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Abstract

In this paper, we demonstrate through a simple example the effectiveness of GIMC architec-
ture in the design of robust and high performance feedback controllers. We show that the design
tradeoffs between performance and robustness for a feedback system depend on the controller
architecture.
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1 Introduction

It is commonly known in the control community that there are intrinsic tradeoffs between achievable
performance and robustness for a given control architecture, see for example [3, 6, 7, 10, 11] for
some detailed analyses and discussions. In other words, in order to achieve certain performance,
one must sacrifices some robustness properties of the control systems and vise versa once the control
architecture is chosen. For example, a high performance controller designed for a nominal model
may have very little robustness against the model uncertainties and external disturbances. For this
reason, worst-case robust control design techniques such as H∞ control, L1 control, µ synthesis,
etc, have gained popularity in the last twenty years or so, see for example, [1, 4, 5, 8, 9, 10, 11] and
references therein. Unfortunately, it is well recognized in the robust control community that the
robustness of the closed-loop system design is usually achieved at the expense of performance. In
particular, it is well known that the robust control design techniques such as H∞ optimization, L1

optimization, and µ synthesis usually result in controllers that are robust to model uncertainties and
external disturbances but may have very poor nominal performance. This is not hard to understand
since most robust control design techniques are based on the worst possible scenarios which may
never occur in a particular control system. Thus such controllers are not very desirable in many
applications. Nevertheless, the ability to be able to control the system under the worst-case scenario
is also very important in many applications and hence it is desirable to have design techniques
∗This research was supported in part by grants from NASA and LEQSF

1



that can achieve the same level of robustness when there are model uncertainties and external
disturbances while at the same time perform well when there is no or little model uncertainties
and external disturbances. The control architecture proposed by this author in [12], which is
called Generalized Internal Model Control (GIMC), seems to be a good candidate for achieving
this objective. In other words, the tradeoffs between robustness and performance in a feedback
control system depend very much on the control architecture. It is our intention in this paper
to demonstrate this design technique through a simple example so that application engineers may
make appropriate decisions in their applications as what the most effective techniques may be
applied.

The paper is organized as follows. Section 2 introduces the GIMC architecture. Section 3 uses
a simple example to demonstrate the GIMC control design technique and its effectiveness. Some
concluding remarks are given in Section 3.

The notations used in the paper are standard. H∞ denotes the Banach space of bounded
analytic functions with the ∞ norm of a scalar function defined as ‖F‖∞ = supω |F (jω)| for any
F ∈ H∞.

2 Generalized Internal Model Control Structure

Consider a standard feedback configuration shown in Figure 1 where G̃ is a linear time invariant
plant and K is a linear time invariant controller. It is well understood that the model G̃ is in
general not perfectly known. What one actually knows is a nominal model G. Now assume that K0

is a stabilizing controller for the nominal plant G and assume G and K0 have the following stable
coprime factorizations

K0 = Ṽ −1Ũ , G = M̃−1Ñ .

Then it is well known [9, 10, 11] that every stabilizing controller for G can be written in the following
form:

K = (Ṽ −QÑ)−1(Ũ +QM̃)

for some Q ∈ H∞ such that det(Ṽ (∞)−Q(∞)Ñ (∞)) 6= 0.

e K- - - G̃ -
6

r yu

−

Figure 1: Standard Feedback Configuration

It is proposed in [12] that this controller can be implemented as shown in Figure 2. This
controller architecture is called the Generalized Internal Model Control (GIMC) in [12] due to
the similarity with the well-known Internal Model Control (IMC), see [8]. Note that the feedback
diagram in Figure 2 is not equivalent to the diagram in Figure 1 since the reference signal r enters
into the system from a different location. Nevertheless, the internal stability of the system is not
changed since the transfer function from y to u is −K and is not changed. Thus this controller
implementation also stabilizes internally the feedback system with plant G for any Q ∈ H∞ such
that det(Ṽ (∞)−Q(∞)Ñ(∞)) 6= 0.

The distinct feature of this controller implementation is that the inner loop feedback signal f
is always zero, i.e., f = 0, if the plant model is perfect, i.e., if G̃ = G. The inner loop is only active
when there is a model uncertainty or other sources of uncertainties such as disturbances and sensor
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Figure 2: Generalized Internal Model Control Structure

noises. Hence Q can be designed to robustify the feedback systems. Thus this controller design
architecture has a clear separation between performance and robustness.

Controller Design: A high performance robust system can be designed in two steps: (a)
Design K0 = Ṽ −1Ũ to satisfy the system performance specifications with a nominal plant model
G; (b) Design Q to satisfy the system robustness requirements. Note that the controller Q will not
affect the system nominal performance.

In the case when Ũ is minimum phase, then without loss of generality, we can take Q = ŨQ̂
for some stable Q̂. Then the controller can be written as

K = (I −K0Q̂Ñ)−1(K0 +K0Q̂M̃)

and the GIMC structure becomes the one shown in Figure 3.
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Figure 3: An Alternative GIMC Implementation

3 A Design Example

To demonstrate the effectiveness of the GIMC architecture, we shall take a simple example from
µ-Analysis and Synthesis Toolbox [1]. The nominal plant is given by

G =
1

s− 1
.
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The true plant is known to be in a multiplicative set

M(G,Wu) :=
{
G(1 + ∆Wu) : max

ω
|∆(jω)| ≤ 1

}
with

Wu =
1
4

(
1
2s+ 1

)
1
32s+ 1

and ∆ can be any transfer function such that G(1+∆Wu) and G have the same number of unstable
poles. The block diagram of this control system is shown in Figure 4.
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Figure 4: Uncertain Feedback Control System

The feedback system can be put in a LFT form as shown in Figure 5 with

P =

 0 0 Wu

WpG Wp WpG
G I G

 .

de
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Figure 5: LFT form of the feedback system

As stated in [1], the performance objective of this control system is to keep the closed-loop
system stable and have output disturbance rejection up to 0.6 rad/sec, with at least 100 : 1
disturbance rejection at DC for all possible models in the set.

The design objective can be approximately be represented as a weighted H∞ norm constraint
on the sensitivity function Ted:

‖Ted‖∞ =
∥∥∥∥ Wp

1 + G̃K

∥∥∥∥
∞
≤ 1
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for all G̃ ∈M(G,Wu) with the weighting function

Wp =
1
4s+ 0.6
s+ 0.006

.

Let M be the transfer matrix from (w, d) to (z, e),[
z
e

]
= M(s)

[
w
d

]
=

[
M11 M12

M21 M22

] [
w
d

]
Then the nominal performance (i.e., when ∆ = 0) can be evaluated by the transfer function

T 0
ed := Ted|∆=0 = M22 =

Wp

1 +GK

and the robust stability margin can be evaluated by the transfer function

Tzw = M11 =
WuGK

1 +GK
.

Finally, the robust performance condition

‖Ted‖∞ =
∥∥∥∥ Wp

1 + G̃K

∥∥∥∥
∞
≤ 1

is satisfied if and only if the structured singular value

µ∆P (M(jω)) ≤ 1, ∀ω
where ∆P = diag(∆,∆f ).

Two PI controllers are designed in [1] for this uncertain system

K1 =
10(0.9s + 1)

s
, K2 =

2.8s + 1
s

.

The frequency responses of T 0
ed for both controllers are shown in Figure 6 and it is clear that the

nominal performance criteria are satisfied by both controllers since |T 0
ed(jω)| < 1 for all frequencies.

Moreover, the plot also shows that K1 has much better nominal performance than K2 does. Simi-
larly, the frequency responses of Tzw shown in Figure 7 indicate that the robust stability condition,
‖Tzw‖∞ < 1, is satisfied by both controllers with K2 having much large robust stability margin
than K1 does.

On the other hand, the structured singular value plots in Figure 8 show that the robust perfor-
mance is satisfied with K2 but is not satisfied with K1.

To evaluate the time domain behavior of the control system with both controllers, ten plants
including the nominal and two “worst-case” plants in the set M(G,Wu) are used for performance
evaluation in [1] and they are given by

G =
1

s− 1
, G1 =

1
s− 1

6.1
s+ 6.1

G2 =
1.425

s− 1.425
, G3 =

0.67
s− 0.67

G4 =
1

s− 1
−0.07s + 1
0.07s + 1

, G5 =
1

s− 1
702

s2 + 2 · 0.15 · 70s+ 702

G6 =
1

s− 1
702

s2 + 2 · 5.6 · 70s + 702
, G7 =

1
s− 1

(
50

s+ 50

)6

Gwc1 =
1

s− 1
−2.9621(s − 9.837)(s + 0.76892)

(s+ 32)(s + 0.56119)
, Gwc2 =

1
s− 1

s2 + 3.6722s + 34.848
(s+ 7.2408)(s + 32)
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Figure 6: Frequency Responses of T 0
ed for Nominal Performance: K1 (solid) and K2 (dashed)
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Figure 7: Frequency Responses of Tzw for Robust Stability: K1 (solid) and K2 (dashed)
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Figure 8: Frequency Responses of µ∆P (M(jω)) for Robust Performance: K1 (solid) and K2

(dashed)

The step responses of the closed-loop system with K1 and K2 implemented as in Figure 1 are
shown respectively in Figure 9 and Figure 10.

It is clear from the simulations that the controller K1 gives very good and fast response for
the nominal system but it performs very badly for some perturbed plants. On the other hand,
the controller K2 shows a very robust performance with respect to model uncertainties but the
responses are very slow and the closed-loop system performs poorly in the nominal case as well as
in the perturbed case.

From the above analysis, it is very desirable to have a controller that will take advantages of
good performance of K1 in the nominal case and good robustness of K2 in the perturbed cases.
The GIMC architecture is a good candidate for achieving this objective.

Let G = N/M be a stable factorization with

N =
1

s+ 1
, M =

s− 1
s+ 1

.

Then it is easy to show that

K2 =
K1(1 + Q̂M)
1−K1Q̂N

with
Q̂(s) = − 0.1s(6.2s + 1)(s + 1)

(0.9s + 1)(s2 + 1.8s + 1)
.

Hence the controller K2 can be implemented using a GIMC structure as shown in Figure 11. Note
that the transfer function from y to u is −K2. Thus the robustness properties of the closed-loop
system are the same as the controller K2 is implemented in the standard feedback framework.

The step responses of the nominal system with K1, K2, and the GIMC implementation are
shown in Figure 12. The step responses show clearly that the control system with K1 and GIMC
have the same nominal responses and are much better than that due to K2. Figure 13 shows the
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Figure 9: Step Response with K1 and Various Plants for Standard Feedback Implementation
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Figure 10: Step Response with K2 and Various Plants for Standard Feedback Implementation
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Figure 11: GIMC Implementation of K2

step responses of the closed-loop system with the nominal model (G) as well as various perturbed
models (G1, . . . , G7, Gwc1, and Gwc2) when K2 is implemented using the GIMC structure as shown
in Figure 11.

For comparison, the step responses for the “worst-case” plants with the controller K1, K2, and
the GIMC implementation ofK2 are shown in Figures 14 and 15. It is clear from the simulations that
the GIMC implementation delivers good nominal response as well as superb robust performance.

4 Conclusions

We have shown through a simple first order example the effectiveness of the GIMC architecture.
The price for achieving such a high performance and robust controller is the complexity of the
controller. In that regard, controller approximation method may be applied as suggested in [12].
The application of GIMC in fault tolerant control is discussed in [2].
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Figure 12: Step Responses of the Nominal G: K1 (solid), K2 (dashed), and GIMC (solid)
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Figure 13: Step Responses of the Closed-loop System with K2 Implemented Using the GIMC
Structure Under Various Perturbations
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Figure 14: Step Responses of Gwc1: K1 (dash-dot), K2 (dashed), and GIMC (solid)
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Figure 15: Step Responses of Gwc2: K1 (dash-dot), K2 (dashed), and GIMC (solid)
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