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EE – 3410 Electric Power 
Fall 2003 

Instructor: Ernest Mendrela 
 

Electromechanical Energy Conversion  
Introduction to Electric Machines 

 
 

1. The very first experience with electric (linear) motors 
 
An operation of any electromechanical device, in that number electric machines, it is 

electric motors and generators, can be seen as:  
a) An impact of magnetic field on a piece of ferromagnetic material, 
b) An interaction of two magnetic fields: magnetic field of primary part and 

magnetic field of secondary part; the secondary magnetic field can be 
generated: 
- either by a current flowing in a winding (conductor),  
- or by permanent magnet. 

The machines that belong to the group (a) are called the reluctance motors, and the 
machines that operates on the basis of the mode (b) are the rest of the majority of electric 
machines, it is generators and motors. We will discuss these various electric machines 
starting with our very first experience with permanent magnets. In electric machines the 
basic requirement for the primary magnetic field is: it has to be in motion. It can move 
with: 

- translation motion – we call it a magnetic travelling field, which exists in linear 
machines 

- rotary motion – a rotating magnetic field, which is in rotating machines 
- complex motion - described by two or three space co-ordinates, which is generated 

in electric motors with two degrees of mechanical freedom, e.g.: 
• rotary-linear motors with helical motion of the rotor, 
• motors with spherical rotor 
• X-Y linear motors. 

In the following sections we will concentrate on the linear machines. The rotating 
machines will be seen as a geometrical conversion of the flat linear structure into the 
cylindrical or disc structure. 

 
1.1. Reluctance (linear) synchronous motor  
 

Imagine, we have the bar permanent magnet and we slide it under the table-top as 
shown in Fig.1. Above is the iron bar, which is pulled by the magnetic field of permanent 
magnet. In this perticular case the magnetic travelling field is obtained by the permanent 
magnet, called the primary part or “stator”, which is driven by our hand with a speed v. 
The, so-called, secondary part or “rotor” is moving slightly behind the magnetic 
traveling field of the primary part but with the same speed v. Since it moves 
synchronously with the magnetic travelling field we call this motor a synchronous motor. 
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The name reluctance means, that the reluctance of the magnetic circuit, which the 
magnetic flux is closed through, will change as the flux is moving on, because of finite 
length of a secondary part. Due to this change the magnetic force is produced that acts on 
the “rotor”. If the secondary part would be very (infinitely) long there would be no 
magnetic force Fx that drive the “rotor”. There will be only attractive force Fy (see Fig.1).  

 

N SN

“Rotor” (Fe)

“Stator” (permanent magnet)

Φ (magnetic flux)

S v (speed)

x

 
 
Fig.1 Linear reluctance motor formed by moving permanent magnet and a piece of solid 

iron 
 
 
1.2. Permanent magnet (linear) synchronous motor  
 

The secondary part can be in a form of permanent magnet as shown in Fig.2. In this 
case the magnetic force acting on the “rotor” is an effect of interaction of two magnetic 
fields: one produced by the “stator” and another one by the “rotor”. The “rotor” moves 
here synchronously with the magnetic field of the “stator”. Because of that, and, since the 
secondary part is in form of permanent magnet the motor is called a permanent magnet 
synchronous motor. 
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Fig.2 Linear permanent magnet synchronous motor formed by the moving “stator” 

permanent magnet that is pulling the “rotor” permanent magnet 
 
 

So far we analyzed the motors where the primary magnetic field has been produced 
by the permanent magnet. This can be replaced by the electromagnet. Its coil may be 
supplied from the dc voltage source as it is shown in Fig.3. The operation of the motor 
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does not differ from the previous motor and to get the magnetic flux moving we must 
push the electromagnet. The motor still can be called permanent magnet linear 
synchronous motor. 

 
 

“rotor”

N S

“stator”

NS NS

vv

coil supplied with
dc current  

 
Fig.3 Permanent magnet (linear) synchronous motor: “stator” magnetic field is produced 

by the coil supplied from the dc source 
 
 
1.3 Synchronous (linear) motor 
 

The permanent magnet of the secondary part can be replaced by the electromagnet as 
shown in Fig.4. In this case the motor is called synchronous linear motor. 
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Fig.4 Linear synchronous motor: “stator” and “rotor” are electromagnets 
 
 
The rotating counterpart of the linear motion structure shown in Fig.4 is the machine 

(in this particular case – motor) shown in Fig.5. The stator (primary part) electromagnets, 
supplied by the current i1 represent a rotating magnetic field that rotates with angular 
speed ωm. The rotor electromagnet supplied by the current i2 is driven by the torque T, 
slightly behind the stator magnetic field by an angle δ but with the same speed ωm.  

The magnetic force, which acts on the secondary magnet, depends on the mutual 
displacement of both parts. If this displacement is expresses in terms of the angle δ as 
shown in Fig.6, then the force Fm changes, practically, sinusoidally as shown in the graph 
in Fig.7. 
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              Fig.5 Rotary synchronous motor 
 
 
The angle δ is counted from the primary part to the secondary part. Therefore it is 

negative. The maximum negative value the force reaches at angle (-900). The force can be 
expressed by the function: 

 
 ( )δsinmaxFFm =                                                               (1) 

 
or expressed in terms of Cartesian’s coordinate: 
 







= xFFm τ

πsinmax                                                               (2) 

 
where τ is the magnetic pole-pitch (see Fig.4). 
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Fig.6 Linear synchronous motor Fig.7 Force (torque) – power angle 

characteristic of linear (rotary) synchronous 
motor 

 
 

In case of cylindrical structure shown in Fig.5 the rotor rotates synchronously with 
the stator magnetic flux due to the torque T acting on the rotor. Its value depends 
sinusoidaly on the angle δ as shown in Fig.7. 
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2. Force and torque in electric machines 
 

In electric motors the electric energy is converted into mechanical energy. In electric 
generator the process of energy conversion is reversed: a mechanical energy is converted 
into electrical energy. In both cases the magnetic field (magnetic flux Φ - see Fig.8) is the 
medium in the electromechanical conversion process.  
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Fig.8 Illustration to electromechanical energy conversion 
 
 
Look at Fig.8. In the linear synchronous motor the electric energy is delivered to the 

system through the “stator” and “rotor” winding terminals called electrical ports. This 
energy is converted to the energy of magnetic field, which is next converted into 
mechanical energy. The entire process of energy conversion is shown schematically in 
Fig.9. For the generator the process is reversed: the mechanical energy is delivered to the 
rotor through a rotor shaft and due to the magnetic flux generated by the rotor current it is 
converted into electrical energy leaving the system through the stator winding terminals 
(Fig.10). 
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Fig.9 Diagram of electromechanical energy conversion; no power losses are included 
 
 
During the process of energy conversion the power losses dissipate in the system. In 

the rotor and stator windings a part of electrical energy is converted into heat due to 
Ohmic power losses in the winding resistance. In the rotor and stator cores, part of field 
energy is lost. In the mechanical part of the system part of mechanical energy is lost as 
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heat in bearings and due to the friction between the rotating rotor and the air (windage 
losses). The process of energy conversion with inclusion of power losses is shown in 
Fig.11. These power losses are converted into the heat energy. 

 

S

N T

N

Sωm

δ i

i1

2

v1
v2Φ

 
 

Fig.10 Illustration to electromechanical energy conversion in rotary synchronous 
generator 
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Fig.11 Diagram of electromechanical energy conversion with inclusion of power losses 
 
 

2.1 Field energy 
 
In both: motor and generator the field energy is converted either into electric or 

mechanical energy. In permanent magnet machine the magnetic flux is generated by the 
magnet and in case of electromagnet the magnetic field is generated by the current.  

To determine the magnetic field energy stored in the motor let us consider the 
electromagnetic structure shown in Fig.12 consisting of primary part, which does not 
move and the secondary part, that can move and which does not have the winding. Let 
assume that at present the secondary part does not move. Suppose we increase now the 
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current in the primary winding from 0 to i1. The magnetic flux will rise from 0 to Φ1 as 
shown in Fig.13. We can express the magnetic flux as the flux linkage Φ⋅= Nλ , which 
is the product of a number of winding turns and the magnetic flux. In case of the real 
magnetic circuit the λ-i curve is not linear due to the saturation of the iron core. For the 
linear magnetic circuit the λ-i characteristic is a straight line as shown in Fig.13.b. This 
straight line is described by the equation: 

 
iL ⋅=λ                                                                    (3) 

 
where L is a current i coefficient known as winding inductance. If we differentiate both 
sides of the above equation assuming L = const, we will obtain the equation for the 
voltage e induced in the winding:  

 

dt
diL

dt
de ==
λ                                                               (4) 
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Fig.12 Illustration to derivation of formula for field energy  
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Fig.13 Magnetic linkage-current characteristic for: (a) – nonlinear system, (b) – for linear 
system 
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The electric power is equal: 
 

e
dip e i L i
dt

= ⋅ =                                                               (5) 

 
Since the relation between the power and energy is 
 

e
e

dW p
dt

=                                                                   (6) 

 
The increment of electric energy: 
 

e edW p dt e i dt L i di= ⋅ = ⋅ ⋅ = ⋅ ⋅                                                  (7) 
 
In this particular case this energy is a part of the total electric energy delivered to the 

winding (see Fig.11): 
 

v vdW p dt= ⋅                                                               (8) 
where: 

 
2

vp v i R i e i= ⋅ = ⋅ + ⋅                                                             (9) 
 
Thus We is equal to the magnetic field energy stored in the magnetic flux: 
 

fe WW =                                                                   (10) 
 
If the power losses in all elements of the system are ignored and the secondary part is 

moving, then, during the differential time interval dt the increment of electrical energy 
dWe is equal to the sum: 

 
e f mdW dW dW= +                                                        (11) 

 
where dWm is the increment of mechanical energy equal to mechanical work done during 
the time dt by the moving secondary part. 

If the losses cannot be neglected they can be dealt with separately. They do not 
contribute to the energy conversion process. 

When the flux linkage is increased from zero to λ1 by means of increase of current 
from 0 to i1, the energy stored in the field is (Fig.14): 

 
1

0
fW i d

λ

λ= ∫                                                                (12) 
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             Fig.14 Field energy on λ-i characteristic 

 
 
Suppose the air gap of the system in Fig.12 increases. The λ-i characteristic will 

become more flat and straight (see Fig.15). To maintain the same magnetic flux (flux 
linkage) greater current should flow in the winding and consequently greater energy is 
stored in the magnetic circuit (Fig.16). Since the volume of magnetic core remained 
unchanged the increase of field energy occurred in the air-gap. 
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Fig.15 λ-I characteristics for various air-
gaps in the machine  

Fig.16 Field energy in the machine with 
different air-gap 

 
 
The energy stored in the field can be expressed in terms of other quantities, e.g. 

magnetic flux density B in the air gap g. To find flux density B for a given current i in the 
winding we will use the equivalent magnetic circuit of the system shown in Fig.17. This 
circuit does not differ from electric circuit for a dc current and the analogy between the 
electric and magnetic quantities are shown in Table 1. 

 
Table 1  

Electric circuit Magnetic circuit 
Electromofive force (emf) E [V] 
Current I [A] 

Magnetomotive (mmf) Fm = I·N [A·turns] 
Magnetic flux Φ [Wb] 
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Resistance of conductor 
w

w

lR
A γ

=  [Ω] 

where: lw – length of wire [m], 
Aw – cross-section area of the 

wire [m2], 
γ – conductivity [..] 
 

Ohm’s law: 
Ei
R

=  

Magnetic resistance (reluctance) of magnetic 
circuit 

m
m

m

lR
A µ

=  [1/H]                       (13)

where: lm – length of magnetic circuit [m], 
Am – cross-section area of magnetic 

circuit [m2] 
µ – magnetic permeability [H/m] 

Ohm’s law: 
m

m

F
R

Φ =                            (14)

 
Φm

Fm

Rg

R cHcl c

Hg lg

     
 
 
Magnetic flux Φ is a product: 
 

mB AΦ = ⋅                                                        (15) 
 

of B [T] – magnetic flux density, and Am [m2] . For the linear magnetic circuit a flux 
density is equal 

 
B H µ= ⋅                                                        (16) 

 
where H [A/m] – is the magnetic field intensity in the magnetic circuit. 

The Ohm’s law for magnetic circuit written in other form is: 
 

m mF R= Φ ⋅                                                        (17) 
 
Inserting (13), (15) and (16) into (17) we obtain: 

Fig.17 Equivalent magnetic circuit of the 
electromagnetic system shown in Fig.12 
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m
m

m

m

m

lI N B A
A

lH

H l

µ

µ
µ

⋅ = ⋅

= ⋅

= ⋅

                                                       (18) 

 
where H·lm – is the magnetic voltage drop across reluctance of the magnetic circuit. 

Consider now the electromagnetic system shown in Fig.12 with its magnetic 
equivalent circuit in Fig.17. Let  

Hc - magnetic intensity in the core 
Hg - magnetic intensity in the air gap 
lc – total length of the magnetic core  
lg – length of the air-gaps 
 
Then  

1 c c g gN i H l H l⋅ = +                                                        (19) 
 
The flux linkage: 

mN N A Bλ = ⋅Φ = ⋅ ⋅                                                        (20) 
 
From Eqs.12, 19 and 20: 
 

c c g g
f m

H l H l
W N A dl

N
+

= ⋅ ⋅∫                                                        (21) 

 
For the air-gap 

0
g

BH
µ

=                                                                     (22) 

 
where µ0 – is the magnetic permeability of the vacuum (air-gap) equal to 74 10π −  [H/m] 

From Eqs.21 and 22 
 

0

0

2

02

f c c g m

c m c m g

c c g

fc c fg g

fc fg

BW H l l A dB

BH dB A l dB A l

BH dB V V

w V w V

W W

µ

µ

µ

 
= + ⋅ 

 
 

= ⋅ ⋅ + ⋅ ⋅ 
 

= ⋅ + ⋅

= ⋅ + ⋅

= +

∫

∫

∫                                     (23) 
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where: 

fc cw H dB= ∫  - is the energy density in the magnetic core 
2

02fg
Bw
µ

=  - is the energy density in the air-gap 

Vc – is the volume of the magnetic core 
Vg – is the volume of the air-gap 
Wfc – is the energy in the magnetic core 
Wfg – is the energy in the air-gap 
 

For a linear magnetic core: 
 

c
c

c

BH
µ

=                                                                    (24) 

therefore 
 

2

2

c
fc c c

c

c
c

c

BW dB V

B V

µ

µ

= ⋅

= ⋅

∫
                                                                   (25) 

 
Looking at Eqs. 23 and 25 we see that the field energy is inversely proportional to the 

permeability µ and straight proportional to the volume V. If we have the 
electromechanical system shown in Fig.12, in which the same flux density is in both: iron 
cores and air-gap (the same flux Φ and the same cross-section area are for both parts), the 
magnetic energy is stored mainly in the air-gap, since the core permeability is equal to 

c o rµ µ µ= , and the relative permeability for unsaturated iron is 1000rµ > . 
 

 
2.2 Co-energy 

 
To calculate the attractive magnetic force acting on the movable part we will 

introduce the quantity called co-energy. It is defined as: 
 

1
'

0

i

fW diλ= ⋅∫                                                        (26) 

 
It does not have any physical significance. Co-energy and energy of the system is shown 
in Fig.18. From Fig.18 

 
'
f fW W iλ+ = ⋅                                                        (27) 
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If λ-i characteristic is nonlinear: '
f fW W>  (Fig.19 – curve g1), but if λ-i characteristic 

is linear (straight line g2): '
f fW W= . If the air-gap increases from g1 to g2 and the current 

remains unchanged the co-energy will decrease as shown in Fig.19. 
 

i0

fW

fW ‘

λ1

λ

i 1  
 

λ

i

g
gλ 1

2
1

0 i1

W’f1

W’f2

λ 2

 

Fig.18 Field energy Wf and field co-energy 
Wf’ 

Fig.19 Field co-energy for two different 
values of air-gap in the system 

      
 

2.3 Mechanical energy and forces 
 
Let us consider the system in Fig.20. Let the secondary part moves from one position 

(x = x1) to another position (x = x2). The λ-i characteristics of the system for these two 
positions are shown in Fig.21. If the secondary part has moved slowly the current, equal 
to /i v R=  remains the same at both positions in the steady state because the coil 
resistance does not change and the voltage is set to be constant.  
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Fig.20 Electromechanical system with movable and stationary parts 
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   Fig.21 Illustration to the magnetic force derivation 
 
 
The operation point has moved upward from point a → b. During the motion: 
 

2

1

( )edW e i dt i d area abcd
λ

λ

λ= ⋅ ⋅ = ⋅ =∫ ∫                                                        (28) 

 
the increment of electric energy has been sent to the system. The field energy has 
changed by the increment 
 

(0 0 )fdW area bc ad= −                                                                               (29) 
 
The mechanical energy  
 

( ) (0 ) (0 )
(0 )

m e fdW dW dW
area abcd area ad area bc
area ab

= −

= + −
=

                                              (30) 

 
is equal to the mechanical work done during the motion of the secondary part and it is 
represented by the shaded area in Fig.21. This shaded area can be seen also as the 
increase in the co-energy: 

 
'

m fdW dW=                                                                               (31) 
Since: 

m mdW f dx=                                                                               (32) 
 

the force fm that is causing differential displacement is: 
 

( )' ,f
m

i const

W i x
f

x
=

∂
=

∂
                                                                              (33) 
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2.3.1 Force in linear system 
 
Let us consider again the system shown in Fig.20. The reluctance of the magnetic core 
path can be ignored due to the high value of µc (see Eq.13) and the λ-i characteristic is 
assumed to be linear. The coil inductance L1 depends on the reluctance of the magnetic 
circuit. From Eqs.3 and 14 we obtain 
 

m

m

N FL
R i
⋅

=                                                                               (34) 

 
From Eqs.13 and 34, after transformation we obtain: 
 

2
mN AL

g
µ

=                                                                               (35) 

 
That means that inductance L depends on length of the air-gap, so it is the function of x 
co-ordinate (see Fig.20). Thus for the idealized system: 
 

( )L x iλ =                                                                               (36) 
 
where L(x) changes its value with the gap length.   
Since the field co-energy is: 
 

'

0

i

fW diλ= ⋅∫                                                                          (37) 

 
after inserting Eq.36 for λ we obtain: 
 

( )

( )

'

0

21
2

i

fW L x i di

L x i

= ⋅

=

∫
                                                                         (38) 

 
The magnetic force acting on the secondary part we obtain from Eqs.33 and 38: 
 

( )

( )

2

2

1
2

1
2

m
i const

f L x i
x

dL x
i

dx

=

∂  =  ∂  

=

                                                                (39) 

 
For a linear system the field energy is equal to the co-energy (Fig.19 – line g2), thus: 
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( )' 21
2f fW W L x i= =                                                                         (40) 

 
Force fm can be expressed also in terms of magnetic flux density in the air-gap Bg. If we 
assume that Hc is negligible (due to high permeability µc of the core), then for mechanical 
system in Fig.20 we obtain from Eq.19: 
 

0

2 2g
g

B
Ni H g g

µ
= =                                                                     (41) 

and  

0

2gB
i g

Nµ
=                                                                     (42) 

 
From Eqs.35, 38 and 42 we obtain: 
 

2
'

0

2
2

g
f g

B
W A g

µ
= ⋅ ⋅                                                             (43) 

 
The above expression can be obtained also from the field energy. For the linear magnetic 
circuit '

f fW W= , therefore from Eq.23 (for negligible magnetic energy stored in the 
core): 
 

2
'

0
2

0

2

2
2

g
f g

g
g

B
W V

B
A g

µ

µ

= ⋅

= ⋅ ⋅

                                                            (44) 

 
where Ag is the cross-section area of the air-gap. 

From Eqs.33 and 43 the force acting on the secondary part is: 
 

2

0

2

0

2
2

2
2

g
m g

g
g

B
f A g

g

B
A

µ

µ

 ∂
= ⋅ ⋅  ∂  

= ⋅

                                                            (45) 

 
It means that the magnetic force is proportional to the magnetic flux density in square. 

The magnetic pressure Fm that is often used is calculated as the force per unit area of 
air-gap. Thus from Eq.45 we have (the cross-section area of the air-gap is 2Ag): 
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2

02
g

m

B
F

µ
=                                                                          (46) 

 
The expression 45 can be used to calculate the force in all electromechanical devices 
where the magnetic flux density in the air-gap is known. So it can also be applied to 
determine the driving force in all these primitive linear motors shown in Fgs.1 - 4. Let us 
consider the reluctance linear “motor” shown in Fig.22. The magnetic force acting on the 
“rotor” (and the same force, but in opposite direction, acts on the “stator”) is expressed 
by Eq.45. The driving force fx acting on the “rotor” is the tangential (to x axis) component 
that can be determined from fm if we know the angle β or the mutual displacement ∆x 
between two motor parts. 

If we have the reluctance motor with the primary part as an electromagnet (Fig.23) 
we can use formula 39 to determine the linear force fx acting on the secondary part. The 
data that we have to know is the current i flowing in the “stator” winding and the 
inductance L(x) expressed as the function of x coordinate. If the “rotor” is infinitely long 
in x direction as in Fig.24, then L = const. with respect to x direction and according to 
Eq.23 the force fx = 0 despite very strong attractive force fy acting on the “rotor”. 
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Fig.22 Force components in linear reluctance motor 
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Fig.23 Force component Fx produced in the linear reluctance motor  
 
 
The Eqns.39 and 45 for force was derived for the system with the coil wound on the 
primary part only. We derive now the force equation for the linear system with the coil 
wound also on the secondary part (Fig.20) as it is in synchronous linear motors shown in 
Fig.8. To do this let us assume again that the secondary part does not move and the field 
energy is equal to the electric energy: 
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1 1 2 2

1 1 2 2

f edW dW e i dt e i dt
i d i dλ λ

= = +

= +
                                                            (47) 
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Fig.24 No driving force in the motor with infinitely (very) long “rotor” 
 
 
In the linear system (the λ-i characteristic is represented by the straight line; see Fig13.b) 
the flux linkages can be expressed in terms of inductances that are constant:  
 

1 11 11 12 2

2 21 1 22 2

L i L i
L i L i

λ
λ

= +
= +

                                                            (48) 

 
where: L11 – is the self inductance of the excitation winding 

L22 – is the self inductance of the moveable part winding 
L12 and L21 – are the mutual inductances between two windings 
 

From Eqs.33 and 34: 
 

( ) ( )
( )

1 11 1 12 2 2 22 2 21 1

11 1 1 22 2 2 12 1 2

fdW i d L i L i i d L i L i

L i di L i di L d i i

= + + +

= + +
                                             (49) 

 
The field energy is equal to the field co-energy for the linear systems. Thus we have: 
 

( )
1 2 1 2

'
11 1 1 22 2 2 12 1 2

0 0 0

2 2
11 1 22 2 12 1 2

1 1
2 2

i i i i

f fW W L i di L i di L d i i

L i L i L i i

= = + +

= + +

∫ ∫ ∫
                                             (50) 

 
In the system analyzed here the inductances depend on the value of an air-gap. It 

means, that they are functions of position x of secondary part. According to Eq.33 the 
force developed by the linear system: 
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( )'

2 211 22 12
1 2 1 2

,

1 1
2 2

f
m

i const

W i x
f

x

dL dL dLi i i i
dx dx dx

=

∂
=

∂

= + +

                                             (51) 

 
 

The first two terms are the two force components known as reluctance forces. The 
third one is called an electromagnetic force. This force exists even if self inductances do 
not depend on x co-ordinate, it is if there are no two first components. This type of 
situation exists in the system shown in Fig.25, where either two or one of the part is 
infinitely (very) long. When the secondary moves with respect to the primary, self 
inductances of the coils remain unchanged, and only the mutual magnetic coupling 
(mutual inductance) changes. 

 

i1

i2

 
 
Fig.25 Coils in the infinitely long “stator” and “rotor” cores 
 
 
 

Equilibrium equations 
 
To analyze transients in the windings and dynamic behavior of the motors we have to 

write equilibrium equations for electrical ports and mechanical port. The equilibrium 
equations for electrical ports are terminal voltage equations for both primary and 
secondary windings written on the basis of the second (voltage) Kirhhoff’s law applied to 
equivalent circuit of both windings shown in Fig.26. Equation for mechanical port is the 
equation of motion for mechanical system of the motor shown in Fig.27, and written in 
accordance with the Newton’s Law of Motion. The equations written for the 
electromechanical system shown in Fig.20 are as follows: 

- for electrical ports:  
 

1
1 1 1v R i

t
λ∂

= +
∂

                                                               (52) 

2
2 2 2v R i

t
λ∂

= +
∂

                                                             (53) 

 
- for mechanical port:  
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2

2m L
d x dxf M D f
dt dt

= + +                                              (54) 

 
where: 

M – is mass of the movable part 
D – friction coefficient of the movable secondary part 
fL – load force  
 
In the above voltage equations the terminal voltages are equal to the voltage drops 

across the winding resistances and the voltages e1 and e2 (see Fig.26) induced in the 
windings by the fluxes linked with them. In the motion equation the electromagnetic 
force developed by the motor is equal to the inertia force, friction force and load force. 

 
 

i R
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v  
 
Fig.26 Equivalent circuit of the electromechanical system in Fig.20 
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Fig.27 Equivalent mechanical system of the electromechanical system in Fig.20 
 
 
The derivatives: 
 

( )( ) ( )( )

( ) ( ) ( ) ( )

11 1 12 21
1

11 121 2
11 1 12 2

L x i L x i
e

t t t
dL x dL xdi didx dxL x i L x i

dt dx dt dt dx dt

λ ∂ ∂∂
= = +

∂ ∂ ∂

= + + +

                        (55) 
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( )( ) ( )( )

( ) ( ) ( ) ( )

22 2 21 12
2

22 212 1
22 2 21 1

L x i L x i
e

t t t
dL x dL xdi didx dxL x i L x i

dt dx dt dt dx dt

λ ∂ ∂∂
= = +

∂ ∂ ∂

= + + +

                        (56) 

 
 

Examples of electromechanical devices with a linear (oscillating) motion: 
 
- transformer with moving coil (for secondary voltage variation) (Fig.28) 

R1

v1 L11

x

R 1i

2iR2R

L22

M(x)

v2

e 1

e 2

Voltage equations: 

t
iRv

∂
∂

+= 1
111

λ                                                     

t
iRv

∂
∂

+= 2
222

λ                                                   

since   1 11 11 12 2 2 21 1 22 2L i L i and L i L iλ λ= + = +            
and 11 22 12 21, ( )L L and L L M x= =  are constant in 

time 

( )1 2
1 1 1 11

di div R i L M x
dt dt

= + + , or 1 1 1 1v R i e= +        

( )2 1
2 2 2 22

di div R i L M x
dt dt

= + + , or 2 2 2 2v R i e= +     

Fig.28 Equivalent circuit of 
transformer 

 

 
Changing the distance between the coils we influence M(x) and we change the 

voltage e2 and v2. 
 
- jumping ring (Fig.29) 

v

C

Φ

Φ
X

X

i1

i2

i1

      Fig.29 Jumping ring 
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Idea of operation: Magnetic flux of the coil Φcoil induces the voltage E2 (and the 
current i2) in the ring. The current i2 in the ring contributes to the flux Φring. This flux 
opposes the flux Φcoil according to phasor diagram in Fig.30.b (the inductances L11 and 
E22 are assumed to be much greater than the resistances R1 and R2). As the result the ring 
is repelled out of the coil. 

 
(a)      (b) 
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Fig.30 Equivalent circuit of the jumping ring (a), and its phasor diagram (b) 
 
When the distance between the coil and ring changes, then the resultant inductance of 

the coil is changing too. If the capacitor C has the value that brings the coil circuit into 
resonance when the ring is at lowest position, then the heavy coil current contributes to 
the strong force that repels the ring upwards. When the ring is far from the coil the 
resonance disappears, consequently the lifting force goes to zero and the ring falls down. 
There the resonance occurs again and the ring is repelled again. The resultant effect is the 
jumping ring. The equivalent circuit of the device with jumping ring is shown in Fig.30.a. 

 
- induction linear oscillator (Fig.31) 
The phenomenon described above is applied in induction oscillation motor shown 

schematically in Fig.31. Two coils are placed at the ends of the ferromagnetic bar. Both 
 

v
C C

  

Fig.31 Scheme of induction linear 
oscillator 
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are connected in parallel to the AC source via capacitors. If the ring placed between them 
is close to one of the coil then the resonance occur in the coil and strong repulsion 
produced force throws the ring to the other coil. When the ring appears close to this coil 
the resonance of this coil will contributes to the repulsion of the ring to the opposite coil. 
Consequently, the ring oscillates between the coils. 

 
- Reluctance linear oscillator (Fig.32) 

 
The ferromagnetic bar loosely placed in the coil is suspended by the attractive 

magnetic force produced by the coil magnetic flux (Fig.32.a). When the bar moves in the 
coil the coil inductance changes its value. If the capacitor connected in series to the coil is 
chosen to put the circuit into resonance when the bar is at lower position (see Fig.32.b), 
then, due to the heavy resonance current, a strong magnetic force pulls the bar upwards 
into the coil. There the circuit is out of resonance and due to the small current (and no 
magnetic force at the center of the coil) the bar falls down. When it comes at the end of 
the coil the resonance appears again, pulling the bar upwards. In consequence the bar will 
oscillate in vertical position. 

If the coil is placed in horizontal position as in Fig.33, then the resonance current 
appear at both ends. The bar will oscillate in horizontal position. To increase the 
efficiency of the oscillator end-rings are placed at both ends (see Fig.34). At the end of 
the bar track the kinetic energy of the moving bar is not lost but converted into the 
potential energy of the spring and next returned to the bar. This reluctance oscillator is 
more efficient than the induction oscillator because there are no current losses in the 
moving part. 

 
(a)           (b) 
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Fig.32 Circuit diagrams: (a) ferromagnetic bar suspended by the magnetic field, (b) 
electromagnetic device with jumping ferromagnetic bar 
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Fig.33 Scheme of the reluctance linear oscillator with the current and coil inductance 
characteristics 
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Fig.34 Reluctance linear oscillator with end springs 
 
 
2.3.2 Torque in rotating machines 
 

Let us consider the rotating electromagnetic system shown in Fig.35, in which the 
stator possesses winding 1 and the rotor – winding 2. The field co-energy is expressed by 
Eqn.50. The torque developed by the motor is 
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( )' ,f

i const

W i
T

θ
θ

=

∂
=

∂
                                             (57) 

 
From Eqs.50 and 57: 
 

2 211 22 12
1 2 1 2

1 1
2 2

dL dL dLT i i i i
d d dθ θ θ

= + +                                              (58) 
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Fig.35 Rotary motor with salient pole stator and rotor 
 
The first two terms are reluctance torques and the third one is an electromagnetic torque. 
For the motor with the round rotor (Fig.36) there is no torque represented by the first 
term, since the self inductance of the stator L11 does not depend on the position of the 
torque (the magnetic flux generated by the first winding does not change as the rotor 
rotates). Therefore the torque of this motor is described by the following equation: 
 

2 22 12
2 1 2

1
2

dL dLT i i i
d dθ θ

= +                                              (59) 
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Fig.36 Motor with the salient pole stator and round rotor 
 
 

Suppose the stator has cylindrical structure and the rotor has salient magnetic poles as 
shown in Fig.37. In such a motor, known as synchronous motor with salient poles, the 
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self inductance of the rotor winding L22 does not change as the rotor rotates. Therefore 
the torque equation takes the form: 

 
2 11 12
1 1 2

1
2

dL dLT i i i
d dθ θ

= +                                              (60) 

 
The first term is the reluctance torque, and the second one is known as a synchronous 
torque. 
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Fig.37 Motor with round stator and salient pole rotor 
 
 
Machines with cylindrical stator and rotor 
 
A scheme of cylindrical machine is shown in Fig.38. The self inductances are constant 
and therefore no reluctance torque is produced. The torque developed by the motor is 
 

12
1 2

dLT i i
dθ

=                                                               (61) 
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Fig.38 Motor with cylindrical stator and rotor 
 
Let the mutual inductance changes sinusoidally: 
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12 cosL M θ=                                                              (62) 
where: M – is the peak value of mutual inductance 

θ – is the angle between the magnetic axis of the stator and rotor windings. 
 

Let the currents in the two windings be: 
 

1 1 1cosmi I tω=                                                            (63) 

( )2 2 2cosmi I tω α= +                                                  (64) 
 
The position of the rotor with respect to the stator depends on rotor speed and is: 
 

mtθ ω δ= +                                                                (65) 
 
where: ωm – is the angular velocity of the rotor 

δ – is the rotor position at t = 0 
 
From Eqns.61, 62, 63, 64 and 56 we have: 
 

( ) ( )

( )( ){
( )( )
( )( )
( )( )

1 2 1 2

1 2
1 2

1 2

1 2

1 2

cos cos sin

sin
4

sin

sin

sin

m m m

m m
m

m

m

m

T I I M t t t
I I M t

t

t

t

ω ω α ω δ

ω ω ω α δ

ω ω ω α δ

ω ω ω α δ

ω ω ω α δ

= − + +

 = − + + + + 

 + − + − + 
 + + − − + 
 + − − + + 

                                             (66) 

 
The torque is the sum of four components, which vary sinusoidally with time. Therefore 
the average value of each component is zero unless the coefficients of t are zero. Thus the 
average torque will be nonzero if: 
 

( )1 2mω ω ω= ± ±                                                                           (67) 
 
The machine will develop average torque if it rotates in either direction at a speed that is 
equal to the sum or difference of the angular frequencies 2 fω π=  of the stator and the 
rotor currents 
 

1 2mω ω ω= ±                                                                              (68) 
 
There are two practical cases: 
 

1) ω2 = 0, α = 0, ωm = ω1: (single-phase synchronous machine). Rotor carries dc 
current, stator ac current. 
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For these conditions, from Eqn.66 
 

( ){ }1 2
1sin 2 sin

2
m mI I MT tω δ δ= − + +                                              (69) 

 
The instantaneous torque is pulsating. It will be constant for poly-phase machine. 

To find the average torque from Eqn.69 we see that average of ( )1sin 2 tω δ+  is zero. It 
means the average torque is: 

 
1 2 sin

2av
I I MT δ= −                                                              (70) 

 
If ωm = 0 (at starting) the (single-phase) machine does not develop the average 

torque. 
 

2) ωm = ω1 - ω2 (asynchronous single-phase motor). Both stator and the rotor carry 
ac currents at different frequencies and rotor speed ωm ≠ ω1 and ωm ≠ ω2 
 
From Eq.66 
 

( ) ( ){
( ) ( )}

1 2
1 2

1 2

sin 2 sin 2
2

sin 2 2 sin

m mI I MT t t

t t

ω α δ ω α δ

ω ω α δ α δ

= − + + + − − +

+ − − + + +
                          (71) 

 
The instantaneous torque is pulsating (it is constant in poly-phase motor). The 

average value of the torque is: 
 

( )1 2 sin
4

m m
av

I I MT α δ= − +                                                              (72) 

 
At ωm = 0 the average torque is zero. A single-phase machine should be brought 

to the speed different than 0 so it can produce an average torque.  
This is the principle of operation of induction motor. 
 
 

Equilibrium equations 
 
Similar as for linear motor the equilibrium equations for rotating machine are as 

follows: 
- for electrical ports: voltage equations (the same as Eqns.52 and 53). 

 
1

1 1 1v R i
t
λ∂

= +
∂

                                                               (73) 
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2
2 2 2v R i

t
λ∂

= +
∂

                                                             (74) 

The derivatives: 
 

( )( ) ( )( )

( ) ( ) ( ) ( )

11 1 12 21

11 121 2
11 1 12 2

L i L i
t t t

dL dLdi d di dL i L i
dt d dt dt d dt

θ θλ

θ θθ θθ θ
θ θ

∂ ∂∂
= +

∂ ∂ ∂

= + + +

                        (75) 

 
( )( ) ( )( )

( ) ( ) ( ) ( )

22 2 21 12

22 212 1
22 2 21 1

L i L i
t t t

dL dLdi d di dL i L i
dt d dt dt d dt

θ θλ

θ θθ θθ θ
θ θ

∂ ∂∂
= +
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= + + +

                        (76) 

 

The term mt
θ ω∂

=
∂

 is the angular speed of the rotor. For the motor considered the 

mutual inductances L12 = L21 = M, thus: 
 

( ) ( ) ( ) ( )111 1 2
1 11 1 2m m

dL dMdi die L i M i
t dt d dt d

θ θλ θ ω θ ω
θ θ

∂
= = + + +

∂
                         (77) 

 

( ) ( ) ( ) ( )222 2 1
2 22 2 1m m

dL dMdi die L i M i
t dt d dt d

θ θλ θ ω θ ω
θ θ

∂
= = + + +

∂
                        (78) 

 
The voltages induced in the windings (see Fig.36) form two groups. The first one 

contains the voltages: 
 

( ) ( )1 2
1 11t

di die L M
dt dt

θ θ= +                                                      (79) 

( ) ( )2 1
2 22t

di die L M
dt dt

θ θ= +                                                      (80) 

 
induced due to the variation in time of the magnetic fluxes represented by the currents 
that generate them. These types of voltages are induced in transformers (index t). The 
second group: 

 
( ) ( )11

1 1 2r m m

dL dM
e i i

d d
θ θ

ω ω
θ θ

= +                                            (81) 

 
( ) ( )22

2 2 1r m m

dL dM
e i i

d d
θ θ

ω ω
θ θ

= +                                           (82) 
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are the voltages induced by the rotation of the rotor. In that number the first terms are the 
voltages induced by the saliency of the rotor and do not exist in the motor with 
cylindrical stator and the rotor (see Fig.38). The second terms are the voltages induced by 
the mutual rotation of the two windings. 
 

- for mechanical port: motion equation (Fig.39) 
 

2

2 s l
d dT J D T T
dt dt

θ θ
= + + +                                              (83) 

where: 
J – moment of inertia of the rotor 
D – friction coefficient of the rotor 
Tl – load torque 
Ts – torsional torque (see Fig.40 – two torques act in opposite directions and they 

twist the shafts by angle ∆θ), which is due to the rotor shaft elasticity and is 
given by: 

 
( )s sT K θ= ∆                                                                           (84) 

 
where Ks is the torsional coefficient. 
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Fig.39 Equivalent diagram for mechanical system of the rotary motor: Tm – 

electromagnetic torque, TJ – inertia torque, TD – friction torque, TL – load torque 
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Fig.40 Twist (by the angle ∆θ) of the elastic shaft caused by electromagnetic torque of 

the motor Tm and load torque TL acting in oposite direction 
 


