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Abstract

In this paper, we propose a decentralized H∞
control design technique through approxima-
tion. We show that a decentralized H∞ con-
trol problem as well as any fixed structured
H∞ control problem can be (conservatively)
converted into a model approximation prob-
lem. We then propose some explicit parame-
terizations of the decentralized controllers and
the final decentralized controllers are obtained
through some convex optimization.

1 Introduction

In many aerospace and other industrial appli-
cations, the control systems are highly com-
plex and consist of many subsystems where lo-
cal controllers are used. It is highly desirable
for a high performance control system that
those local decentralized controllers are de-
signed such that the global performance of the
system is taken into consideration. Thus it is of
great importance to develop high performance
and robust decentralized control techniques for
highly complex systems. Many decentralized
control design techniques have been proposed
in the literature over the years. For example,
a sequential design method can be used [6]. A
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decentralized control stabilization using time
varying controllers is described in [7]. An LMI
approach to decentralized H∞ control is pro-
posed in [8]. An H2 decentralized control de-
sign using the local controller parameterization
is considered in [5]. The parameterization of
all decentralized stabilizing controller is con-
sidered in [9]. In general, the generalization
of the centralized control design technique to
the decentralized setting is fairly complicated
and conservative. Indeed, the conservativeness
in decentralized control design seems to be the
way of life. The work described here is no ex-
ception.

In this paper, we shall propose a decentralized
H∞ control design technique based on model
reduction and optimization technique.
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Figure 1: Closed-loop system diagram

To start with, let us assume that we can for-
mulate the control design problem as an H∞
optimization problem with a generalized plant
G and our purpose is to design a decentralized
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stabilizing controller

Kd(s) =


K1(s)

K2(s)
. . .

Km(s)


such that ‖Tzw‖∞ < γ for some γ > 0 where
Tzw is the transfer function from w to z:

Tzw = G11 +G12Kd(I −G22Kd)−1G21

and

G(s) =

[
G11(s) G12(s)
G21(s) G22(s)

]

2 Centralized H∞ Control

In this section, we shall first summarize the
standard H∞ control result where centralized
controllers are used. Consider a feedback sys-
tem shown in Figure 2 with a generalized plant
realization given by

G(s) =

 A B1 B2

C1 D11 D12

C2 D21 D22

 .
Assumed that the following standard assump-
tions are satisfied:

(A1) (A,B2) is stabilizable and (C2, A) is de-
tectable;

(A2) D12 has full column rank and D21 has
full row rank;

(A3)

[
A− jωI B2

C1 D12

]
has full column rank

for all ω;

(A4)

[
A− jωI B1

C2 D21

]
has full row rank for

all ω.

Then it is well known that all stabilizing con-
trollers satisfying ‖Tzw‖∞ < γ can be parame-
terized as

K = F`(M∞, Q), Q ∈ RH∞, ‖Q‖∞ < γ (1)
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Figure 2: Closed-loop system diagram

where M∞ is of the form

M∞ =

[
M11(s) M12(s)
M21(s) M22(s)

]
=

 Â B̂1 B̂2

Ĉ1 D̂11 D̂12

Ĉ2 D̂21 D̂22


such that D̂12 and D̂21 are invertible and Â−
B̂2D̂

−1
12 Ĉ1 and Â − B̂1D̂

−1
21 Ĉ2 are both stable

(i.e., M−1
12 and M−1

21 are both stable). See [2,
11, 12] for details.

Thus it is clear that our desired decentralized
controllers must be in the family of the pa-
rameterization. Unfortunately, it is very hard
to find such decentralized controllers directly.

3 Decentralized H∞ Controller Design
by Approximation

The problem to be considered here is to find a
controller Kd with a certain structure and/or
order such that the H∞ performance require-
ment ‖F`(G,Kd)‖∞ < γ is satisfied for a given
γ > 0. This is clearly equivalent to finding a
Q so that it satisfies the preceding constraint
so that Kd has certain structure and/or order.
Instead of choosing Q directly, we shall ap-
proach this problem from approximation point
of view.

3.1 Additive Controller Approximation
Consider a class of controllers that can be rep-
resented in the form

Kd = K0 +W2∆W1,

where K0 may be interpreted as a nominal and
centralized controller and ∆ is a stable pertur-
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bation with stable, minimum phase and invert-
ible weighting functions W1 and W2. Suppose
that ‖F`(G,K0)‖∞ < γ. A natural question
is whether it is possible to obtain a controller
Kd with some specific structure in this class
such that the H∞ performance bound remains
valid when Kd is in place of K0. Note that
this is somewhat a special case of the preced-
ing general problem: The specific form of Kd

means that Kd and K0 must possess the same
right-half plane poles, thus to a certain degree
limiting the set of attainable structured con-
trollers.

Define

K̄−1
a :=

[
0 I
I 0

]
M−1
∞

[
0 I
I 0

]
.

[
R11 R12

R21 R22

]
= S(K̄−1

a ,

[
Ko I
I 0

]
).

and

R̃ =

[
γ−1/2I 0

0 W1

][
R11 R12

R21 R22

] [
γ−1/2I 0

0 W2

]

Then the following result follows immediately
from results in [4].

Theorem 1 Let K0 be a stabilizing controller
such that ‖F`(G,K0)‖∞ < γ and suppose W1

and W2 are stable, minimum phase and invert-
ible transfer matrices such that R̃ is a contrac-
tion. Then Kd is also a stabilizing controller
such that ‖F`(G,Kd)‖∞ < γ if Kd has the
same number of unstable poles as K0 and

‖∆‖∞ =
∥∥∥W−1

2 (Kd −K0)W−1
1

∥∥∥
∞
< 1.

Since R̃ can always be made contractive for
sufficiently small W1 and W2, there are infinite
many W1 and W2 that satisfy the conditions
in the theorem. It is obvious that it would be
easier to make

∥∥∥W−1
2 (Kd −K0)W−1

1

∥∥∥
∞

< 1
for some Kd if the “largest” W1 and W2 are
selected such that R̃ is a contraction.

Lemma 2 Assume that ‖R22‖∞ < γ and de-
fine

L =

[
L1 L2

L∼2 L3

]

= F`(


0 −R11 0 R12

−R∼11 0 R∼21 0
0 R21 0 −R22

R∼12 0 −R∼22 0

 , γ−1I).

Then R̃ is a contraction if W1 and W2 satisfy[
(W∼1 W1)−1 0

0 (W2W
∼
2 )−1

]
≥
[
L1 L2

L∼2 L3

]
.

A numerical algorithm that maximizes
det(W∼1 W1) det(W2W

∼
2 ) has been developed

by Goddard and Glover in [4]. Thus we have
reduced (conservatively) the original decen-
tralized H∞ controller design problem into an
decentralized approximation problem.

A reasonable assumption is that the controller
Ko has all the correct poles! Let

Ko(s) =

[
A0 B0

C0 D0

]

Then the poles of Ko(s) are given by the roots
of the polynomial d(s) = det(sI − A0). Sup-
pose A0 is stable. Then we shall parameterize
the decentralized controller Kd as follows

Kd =


N1(s)

N2(s)
. . .

Nm(s)


d(s)

where Ni(s) are polynomial matrices to be op-
timized.

The procedure below, devised directly from the
preceding theorem, can be used to generate a
required decentralized controller that will pre-
serve the closed-loop H∞ performance bound
‖F`(G,Kd)‖∞ < γ.
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1. Let K0 be a full-order stable controller
such that ‖F`(G,K0)‖∞ < γ;

2. Compute W1 and W2 so that R̃ is a con-
traction;

3. The decentralized controller can be
found from the following minimization

min
Ni

∥∥∥W−1
1 (K0 −Kd)W−1

2

∥∥∥
∞
< 1

We note that the reduced order decentralized
controller design can be easily dealt with in
this framework.

3.2 Coprime Factor Approximation
The H∞ controller reduction problem can also
be considered in the coprime factor framework.
One of the advantages in using coprime factor
approximation is that K0 and Kd need not be
stable or have the same number of unstable
poles [11, 12]. For that purpose, we need the
following alternative representation of all ad-
missible H∞ controllers:

Lemma 3 The family of all admissible con-
trollers such that ‖Tzw‖∞ < γ can also be writ-
ten as

K(s) = F`(M∞, Q)
= (Θ11Q+ Θ12)(Θ21Q+ Θ22)−1 := UV −1

= (QΘ̃12 + Θ̃22)−1(QΘ̃11 + Θ̃21) := Ṽ −1Ũ

where Q ∈ RH∞, ‖Q‖∞ < γ, and UV −1 and
Ṽ −1Ũ are, respectively, right and left coprime
factorizations over RH∞, and

Θ =
[

Θ11 Θ12

Θ21 Θ22

]

=

 Â− B̂1D̂
−1
21 Ĉ2 B̂2 − B̂1D̂

−1
21 D̂22 B̂1D̂

−1
21

Ĉ1 − D̂11D̂
−1
21 Ĉ2 D̂12 − D̂11D̂

−1
21 D̂22 D̂11D̂

−1
21

−D̂−1
21 Ĉ2 −D̂−1

21 D̂22 D̂−1
21


Θ̃ =

[
Θ̃11 Θ̃12

Θ̃21 Θ̃22

]

=

 Â− B̂2D̂
−1
12 Ĉ1 B̂1 − B̂2D̂

−1
12 D̂11 −B̂2D̂

−1
12

Ĉ2 − D̂22D̂
−1
12 Ĉ1 D̂21 − D̂22D̂

−1
12 D̂11 −D̂22D̂

−1
12

D̂−1
12 Ĉ1 D̂−1

12 D̂11 D̂−1
12

 .

Let

d(s) = det
(
sI − (Â− B̂1D̂

−1
21 Ĉ2)

)
and

d̃(s) = det
(
sI − (Â− B̂2D̂

−1
12 Ĉ1)

)
Let

Kd = UdV
−1
d = Ṽ −1

d Ũd

where

Ud =


U1(s)

U2(s)
. . .

Um(s)


d(s)

,

Vd =


V1(s)

V2(s)
. . .

Vm(s)


d(s)

Ũd =


Ũ1(s)

Ũ2(s)
. . .

Ũm(s)


d̂(s)

,

Ṽd =


Ṽ1(s)

Ṽ2(s)
. . .

Ṽm(s)


d̂(s)

Theorem 4 Let K0 = Θ12Θ−1
22 be the central

H∞ controller such that ‖F`(G,K0)‖∞ < γ
and let Ud, Vd ∈ RH∞ with detVd(∞) 6= 0 be
such that∥∥∥∥[ γ−1I 0

0 I

]
Θ−1

([
Θ12

Θ22

]
−
[
U
V

])∥∥∥∥
∞
< 1/

√
2.

Then Kd = UdV
−1
d is also a stabilizing con-

troller such that ‖F`(G,Kd)‖∞ < γ.

Similarly, we have the following theorem:
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Theorem 5 Let K0 = Θ̃−1
22 Θ̃21 be the central

H∞ controller such that ‖F`(G,K0)‖∞ < γ

and let Ũd, Ṽd ∈ RH∞ with det Ṽd(∞) 6= 0 be
such that∥∥∥∥([ Θ̃21 Θ̃22

]
−
[
Ũd Ṽd

])
Θ̃−1

[
γ−1I 0

0 I

]∥∥∥∥
∞

< 1/
√

2.

Then Kd = Ṽ −1
d Ũd is also a stabilizing con-

troller such that ‖F`(G,Kd)‖∞ < γ.

The preceding two theorems show that the
sufficient conditions for the structured H∞
controller design problems are equivalent to
frequency-weighted H∞ model reduction prob-
lems.

Decentralized H∞ Controller Design

(i) Let K0 = Θ12Θ−1
22 (= Θ̃−1

22 Θ̃21) be a subop-
timal H∞ central controller (Q = 0) such
that ‖Tzw‖∞ < γ.

(ii) Find a reduced-order controller K =
UdV

−1
d (or Ṽ −1

d Ũd) such that∥∥∥∥[ γ−1I 0
0 I

]
Θ−1

([
Θ12

Θ22

]
−
[
Ud
Vd

])∥∥∥∥
∞
< 1/

√
2

or∥∥∥∥([ Θ̃21 Θ̃22

]
−
[
Ũd Ṽd

])
Θ̃−1

[
γ−1I 0

0 I

]∥∥∥∥
∞

< 1/
√

2.

Then the closed-loop system with the
reduced-order controller Kd is stable and
the performance is maintained with the
reduced-order controller; that is,

‖Tzw‖∞ = ‖F`(G,Kd)‖∞ < γ.
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