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Abstract: This paper presents a numerical approach for designing stable MIMOH∞ andH2

controllers. The proposed technique searches for a norm constrained stable transfer matrix
Q in the H∞ andH2 suboptimal controller parameterizations so that the final controllers
are stable. The norm constrainedQ′s are explicitly parameterized for any fixed order and
the H2 andH∞ strong stabilization problems are then converted to nonlinear constrained
optimization problems. A numerical search is carried out by a two-stage optimization scheme
in order to reach an optimal solution. Examples show the performance improvements of these
algorithms over methods already presented in the literature.Copyright c©2002 IFAC
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1. INTRODUCTION

A necessary and sufficient condition for the existence
of a stable stabilizing (strong stabilizing) controller
for a plant is the so-called parity interlacing prop-
erty (p.i.p.) (Vidyasagar (1985)). Procedures for de-
signing strong stabilizing controllers are outlined in
Vidyasagar (1985). It is well-known that the con-
trollers obtained fromH2/LQG optimal control the-
ory are not guaranteed to be stable. In Corrado et
al. (1997), Ganesh and Pearson (1989), and Halevi
(1994), this problem has been analyzed and alterna-
tive algorithms has been proposed. Similarly, theH∞
strong stability problem has also been addressed by
Özbay (1995). Since theH∞ suboptimal controller is
in general not unique, it is reasonable to expect that
even if theH∞ central controller is unstable, there
might still be a stable controller that could satisfy the
H∞ norm bound when the p.i.p. condition is satis-
fied. In Choi and Chung (2000), and Zeren andÖzbay
(2000), an approach for designing stableH∞ con-
trollers has been suggested based on the parameteriza-
tion of all suboptimalH∞ controllers. This approach
converts conservatively the stableH∞ controller de-
sign problem into another 2-block standardH∞ prob-
lem. Recently, Campos and Zhou (2001) suggested a
method to alleviate this conservativeness. In general,
all these analytical methods do not guarantee solutions
for theH2 or H∞ strong stabilization problems, and
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they require an iterative search in order to reach a sat-
isfactory solution.
In recent years, evolutionary schemes such as genetic
algorithms have been extensively used to solve non-
linear constrained optimization problems. These al-
gorithms are usually applied to complex optimization
problems where multi-local minima can restrict global
convergence. Evolutionary schemes are inspired by
the natural selection criteria where the stronger organ-
isms are likely to survive after generations.
Genetic algorithms present two main characteristics:
a multi-directional (random) search and an informa-
tion exchange among best solutions. Pioneering work
in this field is due to Holland Holland (1975) who
first proposed the basic principles of genetic algo-
rithms. Applications of genetic algorithms to con-
trol and signal processing have been reported in liter-
ature: digital IIR filter design (Man, Tang and Kwong
(1999)), adaptive recursive filtering (White and Flock-
ton (1997)), active noise control (Tang et al. (1995)),
systems model reduction (Li et al. (1997)), etc.
In this paper, new approaches for designing stable
MIMO H∞ andH2 controllers will be proposed. In
these approaches, a numerical search using a two-
stage optimization algorithm is carried out for norm
constrained stable transfer matricesQ in the H∞
andH2 suboptimal controller parameterizations. The
norm constrainedQ′s are explicitly parameterized for
any fixed order. Examples show the performance im-
provements of these algorithms over methods already
presented in the literature.



The rest of the paper is organized as follows. First, the
notation used in the paper is presented in Section 2.
Next, in Section 3 a description of theH∞ strong sta-
bility problem and the equivalent optimization prob-
lem are outlined. Similarly, the characterization of
theH2 strong stabilization problem is detailed in Sec-
tion 4. Section 5 describes the two-stage optimization
scheme. Section 6 presents numerical examples and
in Section 7 some conclusions are drawn.

2. NOTATION

Define a transfer functionG(s) by its state-space real-
ization(A,B, C, D). TheH2 norm is defined as

‖G‖22 =
1
2π

∫ ∞

−∞
Trace[G∗(jω)G(jω)]dω

An alternative characterization can be obtained by us-
ing the state space representation ofG. For a stableG,
we have

‖G‖22 = Trace(B∗QB) = Trace(CPC∗) (1)

whereP andQ are the observability and controllabil-
ity Gramians. TheH∞ norm is defined as:

‖G‖∞ = sup
Re(s)>0

σ̄[G(s)] = sup
ω∈R

σ̄[G(jω)].

Consider that the closed-loop system is described in
LFT form, where the generalized plantG and con-
troller K are assumed to be real-rational and proper.
The dimensions ofG are given byz(t) ∈ Rp1 , y(t) ∈
Rp2 , w(t) ∈ Rm1 , u(t) ∈ Rm2 , andx(t) ∈ Rn.
Then,G is partitioned accordingly

G =
[

G11 G12

G21 G22

]
(2)

and the transfer function fromw to z is given by
Tzw = Fl (G,K) = G11 + G12K(I −G22K)−1G21

whereFl (·, ·) is called a lower linear fractional trans-
formation.
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3. H∞ STRONG STABILIZATION

3.1H∞ Suboptimal Parameterization

Assume that the generalized plantG is given by:

G =




A B1 B2

C1 D11 D12

C2 D21 D22


 (3)

with some suitable assumptions. It has been proved by
Doyle et al. (1989), that all controllersK(s) satisfying

a suboptimalH∞ restriction (i.e. givenγ > 0, a sta-
bilizing controllerK(s) satisfies‖Fl (G,K) ‖∞ < γ)
can be parameterized byQ ∈ RH∞, ‖Q‖∞ < γ such
thatK = Fl (M∞, Q)

M∞ =




Â B̂1 B̂2

Ĉ1 D̂11 D̂12

Ĉ2 D̂21 D̂22


 =

[
M11 M12

M21 M22

]

(4)
whereM∞ is constructed from the solutions of two
Riccati equations (Doyle et al. (1989), and Zhou and
Doyle (1998)). Based on the partition of the general-
ized plantG, it is clear thatM∞ andQ are(p2+m2)×
(p2 +m2) andm2× p2 transfer matrices respectively.

3.2H∞ Strong Stabilization Problem

A strong stabilizationproblem is to design a controller
K ∈ RH∞ such that the closed-loop is internally sta-
bilized and some performance specifications are satis-
fied. Consequently, theH∞ Strong Stabilization prob-
lem is now defined as:givenγ > 0, find a stabilizing
controller K ∈ RH∞ such that‖Fl (G,K) ‖∞ < γ.
It can be seen from the parameterization of all sub-
optimal H∞ controllers that in order to find a stable
stabilizingK, it is enough to find aQ ∈ RH∞ with
‖Q‖∞ < γ such thatQ stabilizesM∞. It is not hard
to see that this can be achieved if and only ifQ sta-
bilizesM22 = (Â, B̂2, Ĉ2, D̂22). This gives the next
result.

Lemma 1: Assume that a solution to the suboptimal
H∞ control problem exists for a givenγ > 0, i.e.,
∃M∞ such that‖Fl (G, K) ‖∞ < γ and K =
Fl (M∞, Q) whereQ ∈ RH∞ and‖Q‖∞ < γ. Then,
theH∞ Strong Stabilization is solvable if and only if
∃Q = (Aq, Bq, Cq, Dq) of some suitable order, with
‖Q‖∞ < γ, such thatAk is Hurwitz where

Ak =
[

Â + B̂2R
−1DqĈ2 B̂2R

−1Cq

BqR̂
−1Ĉ2 Aq + BqR̂

−1D̂22Cq

]

R = I −DqD̂22 andR̂ = I − D̂22Dq

3.3H∞ State-Space Parameterization

In Steinbuch and Bosgra (1991), a parameterization
for an H∞ norm bounded strictly proper and stable
transfer matrix is presented. Now, the result is ex-
tended to the proper case in the following lemma.

Lemma 2: Let γ > 0 and let Q be a stable trans-
fer matrix of degreenq and ‖Q‖∞ < γ, then Q
can be represented asQ = (Aq, Bq, Cq, Dq) with
Aq = Aqk

+ Aqs , for someAqk
= −A∗qk

∈ Rnq×nq ,
Bq ∈ Rnq×p2 , Cq ∈ Rm2×nq , Dq ∈ Rm2×p2 , and

Aqs =
1
2

{−BqR
−1D∗

qCq − C∗q DqR
−1B∗

q (5)

−BqR
−1B∗

q − C∗q (I + DqR
−1D∗

q )Cq

}

σ̄(Dq) < γ (6)



whereR = γ2I −D∗
qDq.

Note that whenDq = 0, we have (Steinbuch and
Bosgra (1991))

Aqs
= −1

2
(BqB

∗
q /γ2 + C∗q Cq) (7)

Using the previous parameterization, theH∞ strong
stabilization problem can be converted to an optimiza-
tion problem whereAqk

, Bq, Cq andDq are free pa-
rameters.

3.4 Optimization Problem

The corresponding optimization problem is then de-
fined as

lopt = min
Aqk

,Bq,Cq,Dq

P (Dq) ∗ emax{real[λ(Ak)]} (8)

where

P (Dq) =
{

C σ̄(Dq) ≥ γ
1 otherwise

and

Ak =
[

Â + B̂2R
−1DqĈ2 B̂2R

−1Cq

BqR̂
−1Ĉ2 Aq + BqR̂

−1D̂22Cq

]

whereλ(·) denote the eigenvalues of the correspond-
ing matrix,Aq is constructed following (5) andC À 1
is a chosen constant. Note that the proposed optimiza-
tion problem has a positive cost function for any com-
bination of parameters and theH∞ strong stabiliza-
tion problem is solved iflopt < 1. In the optimization
algorithm, predefined ranges of variations for the ele-
ments ofAqk

, Bq andCq were first established. These
intervals were chosen according with the maximum
and minimum elements of the corresponding gener-
alized plantG. Note that it is usually hard to establish
a range of variation for the elements ofDq in order to
satisfy (6). Therefore, it was decided to limit each el-
ement ofDq to be< γ and include a penalty function
P (·) to penalize the combinations that violate (6).
Assume that the degree ofQ is predefined tonq, then
according with the dimensions of the generalized plant
(2) in the originalH∞ problem, the number of vari-
ables of each component ofQ is given by

Aqk
=




0 a12 · · · a1nq

−a12 0 · · · a2nq

...
...

. ..
...

−a1nq −a2nq · · · 0




⇒ (nq − 1)nq

2

Bq =




b11 · · · b1p2

...
. . .

...
bnq1 · · · bnqp2


 ⇒ nq × p2

Cq =




c11 · · · c1nq

...
. . .

...
cm21 · · · cm2nq


 ⇒ m2 × nq

Dq =




d11 · · · d1p2

...
. ..

...
dm21 · · · dm2p2


 ⇒ m2 × p2

SinceQ is anm2×p2 proper transfer matrix, the total
number of variables in the optimization scheme will
be (nq − 1)nq/2 + nqm2 + nqp2 + m2p2. In order
to implement the optimization in a systematic scheme,
the variables are aligned into a vector format

X =
[
a11 a12 · · · a(nq−1)nq

b11 · · · bnqp2

c11 · · · cm2nq d11 · · · dm2p2

]T
(9)

4. H2 STRONG STABILIZATION

Assume that the generalized plantG has the following
realization

G =




A B1 B2

C1 0 D12

C2 D21 0


 (10)

with some appropriate assumptions and dimensions.
Similar to theH∞ case, theH2 strong stabilization
problem is defined as:find a proper, real-rational and
stable controllerK which stabilizesG internally and
minimizes theH2 norm of the transfer matrixTzw

fromw to z.

4.1H2 Parameterization

The solution to the standardH2 problem can be char-
acterized in terms of the Youla parameterization of all
admissible controllers:K = Fl (M2, Q). In this for-
mulation,Q ∈ RH2 andM2 is given by

M2 =




Â2 −L2 B2

F2 0 I
−C2 I 0


 (11)

whereÂ2 = A + B2F2 + L2C2, see Zhou and Doyle
(1998). So, the closed-loopH2 norm is given by

‖Tzw‖22 = ‖GcB1‖22 + ‖F2Gf‖22 + ‖Q‖22
where the transfer matricesGc andGf are defined in
Zhou and Doyle (1998). Consequently, theH2 prob-
lem can be viewed as

min
Q∈RH2

‖Q‖2

Obviously,Q = 0 represents the optimal solution to
the standardH2 problem. As in theH∞ parameter-
ization, M2 andQ are (p2 + m2) × (p2 + m2) and
m2 × p2 transfer matrices respectively.
Using the previous formulation of theH2 problem, the
strong stabilization problem can be stated as

min
Q∈RH2

‖Q‖2

such that
[

Â2 B2Cq

−BqC2 Aq

]
is Hurwitz (12)



whereQ = (Aq, Bq, Cq, 0). The condition (12) is
needed sinceQ must stabilizeM2. Now, using the
definition of theH2 norm given by (1), a parameteri-
zation for allQ ∈ RH2 follows.

Lemma 3: Assume thatQ ∈ RH2 has degreenq, then
Q can be represented in the following form

‖Q‖22 = Trace(B∗
q Bq)

with Q = (Aq, Bq, Cq, 0) andAq = Aqs
+Aqk

where
Aqs = − 1

2C∗q Cq,

Aqk
= −A∗qk

∈ Rnq×nq

Bq ∈ Rnq×p2

Cq ∈ Rm2×nq

Using the previous result, theH2 strong stabilization
problem is now formulated as

min
Aqk

,Bq,Cq

Trace(B∗
q Bq) (13)

such that
[

Â2 B2Cq

−BqC2 − 1
2C∗q Cq + Aqk

]
is Hurwitz

4.2 Optimization Problem

Comparing to theH∞ formulation, theH2 strong sta-
bilization problem involves more constraints sinceH2

minimization is now incorporated in addition to the
controller stability. So, the optimization scheme be-
comes more complex. In order to solve (13), the next
optimization scheme is proposed:

lopt = min
Aqk

,Bq,Cq

Trace(B∗
q Bq) + J(Ak) (14)

where

J(Ak) =
{

Memax{real[λ(Ak)]} max{real[λ(Ak)]} ≥ 0
0 otherwise

and

Ak =
[

Â2 B2Cq

−BqC2 − 1
2C∗q Cq + Aqk

]

Here, the constantM must be chosen sufficiently large
such thatM > Trace(B∗

q Bq) all the time. There-
fore, lopt < M means that the strong stabilization
condition was satisfied. In this formulation, a discon-
tinuous penalty functionJ(·) is introduced in order
to enforce the strong stabilization restriction. Simi-
lar to theH∞ case, intervals of variations were set
for the elements of the matricesAqk

, Bq and Cq.
These intervals were chosen according with the ele-
ments of the corresponding matrices in the generalized
plantG. The number of variables to optimize will be
(nq − 1)nq/2 + nqm2 + nqp2 which is lower than in
theH∞ case sinceQ is now strictly proper.

The optimization problems just introduced in (8) and
(14) are generally nonconvex and present intrinsically
multi-modal characteristics. Therefore, it is natural to
think that these problems are not practical to solve.
Nevertheless, genetic optimization has turned out to be
quite useful to solve these complicated optimization
problems. Moreover, if it is used in conjunction with
a well-known gradient-based optimization technique,
a powerful optimization scheme is obtained that can
effectively solve the proposed problems.

5. OPTIMIZATION SCHEME

In the first attempt to solve the strong stabilization
problems (8) and (14), standard nonlinear optimiza-
tion techniques such as quasi-newton method and con-
jugate gradient (Grace (1992)) were applied. How-
ever, convergence was always limited to the initial
conditions. The algorithms constantly got caught in
local minima. A change of direction was obviously
needed. Thus, the genetic algorithms came as vi-
able solution to solve these problems. However, the
gradient-based approaches have nice properties that
should not be forgotten. Therefore, it was decided to
use a gradient-based algorithm in conjunction with a
genetic algorithms. In this way, the genetic algorithm
was applied first to perform a global search in the pa-
rameters space and find a minimum solution. Next, a
local search was conducted to obtain the optimal so-
lution. This two-stage optimization outperformed the
use of each one of the algorithms alone.
For the first stage, the algorithm called GAOCP (Ge-
netic Algorithm for Optimization of Continuous Pa-
rameters) was coded in MATLAB. However, any
other type of evolutionary scheme such asevolution
algorithm and genetic programming, or natural in-
spired algorithm such assimulated annealingcould
have been used instead. For the second stage, a
quasi-newton plus linear search (Nocedal and Wright
(1999)) scheme was used to perform the local search.
The gradient-based optimization was carried out by
using the Optimization Toolbox(Grace (1992)) of
MATLAB.

6. NUMERICAL EXAMPLES

The solutions to the optimization problems (8) and
(14) for the following numerical examples were com-
puted with a Sun Microsystems Ultra 5 work station.
The constantsC andM in (8) and (14) were given the
values1× 103 and1× 106 respectively.

6.1 Example 1 (H∞ andH2 Strong Stabilization)

The benchmark SISO example used by Campos and
Zhou (2001), and Zeren and̈Ozbay (1999) was exam-
ined. The generalized plant is described thoroughly
in Campos and Zhou (2001). The parameterβ > 0
was introduced to include some penalty on the control
signal. The generalized plant is non-minimum phase
and it has a double pole at the origin, but it satisfies



the p.i.p. condition, so it could be strongly stabilized.
The system is SISO therefore the optimalH∞ con-
troller is unique. Consequently, it will not be possible
to achieveγopt with a stable controller. The optimal
H∞ performance is0.2324 and0.1415, and the cor-
responding central controllers are unstable with com-
plex right half plane poles located at0.045±1.83j and
0.114± 1.97j for β = 0.1 and0.01 respectively.

TABLE 1. THE SMALLEST γ ACHIEVED

H∞ STRONG STABILIZATION FOREXAMPLE 1.

β (14) Campos and Zhou (2001)
0.1 γ = 0.233 γ = 0.237

γopt = 0.232
0.01 γ = 0.145 γ = 0.151

γopt = 0.142

The optimization scheme in (8) was carried out by the
combined GAOCP and gradient-based approach. The
results are presented in Table 1. AQ of 2nd order
was enough to achieve strong stabilization. Neverthe-
less, a higher orderQ was also tested but no improve-
ments in the performance were seen. Thus, the op-
timization was computed for6 variables. Note that
the achieved closed-loop performance improved the
results in (Campos and Zhou (2001)). For the case
β = 0.1, the optimization took an average of96.03
sec. and3.355 × 108 flops, and60.37 sec. and
1.929 × 108 flops forβ = 0.01. In Figure 1, the evo-
lution of the cost function during the first-stage opti-
mization is presented forβ = 0.1. After the first stage,
the minimum performance was1.0019. In the next
stage, it was possible to reduce the cost function fur-
ther and find a stable controller. Hence, the optimum
performance was0.9931 (i.e. a stable controller). The
GACOP algorithm itself could not achieve the results
in Table 1 and in general needs a longer time to reach
a satisfactory solution.
If the generalized plant is taken withβ = 0.001, the
H2 optimal controller is unstable with complex RHP
poles located at0.138±1.79j. Thus, the optimization
in (14) was employed to obtain the bestH2 controller
that satisfied the strong stability condition. Table 2
presents the results. AQ of 1st order was not able to
achieve strong stabilization. However, aQ of degree
≥ 2nd was able to keep the controller stable and have
an H2 performance closer to the optimal. An aver-
age of31.84 sec and1.70× 108 flops were needed to
reach a solution. After the first stage (GAOCP), the
best performance was2.39×103. Finally, after the lo-
cal search (gradient approach), the minimum cost was
reduced to1.88× 103.

TABLE 2. CLOSED-LOOP PERFORMANCE FOR

H2 STRONG STABILIZATION: EXAMPLE 1.

Degree ofQ
Optimal 1st 2nd 3rd 4th

‖Tzw‖2 0.109 unstable 0.118 0.118 0.127

It should be intuitive that as the order ofQ is increased
theH2 performance of the closed-loop system should
improve or at least should not be deteriorated. How-
ever, the results in Table 2 show the opposite. Note
that forQ of 4th order, the number of parameters in the
optimization is14. In this case, the parameters space is
very large and it is highly probable that the optimiza-
tion could get trapped in a local minima. In order to
verify this analysis, the population size and mutation
rate are increased in the GAOCP algorithm. Then, for
Q of 4th order the optimal performance is now0.1179
which is consistent with the other two cases in Table
2. As it is expected, the algorithm now takes longer
time and more flops to reach a solution (76.51 sec
and3.99 × 103 respectively). However, the increase
in computation time does not improve drastically the
best results already obtained with aQ of 2nd order.
In summary, the optimization problem becomes very
complex when more than10 parameters are involved
and the probability to reach only a local minimum in-
creases. The same observations can be made for other
examples to be presented later.
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FIG. 1. Evolution of Cost Function During Optimization
for H∞ Design Example 1 andβ = 0.1.

6.2 Example 2 (H2 Strong Stabilization)

A benchmark problem inH2 strong stabilization was
taken from Ganesh and Pearson (1989). The realiza-
tion of the generalized plantG is presented completely
in Ganesh and Pearson (1989) or Corrado et al. (1997).
The generalized plant (2nd order) is stable, so the p.i.p.
is obviously satisfied. The optimalH2 performance is
493.8 and the controller has a unstable pole at18.7. In
Ganesh and Pearson (1989), the optimumH2 perfor-
mance with a stable controller (4th order) was com-
puted,622.73. The resulting optimal controller has
two poles at the origin, but if the stability boundary
is moved back tos = −0.5 (i.e. suboptimal con-
troller), the H2 cost is now628.40. In Corrado et
al. (1997) new results were reported for this exam-
ple. The closed-loopH2 cost was627.31 and622.30
for a second and fourth order controllers respectively.
Running theH2 optimization algorithm (14), the re-
sults in Table 3 were obtained. An average of26.59
sec and1.94 × 107 flops were needed to reach a so-
lution. In this example, aQ of 1st order (i.e.3rd or-
der controller) achieved the smallest closed-loopH2

norm while keeping a stable overall controller. The



result obtained is then into< 1% error of the optimal
performance in Corrado et al. (1997).

TABLE 3. CLOSED-LOOP PERFORMANCE FOR

H2 STRONG STABILIZATION: EXAMPLE 2.

Degree ofQ
Corrado et al. (1997) 1st 2nd

‖Tzw‖2 622.20 627.36 627.42

6.3 Example 3 (H∞ Strong Stabilization)

In order to demonstrate the extension of the proposed
algorithm to an MIMO problem, the aircrafttracking
problempresented in̈Ozbay (1995) is used. The sys-
tem has two output measurements and one control in-
put. The realization of the generalized plantG is ana-
lyzed and described in̈Ozbay (1995).
The optimalH∞ performance is1.72 and the cor-
responding controller has a right half plane pole lo-
cated at2.81. In Özbay (1995), a constantQ, Q =
[−1.99 0], was able to strongly stabilize the system
with γ = 2. However, forQ = [−1.98 0] the con-
troller is not stable anymore. The algorithm in (8)
was then started trying to improve the performance
‖Tzw‖∞ < 2. However, the optimization proved to
be very complex; for1.8 < γ < 1.99 the optimiza-
tion algorithm sometimes was able to reach a stable
controller. Nevertheless, as the value ofγ approaches
to 1.99 the probability raises. The degree ofQ was
varied from0th to 5th but there was no improvement
in this pattern. Nevertheless, forγ ≥ 1.99 a stable
controller was always reached with aQ of 2nd order.
Thus, a total of9 parameters were optimized. The al-
gorithm (8) took in average38.05 sec and7.069×107

flops to find a stable controller forγ = 1.99. The
first optimization (GAOCP) was able to reach a cost
of 1.0012 and the local search reached finally a stable
controller. Thus, the optimum cost was= 0.9970.

7. CONCLUSIONS

Optimization schemes were presented to solve theH∞
andH2 strong stabilization problems. The resulting
schemes are highly nonlinear and present multi-modal
characteristics. A two-stage algorithm was used in the
optimization process. Numerical examples show the
success of the optimization schemes to design stable
controllers for their corresponding problems. The con-
trollers achieved closed-loop performance close to the
optimal. Only low orderQ were needed in the nu-
merical examples. Thus, the order of resulting con-
trollers is comparable to the generalized plants. In
all the benchmark examples, the performance was im-
proved or comparable to previous results published in
literature.
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