Again for OP2, the error for RBC does not
converge to zero due to the fact that in this case the Byzantine
nodes are collectively more capable than the honest nodes.

Figs. 8 and 9 show the efficacy of the proposed estimation
method by comparing the variance of the estimated false
alarm probability of the honest nodes and the Cramer-Rao
lower bound of Section V-A. As these figures demonstrate, the

Fig. 5. Hypothesis discriminability vs.L for T = 4.

Fig. 6. Error in the estimation of the operating points vs.L for T = 4.

accuracy of the estimation increases as number of observations
or number of nodes increases.

To show the robustness of the proposed method to pos-
sible time varying behavior of the Byzantine nodes, we
consider a case where the Byzantines change their operating
point during the observation period. Two classes of nodes
are considered. The honest nodes have an operating point
(pf , pd) = (0.1, 0.8). For Byzantine nodes, for each timet,
the probabilities of false alarm and detection are chosen at
random with uniform distribution on[0.75− .2, 0.75+ .2] and
[0.3− .2, 0.3+ .2], respectively. Moreover, these probabilities
are independent for each timet = 1, 2, . . . , T and for each
node. Finally the fraction of the Byzantine nodes isπ2 = 0.4.
Figs. 10, 11 and 12 show∆OP , ∆Z and∆H versusT , respec-
tively. In evaluating∆OP for Byzantines we have compared
the mean of their operating point given by(.75, .3) with the
estimated operating point. We also show the results for the
case where the operating point of the Byzantines is fixed and
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Fig. 7. Misclassification rate vs.L for T = 4.

Fig. 8. The variance of̂pf (1) and the Cramer-Rao lower bound vs.L for
T = 10.

is equal to(.75, .3). It can be seen that, as in the case of fixed
operating points, the proposed method outperforms the RBC
method. Moreover, the performances are very close for the two
cases of fixed and randomly varying operating points. This can
be explained by the fact that the estimation of probabilities of
false alarm and detection in EM are obtained by evaluating
the averagenumber of ones transmitted underH1 andH0 as
shown in (21) and (22).

VII. C ONCLUSION

We consider the problem of decentralized detection in the
presence of one or more classes of misbehaving nodes. The
fusion center first estimates the nodes’ operating points (false
alarm and detection probabilities) on the ROC curve and then
uses this estimation to classify the nodes and to detect the
state of nature. We formulate and solve this problem in the
framework of expectation maximization algorithm. Numerical

Fig. 9. The variance of̂pf (1) and the Cramer-Rao lower bound vs.T for
L = 10.

Fig. 10. Comparison of the error in the estimation of the operating points
vs. T for fixed and randomly varying Byzantine operating points.

results are presented that show the proposed algorithm signif-
icantly outperforms the reputation-based methods in classifi-
cation of the nodes as well as the detection of the hypotheses.
The estimated operating points are compared to the Cramer-
Rao lower bound which shows the efficacy of the proposed
method.

APPENDIX

A. Operating Region of Misbehaving Nodes

Consider a node in classck with the operating point
(p̃f (k), Uk(p̃f (k))) on its ROC curve. We show that by
appropriate selection ofρ0(k) andρ1(k) in (5)-(6), a desired
operating point(pf (k), pd(k)) can be achieved in the region
bounded by(p̃f (k), Uk(p̃f (k))) and(p̃f (k), Vk(p̃f (k))) where
Vk(x) = 1− Uk(1− x).

Consider Fig. 13. Denote byA = (p̃f (k), p̃d(k)) the
operating point of a node and byB = (1− p̃f (k), 1− p̃d(k))
the reflection ofA at (0.5, 0.5). We consider two cases.
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Fig. 11. Comparison of the misclassification rate vs.T for fixed and randomly
varying Byzantine operating points.

Fig. 12. Comparison of hypothesis discriminability vs.T for fixed and
randomly varying Byzantine operating points.

1) Fixedρ0(k): From (5) and (6), for fixedρ0(k) = δ we
get

pd(k) = mαpf (k) + δ(1−mδ), (41)

where mδ , p̃d(k)
p̃f (k)

is the slope of the line between the
origin andA = (p̃f (k), Uk(p̃f (k))). Therefore in this case
(pf (k), pd(k)) is located on a set of parallel lines with slope
mδ and they-intercept starting from the origin (corresponding
to δ = 0) up to 1−mδ (corresponding toδ = 1).

2) Fixed ρ1(k): Similar to the previous case, for fixed
ρ1(k) = β and using (5) and (6), one can write

pd(k) = mβpf (k) + β(1−mβ) (42)

wheremβ , 1−p̃d(k)
1−p̃f (k)

is the slope of lineOB. As a result,
in this case the region of operating points(pf (k), pd(k)) is a
set of parallel lines with slopemβ and they-intercept starting
from the origin (β = 0) and up to1−mβ (β = 1).

Fig. 13. Region of achievable operating points for the nodes.

Combining the two cases above we see that the loci of
the operating point of the node will be in the parallelogram
OACB where pointsO andC correspond toρ0(k) = ρ1(k) =
0 andρ0(k) = ρ1(k) = 1, respectively.

Consider a Byzantine nodel in classck. With its transmitted
messagedl,t, this node attempts to mislead the FC regarding
the state ofht. For this, however, the Byzantine must first
detect the sate ofht as represented byrl,t. There is an ROC
and an operating point (denoted by(p̃f (k), p̃d(k)) in Section
II) associated with this detection rule. Since the transmitted
messagedl,t must be based on this detection (rl,t), the above
results show that the operating point as perceived by the FC
(pf (k), pd(k)) cannot be arbitrary and must lie in the region
described above.

B. Reputation-Based Node Classifier

Voting rules orq-out-of-L rules [2] are commonly employed
in the FC to detect the occurrence of an event in decentralized
sensing [10], [11], [26], [29], [30]. Based on this rule, the
detected hypothesis isH1 if at leastq out of L nodes vote in
favor of this event. Whenq = 1, q = L and q = L/2, this
rule is denoted by “OR-rule”, “AND-rule”, and the “Majority-
rule”, respectively.

The operating point of thelth node,1 ≤ l ≤ L, can be
estimated using the transmitted decisions of the node under
the estimated hypothesis, i.e.,

p̂f (l) =

∑T
t=1(1− ĥt)dl,t

T −∑T
t=1 ĥt

(43)

p̂d(l) =

∑T
t=1 ĥtdl,t
∑T

t=1 ĥt

, (44)

where ĥt, 1 ≤ t ≤ T is the detected hypothesis from the
voting rule at timet, anddl,t is the corresponding transmitted
decision of thelth node.
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The reputation-based classification [12] is based on the
reputation metric,Rl, given by

Rl ,
T −∑T

t=1 |dl,t − ĥt|
T

Honest
≷

Byzantine
λ, (45)

In other words, a node belongs to the class of honest nodes
if the fraction of its decisions that do not match the detected
hypotheses is less than some thresholdη.
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