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Abstract: This paper presents a numerical approach for designing stable ¥ilM@nd Ho
controllers. The proposed technique searches for a norm constrained stable transfer matrix
Q in the H., and H, suboptimal controller parameterizations so that the final controllers
are stable. The norm constrainéds are explicitly parameterized for any fixed order and

the H, and H,, strong stabilization problems are then converted to nonlinear constrained
optimization problems. A numerical search is carried out by a two-stage optimization scheme
in order to reach an optimal solution. Examples show the performance improvements of these
algorithms over methods already presented in the litera@opyright(©2002 IFAC
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1. INTRODUCTION they require an iterative search in order to reach a sat-

- . . isfactory solution.
A necessary and sufficient condition for the existence |, recent years, evolutionary schemes such as genetic
of a stable stabilizingstrong stabilizing controller algorithms have been extensively used to solve non-

for a plant is the so-called parity interlacing prop- |inear constrained optimization problems. These al-
erty (p.i.p.) (Vidyasagar (1985)). Procedures for de- qithms are usually applied to complex optimization

signing strong stabilizing controllers are outlined in problems where multi-local minima can restrict global

Vidyasagar (1985). It is well-known that the con-  conyergence. Evolutionary schemes are inspired by

trollers obtained fron¥{,/LQG optimal control the- 6 nagyral selection criteria where the stronger organ-
ory are not guaranteed to be stable. In Corrado et igims are likely to survive after generations.

al. (1997), Ganesh and Pearson (1989), and Halevi Genetic algorithms present two main characteristics:
(1994), this problem has been analyzed and alterna- 3 myjii-directional (random) search and an informa-

tive algorithms has been proposed. Similarly, e tion exchange among best solutions. Pioneering work
strong stability problem has also been addressed by ths field is due to Holland Holland (1975) who
Ozbay (1995). Since thH. suboptimal controlleris — first proposed the basic principles of genetic algo-
in general not unique, it is reasonable to expect that iihms. Applications of genetic algorithms to con-

even if the [/, central controller is unstable, there o and signal processing have been reported in liter-
might still be a stable controller that could satisfy the 4 ,re- digital IIR filter design (Man, Tang and Kwong

Ho norm bound when the p.i.p. condition is satis- (1999)), adaptive recursive filtering (White and Flock-
fied. In Choi and Chung (2000), and Zeren &@ubay {4 (1997)), active noise control (Tang et al. (1995)),
(2000), an approach for designing stalfle. con-  gystems model reduction (Li et al. (1997)), etc.

t_roIIers has been_suggested based on th_e parameterizay, inis paper, new approaches for designing stable
tion of all suboptlmc_ale controllers. This approach  \mo H.. and H, controllers will be proposed. In
converts congervatlvely the stahblg,, controller de- these approaches, a numerical search using a two-
sign problem into another 2-block standaid, prob- stage optimization algorithm is carried out for norm
lem. Recently, Campos and Zhou (2001) suggested acqngirained stable transfer matrics in the H.,
method to alleviate this conservativeness. In general, and H, suboptimal controller parameterizations. The
all these analytical methods do not guarantee solutions -, constrained)’s are explicitly parameterized for
for the H, or H strong stabilization problems, and 4y fixed order. Examples show the performance im-
provements of these algorithms over methods already
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The rest of the paper is organized as follows. First, the
notation used in the paper is presented in Section 2.
Next, in Section 3 a description of tHé,, strong sta-
bility problem and the equivalent optimization prob-
lem are outlined. Similarly, the characterization of
the H, strong stabilization problem is detailed in Sec-
tion 4. Section 5 describes the two-stage optimization

scheme. Section 6 presents numerical examples and

in Section 7 some conclusions are drawn.

2. NOTATION

Define a transfer functio&(s) by its state-space real-
ization (A, B,C, D). The H, norm is defined as

r

An alternative characterization can be obtained by us-
ing the state space representatiod-ofFor a stabléx,
we have

1
IGI3 = 5=

o Trace|G* (jw)G(jw)]dw

oo

|G|j3 = Trace(B*QB) = Trace(CPC*) (1)
whereP and( are the observability and controllabil-
ity Gramians. Thed ., nhorm is defined as:

1Glloo = sup G[G(s)] = sup G[G(jw)].

Re(s)>0 wER

Consider that the closed-loop system is described in
LFT form, where the generalized plagt and con-
troller K are assumed to be real-rational and proper.
The dimensions of7 are given by:(t) € RP, y(t) €
RP2, w(t) € R™, u(t) € R™, andz(t) € R".
Then,G is partitioned accordingly

o[ &)

and the transfer function fronw to z is given by
Tow = F1 (G, K) = G11 + G12K(I — G2 K) 7 'Goy
whereF; (-, -) is called a lower linear fractional trans-
formation.
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3. Hoo STRONG STABILIZATION

G

K

3.1 H,, Suboptimal Parameterization

Assume that the generalized planis given by:

By
Dy
Do

A | B
Cy | Dua
Cy | Doy

G = ©)

with some suitable assumptions. It has been proved by
Doyle et al. (1989), that all controllefs(s) satisfying

a suboptimalH ., restriction (i.e. giveny > 0, a sta-
bilizing controllerK (s) satisfied| F; (G, K) ||co < %)
can be parameterized 8y € RH, ||Q]|cc < 7y SUCh
thatK = F; (M., Q)

Al B, B

_ | ‘Al ——| [ My My

My = Ql Dy Dyp | = My Moo
Co | Da1 Do

(4)
where M, is constructed from the solutions of two
Riccati equations (Doyle et al. (1989), and Zhou and
Doyle (1998)). Based on the partition of the general-
ized plantG, it is clear that\/, and@ are(py+mg) x
(p2 + mg) andmsy x po transfer matrices respectively.

3.2 H, Strong Stabilization Problem

A strong stabilizatiorproblem is to design a controller
K € RH, such that the closed-loop is internally sta-
bilized and some performance specifications are satis-
fied. Consequently, thH ., Strong Stabilization prob-
lem is now defined aggiveny > 0, find a stabilizing
controller K € RH,, such that]|F; (G, K) ||oo < 7-

It can be seen from the parameterization of all sub-
optimal H., controllers that in order to find a stable
stabilizing K, it is enough to find & € RH,, with
|Qll < v such thaty stabilizesM . Itis not hard

to see that this can be achieved if and onlyifsta-
bilizes Myy = (A, By, Cy, Dyy). This gives the next
result.

Lemma 1: Assume that a solution to the suboptimal
H, control problem exists for a given > 0, i.e.,
M, such that|F (G, K)o < v and K
Fi (M, @)where@ € RH,, and||Q]|o < 7. Then,
the H,, Strong Stabilization is solvable if and only if
3Q = (Aq, By, Cy, D) of some suitable order, with
|Qllc < 7, such thatdy, is Hurwitz where

_ A+ BQR_IDqC'Q

f?gR_lC
A — N N q
k BqRilCQ

Aq + Bqﬁflbgch
R=1- DqDQQ andR =1-— DQQDq

3.3 H,, State-Space Parameterization

In Steinbuch and Bosgra (1991), a parameterization
for an H,, norm bounded strictly proper and stable

transfer matrix is presented. Now, the result is ex-
tended to the proper case in the following lemma.

Lemma2:Lety > 0 and letQ be a stable trans-
fer matrix of degreen, and ||Q|l~ < 7, then@
can be represented a§ = (Ay, By, Cy, Dy) with
A, = A, + Ay, for somed,, Ay € RMaXNa,
B, € R*a*P2, Cy € R™2*"a, D, € R™2*P2 and

A

1 ~1p “D R-1B*
4. 5 {=BRD;Cy = CiDR™B; (5)
—ByR™'B; — C;(I + DyR™'D;)Cy}

(D) g (6)



whereR = 2] — D;;Dq. din - dip,

Note that whenD, = 0, we have (Steinbuch and D¢ = S = M2 X p2
Bosgra (1991)) dma1 0 dingpy
1 v/ 9 . SinceQ) is anmgy X po proper transfer matrix, the total
Aq. = _§(Bqu /77 +C4C) Y number of variables in the optimization scheme will

be (ng — 1)ng/2 + ngma + ngpa + mape. In order
to implement the optimization in a systematic scheme,
the variables are aligned into a vector format

Using the previous parameterization, the, strong
stabilization problem can be converted to an optimiza-
tion problem where4,, , B,, C, and D, are free pa-

rameters. X = [au a2+ Aany—1yn, b1 Dngp
T
3.4 Optimization Problem Cr e Cmang A1t Ao ©)
The corresponding optimization problem is then de- 4. H, STRONG STABILIZATION
fined as Assume that the generalized planhas the following
Lopt = qk,gii,%q,pq P(D,) * emax{real[A(Ax)]} (8) realization
A| Bl B
where D) G=|Ci| 0 Dy (10)
_ C o Dy) >~ Cy | Doy 0
P(Dy) = { 1 otherwise ) ) ) ) _
with some appropriate assumptions and dimensions.
and Similar to the H,, case, theH, strong stabilization
A+ ByR1D,C, B,R™'C problem is defined agdind a proper, real-rational and
A — - —4q n q . . .
k [ BqR‘ng A+ BqR‘ngqu stable controllerK” which stabilizes> internally and

minimizes theH,; norm of the transfer matrix’,,,

where)(-) denote the eigenvalues of the correspond- fromw to z.

ing matrix, A, is constructed following (5) and > 1

is a chosen constant. Note that the proposed optimiza-4-1 H> Parameterization
tion problem has a positive cost function for any com-
bination of parameters and thé., strong stabiliza-
tion problem is solved if,,; < 1. In the optimization
algorithm, predefined ranges of variations for the ele-
ments ofA4,, , B, andC, were first established. These

The solution to the standatd; problem can be char-
acterized in terms of the Youla parameterization of all
admissible controllersk” = F; (M3, Q). In this for-
mulation,QQ € RH, and M, is given by

intervals were chosen according with the maximum A, ‘ —Ly Bo
and minimum elements of the corresponding gener- My = I 0 Vi (11)
alized plantz. Note that it is usually hard to establish —Cy | T 0

a range of variation for the elementsDj, in order to
satisfy (6). Therefore, it was decided to limit each el- whereA, = A + By Fy + LyCs, See Zhou and Doyle
ement ofD, to be< « and include a penalty function  (1998). So, the closed-load, norm is given by

P(-) to penalize the combinations that violate (6). ) ) ) )
Assume that the degree 6fis predefined ta,, then [Tewllz = [|GeBillz + [ F2Gfll2 + Q12
according with the dimensions of the generalized plant
(2) in the original H,, problem, the number of vari-
ables of each component §fis given by

where the transfer matric&s. andG; are defined in
Zhou and Doyle (1998). Consequently, tHg prob-
lem can be viewed as

0 a1z - Qlin, min ||Q]l2
—a19 0 co agm, QERH>
Ag. = : : : Obviously,Q = 0 represents the optimal solution to
—a _ .0 the standard, problem. As in theH,, parameter-
L Ing a2nq . .
) ization, M and @ are (py + ma) x (p2 + me) and
= (ng — )ng meo X po transfer matrices respectively.
_ 2 Using the previous formulation of thé, problem, the
bii o bap, strong stabilization problem can be stated as
B = : . : = n, X
’ SR e min Q]2
| bngt o bagps QERH,
i C11 s Cin, such that
Cc, = : - : = Mg XN A
4 : ) : ? Az B2Cy is Hurwitz (12)
| Cmal " Cmgng, _ch2 Aq




where@Q = (A4, By, Cy,0). The condition (12) is
needed sinc&) must stabilizeM,. Now, using the
definition of theH> norm given by (1), a parameteri-
zation for allQQ € RH 5 follows.

Lemma 3: Assume tha) € RH» has degree,,, then
@ can be represented in the following form

QI3 = Trace(B; B,)

with @ = (Aq, By, Cy,0) and A, = A, + A,, Where

_ 1
Ag. = —5C,Cy,
Ay = —Al € RN
B, € TRmM*P
C, € RmXma

Using the previous result, thH, strong stabilization
problem is now formulated as

Aq:flé?,cq T'race(B;By) (13)
such that
A, ByC, . ,
1s Hurwitz
—B,C5 —%C;‘C’q + Ag,

4.2 Optimization Problem

Comparing to thed, formulation, theH strong sta-
bilization problem involves more constraints siriée

The optimization problems just introduced in (8) and
(14) are generally nonconvex and present intrinsically
multi-modal characteristics. Therefore, it is natural to
think that these problems are not practical to solve.
Nevertheless, genetic optimization has turned out to be
quite useful to solve these complicated optimization
problems. Moreover, if it is used in conjunction with

a well-known gradient-based optimization technique,
a powerful optimization scheme is obtained that can
effectively solve the proposed problems.

5. OPTIMIZATION SCHEME

In the first attempt to solve the strong stabilization
problems (8) and (14), standard nonlinear optimiza-
tion techniques such as quasi-newton method and con-
jugate gradient (Grace (1992)) were applied. How-
ever, convergence was always limited to the initial
conditions. The algorithms constantly got caught in
local minima. A change of direction was obviously
needed. Thus, the genetic algorithms came as vi-
able solution to solve these problems. However, the
gradient-based approaches have nice properties that
should not be forgotten. Therefore, it was decided to
use a gradient-based algorithm in conjunction with a
genetic algorithms. In this way, the genetic algorithm
was applied first to perform a global search in the pa-
rameters space and find a minimum solution. Next, a
local search was conducted to obtain the optimal so-
lution. This two-stage optimization outperformed the
use of each one of the algorithms alone.

minimization is now incorporated in addition to the
controller stability. So, the optimization scheme be-
comes more complex. In order to solve (13), the next
optimization scheme is proposed:

For the first stage, the algorithm called GAOCP (Ge-
netic Algorithm for Optimization of Continuous Pa-

rameters) was coded in MATLAB. However, any
other type of evolutionary scheme suchemlution

lopt = min _ Trace(B;B,) + J(Ax)  (14) algorithm aqd genetic prqgrammin,gor na.tural in-
a+Ba:Ca spired algorithm such asimulated annealingould
where have been used instead. For the second stage, a
quasi-newton plus linear search (Nocedal and Wright
[ Memax{reaMANL max{real[M\(A)]} > 0(1999)) scheme was used to perform the local search.
J(Ax) = { 0 otherwise The gradient-based optimization was carried out by
using the Optimization Toolbox(Grace (1992)) of
and MATLAB.
_ Ag ByC,
A = { yyer —%C;;Cq YA, 6. NUMERICAL EXAMPLES

The solutions to the optimization problems (8) and
(14) for the following numerical examples were com-
puted with a Sun Microsystems Ultra 5 work station.
The constant§’ and M in (8) and (14) were given the
valuesl x 103 and1 x 10 respectively.

Here, the constar/ must be chosen sufficiently large
such thatM > Trace(B;B,) all the time. There-
fore, l,p: < M means that the strong stabilization
condition was satisfied. In this formulation, a discon-
tinuous penalty function/(-) is introduced in order
to enforce the strong stabilization restriction. Simi-
lar to the H,, case, intervals of variations were set
for the elements of the matriced,,, B, and C,,. The benchmark SISO example used by Campos and
These intervals were chosen according with the ele- Zhou (2001), and Zeren artdizbay (1999) was exam-
ments of the corresponding matrices in the generalizedined. The generalized plant is described thoroughly
plantG. The number of variables to optimize will be in Campos and Zhou (2001). The parameier- 0

6.1 Example 1K, and H, Strong Stabilization)

(ng — 1)ng/2 4+ ngma + ngp2 Which is lower than in
the H,, case sincé) is now strictly proper.

was introduced to include some penalty on the control
signal. The generalized plant is non-minimum phase
and it has a double pole at the origin, but it satisfies



the p.i.p. condition, so it could be strongly stabilized.
The system is SISO therefore the optinfal, con-
troller is unique. Consequently, it will not be possible
to achievey,,; with a stable controller. The optimal
H, performance i$).2324 and0.1415, and the cor-
responding central controllers are unstable with com-
plex right half plane poles located@b45+1.83; and
0.114 £+ 1.975 for 8 = 0.1 and0.01 respectively.

TABLE 1. THE SMALLEST y ACHIEVED
H., STRONG STABILIZATION FOREXAMPLE 1.

16 (14) Campos and Zhou (2001)
0.1 ~ =10.233 ~ =0.237
Yopt = 0.232
0.01 v =0.145 v =0.151
Yopt = 0.142

The optimization scheme in (8) was carried out by the
combined GAOCP and gradient-based approach. The
results are presented in Table 1. Aof 27 order
was enough to achieve strong stabilization. Neverthe-
less, a higher ordep was also tested but no improve-
ments in the performance were seen. Thus, the op
timization was computed foé variables. Note that
the achieved closed-loop performance improved the
results in (Campos and Zhou (2001)). For the case
6 = 0.1, the optimization took an average ©6.03
sec. and3.355 x 10® flops, and60.37 sec. and
1.929 x 108 flops for3 = 0.01. In Figure 1, the evo-
lution of the cost function during the first-stage opti-
mization is presented fgt = 0.1. After the first stage,
the minimum performance was0019. In the next
stage, it was possible to reduce the cost function fur-
ther and find a stable controller. Hence, the optimum
performance wa8.9931 (i.e. a stable controller). The
GACOP algorithm itself could not achieve the results
in Table 1 and in general needs a longer time to reach
a satisfactory solution.

If the generalized plant is taken with = 0.001, the

H, optimal controller is unstable with complex RHP
poles located &d1.138 +1.79;. Thus, the optimization

in (14) was employed to obtain the b&$t controller
that satisfied the strong stability condition. Table 2
presents the results. @ of 1°¢ order was not able to
achieve strong stabilization. Howevergaof degree

> 274 was able to keep the controller stable and have
an H, performance closer to the optimal. An aver-
age 0f31.84 sec and..70 x 102 flops were needed to
reach a solution. After the first stage (GAOCP), the
best performance was39 x 103. Finally, after the lo-

cal search (gradient approach), the minimum cost was
reduced td.88 x 103.

cost function

TABLE 2. CLOSED-LOOP PERFORMANCE FOR
H> STRONG STABILIZATION: EXAMPLE 1.

Degree of@)
Optimal 15t ond 3rd 4th
|T.0ll2 | 0.109 | unstable 0.118 0.118 0.127

It should be intuitive that as the order@fis increased
the H, performance of the closed-loop system should
improve or at least should not be deteriorated. How-
ever, the results in Table 2 show the opposite. Note
that forQ of 4" order, the number of parameters in the
optimization isl4. In this case, the parameters space is
very large and it is highly probable that the optimiza-
tion could get trapped in a local minima. In order to
verify this analysis, the population size and mutation
rate are increased in the GAOCP algorithm. Then, for
Q of 4*" order the optimal performance is n®a 179
which is consistent with the other two cases in Table
2. As it is expected, the algorithm now takes longer
time and more flops to reach a solutior6.61 sec
and3.99 x 102 respectively). However, the increase
in computation time does not improve drastically the
best results already obtained with@aof 2" order.

In summary, the optimization problem becomes very
complex when more that0 parameters are involved
and the probability to reach only a local minimum in-
creases. The same observations can be made for other
examples to be presented later.
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FiG. 1. Evolution of Cost Function During Optimization
for Ho, Design Example 1 and = 0.1.

6.2 Example 2K, Strong Stabilization)

A benchmark problem i/, strong stabilization was
taken from Ganesh and Pearson (1989). The realiza-
tion of the generalized plaif is presented completely
in Ganesh and Pearson (1989) or Corrado et al. (1997).
The generalized plan2{ order) is stable, so the p.i.p.
is obviously satisfied. The optim&l, performance is
493.8 and the controller has a unstable polé&t. In
Ganesh and Pearson (1989), the optimimperfor-
mance with a stable controlled!( order) was com-
puted,622.73. The resulting optimal controller has
two poles at the origin, but if the stability boundary
is moved back tos —0.5 (i.e. suboptimal con-
troller), the H, cost is now628.40. In Corrado et
al. (1997) new results were reported for this exam-
ple. The closed-loofi; cost was527.31 and622.30

for a second and fourth order controllers respectively.
Running theH, optimization algorithm (14), the re-
sults in Table 3 were obtained. An average26f59
sec andl.94 x 107 flops were needed to reach a so-
lution. In this example, &) of 1°¢ order (i.e.3" or-
der controller) achieved the smallest closed-lddp
norm while keeping a stable overall controller. The



result obtained is then inta 1% error of the optimal  Campos-Delgado, D.U. and K. Zhou (200H, Strong Stabiliza-

performance in Corrado et al. (1997)_ tion. Accepted for publication IHEEE Transactions on Auto-
matic Control
TABLE 3. CLOSED-LOOP PERFORMANCE FOR Choi, Y. and W.K. Chung (2000). On the Stalile, Controller Pa-
H> STRONG STABILIZATION: EXAMPLE 2. rameterization under Sufficient Condition. SubmittedIE&E

Transactions on Automatic Control
Corrado, J.R., R.S. Erwin, D.S. Bernstein and W.M. Haddad (1997).

Degree of() Stable H»-Optimal Controller SynthesisProceedings of the
Corrado etal. (1997) 1% ond American Control Conferenc®aper # 0-7803-3835-9/97.
HTsz2 622.20 627.36 627.42 Doyle, J.C., K. Glover, P.K. Khargonekar and B.A. Francis (1989).
State-Space Solutions to Standdid and H~, Control Prob-
lems.|EEE Transactions on Automatic Contralol. 34, No. 8,
pp. 831-847.
6.3 Example 31({00 Strong Stabilization) Ganesh, C. and J.B. Pearson (1983)-Optimization with Stable

Controllers Automatica \Vol. 25, pp. 629-634.
In order to demonstrate the extension of the proposed’.—)race, A. (1992)Optimization Toolbox: User's Guiderhe Math-

: ircraftacki Works, Inc..
algomhm to an MIMO prOblem’ the aircr Ckmg Halevi, Y. (1994). Stable LQG ControlleEEE Transactions on Au-

problempresented if©Ozbay (1995) is used. The sys- tomatic Control Vol. 39, No. 10, pp. 2104-2106.
tem has two output measurements and one control inHolland, J.H. (1975)Adaptation in Natural and Artificial Systems
put. The realization of the generalized plénts ana- MIT Press.

. Li, Y., K.C. Tan and M. Gong (1997). Global Structure Evolution and
lyzed an_d described i@zbay (19_95)' Local Parameter Learning for Control System Model Reductions.
The optimal H,, performance isl.72 and the cor- Evolutionary Algorithms in Engineering Applicatiar8pringer-
responding controller has a right half plane pole lo-  Verlag, pp. 345-360.

cated at2.81. In ézbay (1995), a constaf}, Q = Man, K.F., K.S. Tang and S. Kwong (1999}enetic Algorithms:

- Concepts and DesignSpringer-Verlag London.
[_1'99 O]’ was able to Strongly stabilize the system Mitchell, M. (1996).An Introduction to Genetic Algorithm$he MIT

with v = 2. However, forQ = [-1.98 0] the con- _ Press, Cambridge, Massachusetts.
troller is not stable anymore. The algorithm in (8) Ozbay, H. (1995). Stabl# ., Controller Design for the Longitudinal

was then started trving to improve the performance Dynamics of an AircraftNASA Technical Memorandum 106847
HT H <9 Howgve% the oii):)timizationpproved to Nocedal, J. and S.J. Wright (1998)umerical OptimizationSpringer
ZW || o0 . H

e Verlag New York.
be very complex; fon.8 < v < 1.99 the optimiza-  saif, A.A., D. Gu and I. Postlethwaite (1997). Strong Stabilization

tion algorithm sometimes was able to reach a stable of MIMO Systems viaH, Optimization.Systems and Control

oGl Letters Vol. 32, pp. 111-120.
controller. Nevertheless, as the valu pproaches Steinbuch, M. and O.H. Bosgra (1991). Robust Performance in

to 1.~99 the probability raises. The degree@was Ho/H o, Optimal Control.Proceedings of the 30th Conference
varied from0** to 5** but there was no improvement on Decision and Contrglondon, England. pp. 549-550.
in this pattern. Nevertheless, for > 1.99 a stable  Tang, K.S.,K.F. Man, C.Y. Chan, S. Kwong and P.J. Fleming (1995).

: nd GA Approach to Multiple Objective Optimization for Active
controller was always reached withtaof 2"¢ order. Noise ControlIFAC Algorithms and Architecture for Real-Time

Thus, a total o parameters were optimized. The al- Control. pp. 13-19.
gorithm (8) took in averagas.05 sec and’.069 x 107 White, M.S. and S.J. Flockton (1997). Adaptive Recursive Filtering
f|0pS to find a stable controller fO’f = 1.99. The Using Evolutionary AlgorithnEvolutionary Algorithms in Engi-

. R neering ApplicationsSpringer-Verlag. pp. 361-376.
first optimization (GAOCP) was able to reach a cost Vidyasagar, M. (1985)Control System Synthesis: A Factorization

of 1.0012 and the local search reached finally a stable  “approach Cambridge, MA, MIT Press.

controller. Thus, the optimum cost was0.9970. Zeren, M. and HOzbay (1999). On the Synthesis of Stalfleo
Controllers.IEEE Transactions on Automatic Contrdlol. 44,
No. 2, pp. 431-435.

Zeren, M. and HOzbay (2000). On the Strong Stabilization and Sta-

- . ble Ho, Controller Design Problems for MIMO Systen#suto-
Optimization schemes were presented to solvéihe matica Vol. 36, pp. 1675-1684.

and H; strong stabilization problems. The resulting zhou, K. and J.C. Doyle (1998Essentials of Robust ContrdPren-
schemes are highly nonlinear and present multi-modal tice Hall, Upper Saddle River, New Jersey.
characteristics. A two-stage algorithm was used in the

optimization process. Numerical examples show the

success of the optimization schemes to design stable

controllers for their corresponding problems. The con-

trollers achieved closed-loop performance close to the

optimal. Only low order@Q were needed in the nu-

merical examples. Thus, the order of resulting con-

trollers is comparable to the generalized plants. In

all the benchmark examples, the performance was im-

proved or comparable to previous results published in

literature.

7. CONCLUSIONS
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