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Abstract

This paper presents some new approaches to mixed performance control problems of linear systems.

The design techniques proposed in this paper are based on numerical search of the norm bounded

stable transfer matrix Q in the H∞ and H2 suboptimal controller parameterizations so that the

additional performance specifications are satisfied. The design problems are then converted to some

finite dimensional nonlinear unconstrained optimization problems by explicitly parameterizing the

H∞ or H2 norm bounded stable transfer matrix Q for any fixed order. Finally, some two-stage

optimization algorithms are applied to find the optimal parameters. Numerical examples have

shown significant performance improvements of the proposed algorithms over those in the existing

literature.

1 Introduction

The fundamental objective of a feedback control system design is to achieve desired performance

despite of model uncertainties and external disturbances. It is well-known in the control community

that there are intrinsic conflicts between achievable performance and system robustness. A well

thought control system design is to make some suitable tradeoffs between performance and system

robustness. It is therefore desirable to develop design techniques that can optimally and system-

atically perform such performance and robustness tradeoffs. It is therefore not surprising that

multiobjective (or mixed performance) optimal control has become a crucially important research

area in the last decade or so.

Many approaches have been proposed in the literature to solve mixed performance problems.

An overview of various approaches to multi-objective design is presented by Vroemen and Jager

(1997). However, it is impossible to review all approaches and works related to mixed performance

problems. Hence only some most related work will be described here. Bernstein and Haddad (1989)

proposed for the first time the mixed H2/H∞ as a way to formulate a meaningful optimization

problem to the standard H∞ control problem by using the Lagrange multiplier method. Later on,

Khargonekar and Rotea (1991), and Halder et al (1997) addressed the mixed H2/H∞ problem and

converted the state feedback mixed design into a convex optimization problem. A time domain

signal formulation for a dual mixed H2/H∞ problem was presented and characterized by Doyle

et al (1994) and Zhou et al (1990,1994). In a different direction, Limebeer et al (1994) and Chen

and Zhou (2001) considered Nash game approaches to these mixed problems. Solutions based on

linear matrix inequalities (LMI) to multi-objective problems have also been proposed for output

feedback control by Oliveira et al (1999), and Scherer et al (1997). In this design, the objectives
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are formulated in terms of a common Lyapunov function. However, this formulation tends to

be very conservative. Clement and Duc (2000) presented an extension to this method in order

to use different Lyapunov functions for each design objective. Hindi et al (1998), and Scherer

(1995, 2000) proposed to combine LMI’s with the Youla parameterization in order to search for

the optimal Youla parameter in a finite dimensional space. Similarly, Qi et al (2001) proposed

finite dimensional approximations for the Youla parameter in order to solve mixed problems with

time-domain contraints. Thus, an optimal solution is reached by approximating it from below

and above. Due to its physical interpretation, the mixed H2/H∞ design has also been applied to

the optimal filtering problem, e.g. (Khargonekar et al 1996, Rotstein et al 1996). Multi-objective

H2/H∞ problems have also been characterized in terms of their duality description (Djouadi et al

2001). Furthermore, Chen et al (2000) extended the H2/H∞ design to nonlinear systems by using

a fuzzy output feedback controller.

Another mixed problem, the L1/H∞ control was synthesized via convex optimization of finite

dimensional approximations by Sznaier and Bu (1998). Haddad et al (1998) revisited the L1/H∞
problem, but now a fixed structure controller is suggested and optimality conditions are derived for

its solution. Sznaier and Blanchini (1994) proposed the design of rational mixed L1/H∞ suboptimal

controllers by solving a sequence of finite dimensional auxiliary problems. On the other hand,

solutions to the H2/L1 problems were presented by Amishima et al (1988), Voulgaris (1994), and

Wu and Chu (1999) where quadratic programming problems were introduced to reach a solution. In

addition, Salapaka and Khammash (1998) and Salapaka et al (1999) approached theH2/L1 problem

by obtaining upper and lower bound convergence methods that involve the Q parameter in the Youla

parameterization. Sznaier and Amishima (1998) studied the H2 problem with time constraints

and suggested approximations to the optimal solutions by solving some quadratic programming

problems. In general, most of approaches presented in the literature do not solve directly the true

mixed performance problem by either optimizing an upper bound of the true performance or using

a related performance criterion since the original mixed performance problem is a highly complex

and nonlinear constrained optimization problem.

In recent years, evolutionary schemes have been extensively used to solve nonlinear constrained

optimization problems where multi-local minima can restrict global convergence. Evolutionary

schemes are inspired by the natural selection criteria where the stronger organisms are likely to

survive after generations. Thus, a parallelism can be drawn with an optimization problem where

the evolution period is considered as the optimization time and the most fitted organism in the

population will represent the optimal solution. Two evolutionary schemes, evolution algorithms and

genetic algorithms, are most commonly used. These algorithms present two main characteristics:
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a multi-directional (random) search and an information exchange among best solutions. These

properties can generate new search directions in order to avoid local minima. Applications of

genetic algorithms to control and signal processing have been reported in literature: digital IIR

filter design (Man et al 1999), adaptive recursive filtering (White and Flockton 1997), active noise

control (Tang et al 1995), systems model reduction (Li et al 1997), weighting function design for

H∞ loop-shaping (Whidborne et al 1995), etc.

Motivated from those successful applications of the evolutionary algorithms, it seems nature to

apply these algorithms such as genetic algorithms to the above mentioned multiobjective optimiza-

tion problems. Nevertheless, it is unlikely to produce any reasonable results if these algorithms

are applied blindly since the optimization parameter spaces are too large. In this paper, we shall

propose design techniques that explicitly parameterize the free transfer matrix Q in the H∞ and

H2 suboptimal controller parameterizations such that the optimization parameter spaces are highly

restricted and then evolutionary algorithms such as genetic/evolution algorithms can be applied

effectively to produce the desired results. In addition to the computational advantage, the proposed

technique may produce mcuh lower order controllers than those using Youla parameterization and

convex optimization.

The rest of the paper is organized as follows. First, notations and some definitions used in the

paper are presented in Section 2. Next, the suboptimalH∞ andH2 controller parameterizations are

introduced in Section 3. Section 4 gives some explicit parameterizations of norm bounded H∞ and

H2 functions. In Section 5, various multi-objective design problems are presented and optimization

schemes are proposed. Section 6 outlines a two-stage optimization scheme that will be applied in

Section 7 to solve those multi-objective problems. Finally, some numerical examples are shown in

Section 7 and the paper is concluded with some remarks in Section 8.

2 Notations and Definitions

Let G(s) be an MIMO transfer matrix with the following state-space realization

G(s) =


 A B

C D


 =




G11(s) . . . G1m(s)
...

. . .
...

Gp1(s) . . . Gpm(s)


 (1)

Let H2 denote the space of all strictly proper and stable transfer matrices. The H2 norm is defined

as

‖G‖2
2 =

1
2π

∫ ∞

−∞
Trace[G∗(jω)G(jω)]dω (2)
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It can be computed by using the state space representation of G. For a stable and strictly proper

G (i.e. A is stable and D = 0), we have

‖G‖2
2 = Trace(BT QB) = Trace(CPCT ) (3)

where P and Q are the controllability and observability Gramians which can be obtained by solving

the following Lyapunov equations

AP + PAT + BBT = 0 AT Q + QA + CT C = 0. (4)

Let RH∞ denote the space of all proper and real rational stable transfer functions. The H∞ norm

is defined as:

‖G‖∞ = sup
Re(s)>0

σ̄[G(s)] = sup
ω∈R

σ̄[G(jω)]. (5)

The L1 norm of a stable transfer matrix is defined as

‖G‖1 = max
1≤i≤p

m∑

j=1

‖gij‖1 (6)

where gij(t) = L−1 {Gij(s)} and

‖gij‖1 =
∫ ∞

0
|gij(t)|dt (7)

Consider a feedback system described by the block diagram in Figure 1 where the generalized plant

G and the controller K are assumed to be real-rational and proper with y(t) ∈ Rp2 and u(t) ∈ Rm2 .

Let G be partitioned accordingly as

G =




A B1 B2

C1 D11 D12

C2 D21 D22


 =


 G11 G12

G21 G22


 (8)

and

K =


 Ak Bk

Ck Dk




Then the transfer function from w to z is given by

Tzw = Fl (G,K) = G11 + G12K(I −G22K)−1G21 =


 Acl Bcl

Ccl Dcl


 (9)

where

Acl =


 A + B2R̃

−1DkC2 B2R̃
−1Ck

BkR
−1D21 Ak + BkR

−1D22Ck



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Bcl =


 B1 + B2R̃

−1DkD21

BkR
−1D21




Ccl =
[

C1 + D12DkR
−1C2 D12R̃

−1Ck

]

Dcl = D11 + D12DkR
−1D21

R = I −D22Dk, R̃ = I −DkD22

and Fl (·, ·) is called a lower linear fractional transformation.

3 H∞ and H2 Suboptimal Controller Parameterizations

Consider the generalized feedback system described in Figure 1 with the generalized plant G given

by (8) with some suitable assumptions. Then it is well known that all stabilizing controllers K(s)

satisfying the suboptimal H∞ condition, ‖Tzw‖∞ < γ for a given γ > 0, can be parameterized as

K = Fl (M∞, Q) with Q ∈ RH∞, ‖Q‖∞ < γ where

M∞ =




Â B̂1 B̂2

Ĉ1 D̂11 D̂12

Ĉ2 D̂21 D̂22


 =


 M11 M12

M21 M22


 (10)

and M∞ is constructed from the solutions of two Riccati equations (Doyle et al 1999, Zhou et

al 1996, Zhou and Doyle 1997). In the case of Q = 0, the solution, K = M11, is called the

central controller. Note that there is no guarantee that M∞ is itself stable even though the closed-

loop system is stable. It is noted that M∞ and Q are (p2 + m2)× (p2 + m2) and m2 × p2 transfer

matrices respectively.

To consider the H2 optimal control problem, we shall assume for simplicity that D11 = 0 and

D22 = 0. The case where D22 6= 0 can be dealt with easily. It is also well known that all stabilizing

controllers for the generalized plant G can be written as K = Fl (M2, Q) with

M2 =




Â2 −L2 B2

F2 0 I

−C2 I 0


 (11)

where Â2 = A + B2F2 + L2C2 and F2 and L2 can be constructed from the solutions of two related

Riccati equations, see (Zhou et al 1996, Zhou and Doyle 1997). It is then clear that the closed-loop

H2 norm is given by

‖Tzw‖2
2 = ‖GcB1‖2

2 + ‖F2Gf‖2
2 + ‖Q‖2

2 (12)
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where the definition of the transfer matrices Gc and Gf can be found in (Zhou et al 1996, Zhou and

Doyle 1997). Consequently, Q = 0 represents the optimal solution to theH2 problem. As in theH∞
parameterization, M2 and Q are (p2 + m2)× (p2 + m2) and m2 × p2 transfer matrices respectively.

Let γ2
opt = ‖GcB1‖2

2 + ‖F2Gf‖2
2. Then for any γ > γopt, all suboptimal H2 controllers satisfying

‖Tzw‖2 < γ can be parameterized as K = Fl (M2, Q) with Q ∈ RH2 and ‖Q‖2
2 < γ2 − γ2

opt.

4 Parameterizations of H∞ and H2 Norm Bounded Functions

It is now clear that if a controller is required to satisfy both the H∞ norm constraint, ‖Tzw‖∞ < γ,

and some additional performance objectives, it has to come from the family of H∞ controllers

parameterized in the last section. In other words, a stable Q with ‖Q‖∞ < γ must be found

to satisfy the additional performance objectives. Similar observations can be made for problems

involving H2 performance objectives. To find a suitable Q ∈ RH∞ with ‖Q‖∞ < γ or a Q ∈ RH2

with ‖Q‖2 <
√

γ2 − γ2
opt, it is desirable to have more explicit characterizations of these norm

bounded analytic functions that are appropriate for numerical optimization.

Stein and Bosgra (1991) presented a parameterization for an H∞ norm bounded strictly proper

and stable transfer matrix. That result was extended to the proper case (Campos and Zhou 2001)

by the following lemma.

Lemma 1 Let γ > 0 and let Q be a stable transfer matrix of degree nq and ‖Q‖∞ < γ. Then Q

can be represented as Q =


 Aq Bq

Cq Dq


 with Aq = Aqk

+ Aqs for some Aqk
= −AT

qk
∈ Rnq×nq ,

Bq ∈ Rnq×p2, Cq ∈ Rm2×nq , Dq ∈ Rm2×p2, and

Aqs =
1
2

(
−BqR

−1DT
q Cq − CT

q DqR
−1BT

q −BqR
−1BT

q − CT
q (I + DqR

−1DT
q )Cq

)
(13)

σ̄(Dq) < γ (14)

where R = γ2I −DT
q Dq.

Proof: Assume that Q =


 Âq B̂q

Ĉq Dq


 ∈ RH∞ is a nth

q order observable realization and ‖Q‖∞ <

γ, then according with the Bounded Real Lemma (Zhou et al 1996) σ̄(Dq) < γ and ∃Y > 0 such

that

Y (Âq + B̂qR
−1D∗

q Ĉq) + (Âq + B̂qR
−1D∗

q Ĉq)∗Y + Y B̂qR
−1B̂q

∗
Y + Ĉq

∗
(I + DqR

−1D∗
q)Ĉq = 0 (15)

where R = γ2I −D∗
qDq. Since Y > 0, there exists a Cholesky factorization of Y = T ∗T . Now T is
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invertible and can be used as a similarity transformation on Q

Q =


 TÂqT

−1 TB̂q

ĈqT
−1 Dq


 =


 Aq Bq

Cq Dq


 (16)

Thus, the Riccati equation in (15) becomes

Aq + A∗q + BqR
−1D∗

qCq + C∗
q DqR

−1B∗
q + BqR

−1B∗
q + C∗

q (I + DqR
−1D∗

q)Cq = 0 (17)

Furthermore, Aq can be decomposed into a symmetric part Aqs and a skew symmetric part Aqk

where

Aqs = (Aq + A∗q)/2 Aqk
= (Aq −A∗q)/2 (18)

Consequently, the skew symmetric part Aqk
disappears from (17) and the result in (13) is obtained.

2

Note that when Dq = 0, we have (Stein and Bosgra, 1991)

Aqs = −1
2
(BqB

T
q /γ2 + CT

q Cq) (19)

On the other hand, using the definition of the H2 norm given by (3) and (4), a parameterization

for all Q ∈ RH2 follows (Campos and Zhou 2001).

Lemma 2 Assume that Q ∈ RH2 has degree nq, then Q can be represented in the following form

‖Q‖2
2 = Trace(BT

q Bq)

with Q =


 Aq Bq

Cq 0


 and Aq = Aqs + Aqk

where Aqs = −1
2CT

q Cq,

Aqk
= −AT

qk
∈ Rnq×nq , Bq ∈ Rnq×p2 , Cq ∈ Rm2×nq . (20)

Proof: Assume that Q =


 Âq B̂q

Ĉq Dq


 ∈ RH2 is a nth

q order observable realization, then

according to (3) and (4), ∃Y > 0 such that

AT Y + Y A + CT C = 0 (21)

Since Y > 0, there exists a Cholesky factorization of Y = T T T . Now T is invertible and can be

used as a similarity transformation on Q

Q =


 TÂqT

−1 TB̂q

ĈqT
−1 0


 =


 Aq Bq

Cq 0


 (22)

8



Thus, the Lyapunov equation in (21) becomes

Aq + AT
q + CT

q Cq = 0 (23)

Moreover, Aq can be decomposed into a symmetric part Aqs and a skew symmetric part Aqk
.

Consequently, the skew symmetric part Aqk
disappears from (23) and it is obtained

‖Q‖2
2 = Trace(BT

q Bq) Aqs = −1
2
CT

q Cq (24)

2

Thus, if Q is constructed according with the previous lemma, then ‖Q‖2 < β is equivalent to

Trace(BT
q Bq) < β2.

5 Mixed L1/H2/H∞ Performance Problems

Several mixed objective control problems will be presented in this section. Their solutions are

critically dependent upon the H∞ and H2 controller state-space parameterizations presented in the

previous sections. That is, the parameters of the transfer matrix Q will be used to optimize the

performance indices and satisfy constraints. Note that since the controllers are based on the H2

and H∞ parameterizations the internal stability of the closed-loop is always guaranteed. Assume

that the degree of Q is predefined to nq, then according with the dimensions of the generalized

plant (8), the number of variables of each component of Q is given by

Aqk
=




0 a12 a13 · · · a1nq

−a12 0 a23 · · · a2nq

−a13 −a23 0 · · · a3nq

...
...

...
. . .

...

−a1nq −a2nq −a3nq · · · 0




⇒ (nq − 1)nq

2
(25)

Bq =




b11 · · · b1p2

...
. . .

...

bnq1 · · · bnqp2


 ⇒ nq × p2 (26)

Cq =




c11 · · · c1nq

...
. . .

...

cm21 · · · cm2nq


 ⇒ m2 × nq (27)
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Dq =




d11 · · · d1p2

...
. . .

...

dm21 · · · dm2p2


 ⇒ m2 × p2 (28)

Since Q ∈ RH∞ is an m2×p2 transfer matrix, the total number of variables in the optimization

scheme will be (nq − 1)nq/2 + nqm2 + nqp2 + m2p2. In order to solve the multi-objective problems,

the elements of the state-space description of Q are aligned into a vector form

X =
[

a11 a12 · · · a(nq−1)nq
b11 · · · bnqp2 c11 · · · cm2nq d11 · · · dm2p2

]T
(29)

Therefore, the proposed optimization problems will be solved with respect to the variable vector

X. Note that if Q ∈ RH2, i.e. Dq = 0, the number of free variables reduces to (nq − 1)nq/2 +

nqm2 + nqp2. During the optimization, an interval of variation will be set for all the parameters in

X, i.e.

amin ≤ aij ≤ amax

bmin ≤ bij ≤ bmax (30)

cmin ≤ cij ≤ cmax

dmin ≤ dij ≤ dmax

However, not all the requirements in the elements of Q can be reflected into a range of variation for

each parameter. Therefore, the following penalty functions are used in the optimization schemes

to restrict the variations of some of the parameters and to enforce requirements on the transfer

matrix Q

P (D, γ) =





M σ̄(D) ≥ γ

1 otherwise
(31)

J(B, γ, γopt) =





N Trace(BT B) ≥ γ2 − γ2
opt

1 otherwise
(32)

where the matrices A, B and D are linked to the state-space realization of a system, γ > γopt > 0,

M and N are constants À 1.

Consider a generalized feedback system described in figure 2 with

Gm =




A B0 B1 B2

C0 D00 D01 D02

C1 D10 D11 D12

C2 D20 D21 D22




,




z0

z

y


 = Gm




w0

w

u


 (33)
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Let G0 and G be defined as

G0 =




A B0 B2

C0 D00 D02

C2 D20 D22


 , G =




A B1 B2

C1 D11 D12

C2 D21 D22


 (34)

Then, the next closed-loop transfer matrices can be determined

Tz0w0 = Fl (G0,K) , Tzw = Fl (G,K) (35)

5.1 Mixed H∞/H∞ Design (Robust H∞ Performance)

The robust performance problem can be formulated as

min
stabilizing K

‖Tz0w0‖∞ s.t. ‖Tzw‖∞ < γ (36)

for some γ > γ∞ where

γ∞ = min
stabilizing K

‖Tzw‖∞ (37)

In order to solve (36), the following numerical optimization is proposed

min
Aqk

,Bq ,Cq ,Dq

P (Dq, γ) · ‖Fl (G0,Fl (M∞, Q)) ‖∞ (38)

where Q =


 Aqk

+ Aqs Bq

Cq Dq


, M∞ is given by (10) and Aqs by (13). Therefore, (Aqk

, Bq, Cq, Dq)

are the free variables in the optimization scheme. The penalty function P (·, ·) is included to restrict

the maximum singular value of Dq to be < γ, which is a necessary condition in the Bounded Real

Lemma to have ‖Q‖∞ < γ. This condition could not be incorporated in the optimization directly

since it is difficult to give an interval of variation for the elements of a matrix to have σ̄ < γ. So

it was decided to introduce the penalty function in the cost function to detect violations of the

condition and penalize these solutions. The result obtained from the optimization in (38) is finally

used to construct the multi-objective controller as K = Fl (M∞, Q).

5.2 Mixed H2/H∞

This mixed H2/H∞ design problem can be formulated as

min
stabilizing K

‖Tz0w0‖2 s.t. ‖Tzw‖∞ < γ (39)

for some γ > γ∞. In order to solve (39), the following numerical optimization is proposed

min
Aqk

,Bq ,Cq

‖Fl (G0,Fl (M∞, Q)) ‖2 (40)
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where Q =


 Aqk

+ Aqs Bq

Cq 0


 since now Q ∈ RH2, M∞ is given by (10) and Aqs by (13). Note

that a penalty function is not needed since, Q has to be strictly proper, i.e. Dq = 0. Consequently,

in this mixed problem, the free variables in the optimization are now (Aqk
, Bq, Cq).

5.3 Mixed L1/H∞

The mixed L1 and H∞ design problem can be stated as

min
stabilizing K

‖Tz0w0‖1 s.t. ‖Tzw‖∞ < γ (41)

for some γ > γ∞. In order to solve (41), the following numerical optimization is proposed

min
Aqk

,Bq ,Cq ,Dq
P (Dq, γ) · ‖Fl (G0,Fl (M∞, Q)) ‖1 (42)

where M∞ is given by (10), Aqs by (13) and Q =


 Aqk

+ Aqs Bq

Cq Dq


. Note that the penalty

function P (·, ·) is needed again to restrict σ̄(Dq) < γ since Q ∈ RH∞. Therefore, (Aqk
, Bq, Cq, Dq)

are the free variables in the optimization scheme.

5.4 L1/H2 Design

The mixed L1/H2 problem is defined as:

min
stabilizing K

‖Tz0w0‖1 s.t. ‖Tzw‖2 < γ (43)

for some γ > γopt where

γopt = min
stabilizing K

‖Tzw‖2 (44)

In order to solve (43), the following numerical optimization is proposed

min
Aqk

,Bq ,Cq ,Dq
J(Bq, γ, γopt) · ‖Fl (G0,Fl (M2, Q)) ‖1 (45)

where Aqs = −CT
q Cq/2 and Q =


 Aqk

+ Aqs Bq

Cq 0


. Therefore, (Aqk

, Bq, Cq) are the free variables

in the optimization scheme with ‖Q‖2
2 < γ2−γ2

opt. The penalty function J(·, ·, ·) is introduced here

to enforce the restriction on the norm of Q, i.e. limit the value of the elements of Bq to satisfy

Trace(BT
q Bq) < γ2−γ2

opt. Note that this condition cannot be translated into any pattern selection

for the elements of Bq. Therefore, it was chosen to include the penalty function in the cost function

to penalize any combination of parameters that violate it.
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The optimization problems just presented in (38), (40), (42) and (45) are generally nonconvex

and present intrinsically multi-modal characteristics. Therefore, it is natural to think that these

problems are not practical to solve. Nevertheless, evolution optimization has turned out to be quite

useful to solve these complicated optimization problems. Moreover, if it is used in conjunction with

a well-known gradient-based optimization technique, a powerful optimization scheme is obtained

that can effectively solve the proposed problems.

6 Optimization Scheme

In the first attempt to solve the mixed design problems (38), (40), (42) and (45), standard nonlinear

optimization techniques such as quasi-newton method and conjugate gradient (Grace 1992, Nocedal

and Wright 1999) were applied. However, convergence was always limited to the initial conditions.

The algorithms constantly got caught in local minima. A change of direction was obviously needed.

Thus, the evolutionary algorithms came as viable solution to solve these problems. However, the

gradient-based approaches have nice properties that should not be forgotten. Therefore, it was

decided to use a gradient-based algorithm in conjunction with an evolutionary optimization such

as genetic or evolution algorithms. In this way, the genetic/evolution algorithm was applied first to

perform a global search in the parameters space and find a minimum solution. Next, a local search

was conducted to obtain the optimal solution. This two-stage optimization outperformed the use

of each one of the algorithms alone.

In the first stage, a genetic/evolution algorithm was chosen to solve (38), (40), (42) and (45).

However, a natural inspired algorithm such as simulated annealing could have also been used. For

the second stage, a quasi-newton plus linear search (Nocedal and Wright 1999) scheme was used to

perform the local search. Thus, the best solution coming from the genetic/evolution algorithm was

used as a starting point for the gradient-based search. A brief description of the genetic algorithm

used in the paper is presented next. The gradient-based optimization was carried out by using the

Optimization Toolbox (Grace 1992) of MATLAB c©.

6.1 Evolution Algorithm

Consider a function that has to be optimized with m inputs and one output. The output of this

function is referred as its fitness. The idea is now to adjust the input parameters in order to find an

optimum in the fitness. One combination of m input parameters is called an individual. A group

of n individuals is a population. The idea is to start with a randomly selected initial population

(mutation), creating a group of children out of their parents. The fitness of the children is now

13



evaluated and compared with their parent’s fitness, and the best of both are selected to be the next

generation of parents. This procedure will go on until an optimum is found, or a given termination

criterion is fulfilled.

Following these ideas, the evolution algorithm EVAOCP (Evolution Algorithm for Optimization

of Continuous Parameters) is proposed for the optimization process

1. Initialize parameters of the evolution algorithm.

2. Select initial population (this can be a random selection, a guess or a result of a previous

experiment).

3. Check if the conditions for termination of algorithm are satisfied: optimality, max. # of

iterations or no-progress

• YES : Set the best values obtained during the optimization process.

• NO : Continue with Evolution Alg.

4. Adjust step (mutation range) according with progress achieved.

5. Create children from parents set.

(a) Check mutation factor.

(b) Determine new step.

(c) Generate children by adding a random perturbation of variance ’step’ to parents.

(d) Check that children satisfy the parameters bounds.

6. Evaluate children fitness.

7. Compares children and parents performance, keep the best of both.

8. Compute progress velocity according with # of children better than parents.

9. Select the best solutions to judge optimality.

10. Go back to 3.

6.2 Genetic Algorithm

In a genetic algorithm, the optimized parameters are arranged in combination sets that are called

chromosomes. An interval of variation is assigned for each parameter in the optimization search.

Thus, bounds for the elements in a chromosome are defined a priori. To start, an initial combination
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of chromosomes is used, usually chosen randomly; after the initial evaluation a predefined number

of the best chromosomes is held, population. This population is going to be kept constant after each

generation. From the population, a set of chromosomes is chosen, parents, to generate a new breed

of chromosomes, children. The parents chromosomes are chosen based on a proportional selection

according with their fitness. The new children are created by a linear combination of two parents,

crossover. Note that this is a special type of crossover operator for a real parameters representation.

From the set of parents and children, random perturbations are introduced with a predefined rate,

mutation. The combined set, parents and children, is evaluated and a new population is selected.

The cycle process, generation, is repeated until an ending condition, no progress or convergence, is

satisfied.

The algorithm called GAOCP (Genetic Algorithm for Optimization of Continuous Parameters)

was coded in MATLAB c© and it presents the following steps:

1. Initialize GAOCP parameters,

2. Generate initial population,

3. Evaluate cost function,

4. Select population,

5. Check progress velocity,

6. Check for convergence,

7. Parents are selected from the population,

8. New generation (children) is created from parents,

9. Mutation is introduced randomly,

10. Go back to step 3.

7 Numerical Examples

In this section, the proposed mixed performance problems will be illustrated through some numer-

ical examples. Due to space limit, we shall only include two examples here. In all these examples,

the first stage of the optimization scheme was carried out by a genetic/evolution algorithm. The

second stage was carried out by a quasi-newton plus linear search scheme (Grace 1992).
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So far, there is no direct computation of the L1 norm except its mathematical definition (6).

Consequently, in order to approach the L1/H∞ (42) or L1/H2 (45) designs, the norm computation

was approximated. Note that the impulse response of each element of (1) is given by

gij(t) = Cie
AtBj + Dijδ(t) (46)

where B = [B1 . . . Bm], C = [C1 . . . Cp]T and D = [Dij ]. Hence, the infinite integration of (7) can

be approximated according with the poles of Gij(s), estimating the time such that gij(t) is below

certain percentage of its peak value and performing the integration in that interval of time.

The following numerical examples were computed on a PC Pentium III at 933 MHz. The

constants M in (31) was given the value 1× 106.

7.1 Example 1

This example is taken from Baeyens and Khargonekar (1994). The multi-objective problem is a

mixed H2/H∞ design with the generalized plant Gm given by

Gm =




A B1 B2

C0

C1

C2

0 D0

0 D1

D2 0




(47)

where the description of the matrices (A,B1, B2, C0, C1, C2) is given in (Baeyens and Khargonekar

1994). This is a special case of the mixed H2/H∞ problems formulated in the previous sections

with w0 = w.

Thus the mixed problem is formulated as

min
Kstabilizing

‖Tz0w‖2 s.t. ‖Tzw‖∞ < γ (48)

The optimization scheme in (40) was used to obtain the mixed controller. In order to judge the

performance of the proposed scheme, the mixed H2/H∞ optimization was also carried out using

the LMI Toolbox (Gahinet et al 1995) of MATLAB c©. In this example, the results reported for the

proposed method (40) are obtained by using an evolution algorithm (EVAOCP) in the first stage

of the optimization. The results were almost identical if a genetic algorithm was used instead.

The example was run for two values of γ: 1.6 and 2.0. Note that the closed-loop performance

‖Tzw‖∞ < γ is always guaranteed by the proposed optimization algorithm (40).

The computational effort and performance for different order Qs was investigated for γ = 1.6.

The algorithm was evaluated 5 consecutive times for the same order of Q. Table 1 presents these

16



results. The mean value and standard deviation (sdt) for each respective order of the floating point

operations (flops), computation time, and resulting performance ‖Tz0w‖2 are presented. Therefore,

it is seen that there is no significant performance improvement by choosing a Q of order higher

than 2nd. Also, it is clear that the algorithm reached almost constantly the same performance level

(‖ · ‖2) for each order, since the standard deviation is close to zero for all cases. It is also evident

that the computational cost is increased by raising the Q order. Figure 3 shows the flops required

during the optimization as a function of the Q order.

Table 2 summarize the results obtained for γ = 1.6 and 2.0. A 2nd order Q is needed to provide

these results. Thus, the optimization was carried out for 5 parameters (Q is strictly proper). In

the first stage, the H2 cost was 23.04 and 4.72 for γ = 1.6 and 2.0 respectively. In the second stage,

these values were reduced further to 22.875 and 4.53. Figure 4 presents the evolution of the cost

function for γ = 2.0 during the first stage.

7.2 Example 2

This example is taken from Sznaier and Blanchini (1994). The mixed L1/H∞ design is to solve the

following minimization

min
Kstabilizing

‖Tz0w‖1 s.t. ‖Tzw‖∞ < γ (49)

The generalized plant G is given by

G =





 0

W2





 W1

W2P




W2 W2P

−1 −P




(50)

where W1, W2 and P are defined in (Sznaier and Blanchini 1994). The value of γ was set to 2.6

as in the original paper. Consequently, the optimization proposed in (42) was applied in order to

compute the mixed controller. For this example, a genetic algorithm (GAOCP) was used in the

first stage of the optimization. However, no clear advantages or disadvantages are shown using

either algorithm.

Similarly to the first example, the computational effort and performance for different order Qs

was first investigated (γ = 2.6). Table 3 presents these results varying the Q order among 1st and

3rd. No significant performance improvements were observed by using a Q of higher order. The

algorithm was run again 5 consecutive times for the same order of Q. Analyzing table 3, it is

observed that the algorithm reached almost constantly the same performance level (‖ · ‖1) for any

order, since the standard deviation is always close to zero. However, the computational cost varied
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drastically for all cases. In addition, the computational time and flops are constantly increased by

raising the Q order. Figure 5 shows the flops required during the optimization as a function of the

Q order.

Table 4 summarize these result with a 2nd order Q. Hence, a 6 parameter optimization was

carried out (Q is now a proper transfer matrix). After the first stage optimization, the optimal cost

was 4.1216. The second stage of the optimization reduced this value to 4.04 (i.e. ‖Tz0w‖1 = 4.04).

Furthermore, the value of the H∞ norm is ‖Tzw‖∞ = 2.5476 < 2.6. On average, 307.77 sec.

and 6.66 × 109 flops were needed to reach a solution. In this case, the computation of the L1

norm slowed down the optimization scheme. However, an improvement of L1 performance is seen

compared with the result by Sznaier and Blanchini (1994). In figure 6, the evolution of the cost

function is presented for the first stage of the optimization scheme.

8 Conclusions

Optimization schemes are presented to solve the multi-objective design problems. Parameteriza-

tions of norm bounded H∞ and H2 functions were used to limit the number of variables and restrict

the optimizations. This step reduces the complexity of the mixed synthesis problem and guaran-

tees the closed-loop H∞ or H2 performance according with the selected parameterization. Thus,

the search for the appropriate Q parameter looks to minimize another performance measure. The

resulting optimizations with this method are highly nonlinear and present multi-modal character-

istics. For this reason, a two-stage algorithm was used in the optimization process. Numerical

examples show the success of the optimization schemes to design mixed controllers. However, it

is not possible to establish the best achievable performance with these techniques and this issue

has to be explored iteratively. It is interesting to note that only low order Qs were needed in the

numerical examples. Thus, the orders of resulting controllers are comparable to those of the gen-

eralized plants. In all the benchmark examples, the performance was always improved compared

to previous results published in the literature. It should be pointed out that more complex mixed

problems can also be treated in the same framework without any additional difficulty.
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Q Flops Computation Time ‖Tz0w‖2

order mean std mean std mean std

1st 1.38× 108 3.33× 105 19.12 0.38 23.10 0.00

2nd 1.68× 108 7.96× 107 23.24 0.41 22.88 0.00

3rd 2.91× 108 2.86× 106 28.48 1.70 22.87 0.00

4th 4.33× 108 2.49× 107 36.02 2.22 22.85 0.01

5th 6.72× 108 7.62× 106 47.43 0.22 22.84 0.01

Table 1: Computation effort and performance for γ = 1.6 in example 1.
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‖Tz0w‖2

γ Baeyens and Khargonekar (1994) LMI toolbox proposed optimization

(2nd order Q)

1.6 28.13 37.20 22.88

2.0 5.49 7.45 4.53

Table 2: Closed-loop performance of the mixed H2/H∞ controllers in example 1.
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Q Flops Computation Time ‖Tz0w‖1

order mean std mean std mean std

1st 5.08× 109 1.40× 109 265.51 73.44 4.43 0.00

2nd 6.66× 109 3.23× 109 307.77 149.42 4.04 0.03

3rd 8.08× 108 2.23× 109 334.72 92.38 4.03 0.04

Table 3: Computation performance for γ = 2.6 in example 2.
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‖Tz0w‖1

γ Sznaier and Blanchini (1994) proposed optimization

(2nd order Q)

2.6 4.82 4.04

Table 4: Closed-loop performance of the mixed L1/H∞ controllers in example 2.
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Captions to Figures

Figure 1 LFT representation.

Figure 2 Multiobjective LFT form.

Figure 3 Computation effort (flops) as a function of the Q order for example 1 and γ = 1.6.

Figure 4 Evolution of cost function during the first stage of the optimization: example 1 and

γ = 2.0.

Figure 5 Computation effort (flops) as a function of the Q order for example 2 and γ = 2.6.

Figure 6 Evolution of cost function during the first stage of the optimization: example 2.
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Figure 2: Multiobjective LFT form.

29



0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

1

2

3

4

5

6

7
x 10

8

Q order

# 
of

 F
lo

ps

Figure 3: Computation effort (flops) as a function of the Q order for example 1 and γ = 1.6.
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Figure 4: Evolution of cost function during the first stage of the optimization: example 1 and

γ = 2.0.

31



0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6

7

8

9

10
x 10

9

Q order

# 
of

 F
lo

ps

Figure 5: Computation effort (flops) as a function of the Q order for example 2 and γ = 2.6.
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Figure 6: Evolution of cost function during the first stage of the optimization: example 2.
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