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Abstract

We develop a fast algorithm to construct the ro-
bustness degradation function, which describes
quantitatively the relationship between the pro-
portion of systems guaranteeing the robustness re-
quirement and the radius of the uncertainty set.
This function can be applied to predict whether a
controller design based on an inexact mathemati-
cal model will perform satisfactorily when imple-
mented on the true system.

1 Introduction

In recent years, there have been growing interest
on the development of probabilistic methods for
robustness analysis and design problems aimed at
overcoming the computational complexity and the
issue of conservatism of deterministic worst case
framework [15, 16, 13, 12, 18, 2, 6, 5, 17, 9, 10,
7, 8, 20, 21, 14]. In the deterministic worst case
framework, one is only interested in knowing if
the robustness requirement is guaranteed for ev-
ery value of the uncertainty. However, it should
be borne in mind that the uncertainty set may
include worst cases which never happen in real-
ity. Instead of seeking the worst case guarantee,
it is sometimes \acceptable" that the robustness
requirement is satis�ed for most of the cases. It
has been demonstrated that the proportion of sys-
tems guaranteeing the robustness requirement can
be close to 1 even if the radii of uncertainty set are
much larger than the worst case deterministic ro-
bustness margin [2, 4, 5, 9, 17]. Therefore, it is of
practical importance to construct a function which
describes quantitatively the relationship between
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the proportion of systems guaranteeing the robust-
ness requirement and the radius of uncertainty set.
Such a function can serve as a guide for control
engineers in evaluating the robustness of a con-
trol system once a controller design is completed.
Such a function, referred as robustness degradation
function, has been proposed by a number of re-
searchers [2, 9]. For example, Barmish and Loaga
[2] have constructed a curve of robustness margin
ampli�cation versus risk in a probabilistic setting.
In a similar spirit, Cala�ore, Dabbene and Tempo
[9, 10] have constructed a probability degradation
function in the context of real parametric and dy-
namic uncertainty.

In this paper, allowing the robustness analysis be
performed in a distribution-free manner, we intro-
duce the concept of proportion and adopt the as-
sumption from classical robust control framework
that uncertainty is deterministic and bounded. It
follows naturally that the robustness of a system
can be reasonably measured by the ratio of the
volume (Lebesgue measure) of the set of uncer-
tainty guaranteeing the robustness requirement to
the overall set of uncertainty [18]. Evaluation
of such a measure of robustness requires gener-
ating samples with uniform distribution over un-
certainty sets such as a spectral normal ball or an
lp ball. The diÆculty of generating such samples
has been successfully resolved in [9, 10].

The conventional method for constructing the ro-
bustness functions is to perform, independently,
a certain number of simulations for each value of
the uncertainty radius and then plot the function.
Although such a curve can be applied to evaluate
the robustness of the control system, it may be
computational expensive. This is especially true
when many cycles of controller synthesis and ro-
bustness analysis are needed in the development
of a high performance control system. Motivated
by this situation, we focus on the machinery that



can make the construction of such a function eÆ-
cient. We have developed a Sample Reuse Algo-
rithm that allows the simulations to be conducted
in an iterative manner. The idea is to start sim-
ulation from the larger uncertainty set and save
appropriate evaluations of the robust requirement
for the use of later simulations on smaller uncer-
tainty set. In this way the total number of simula-
tions can be reduced signi�cantly as compared to
the conventional method.

Although our Sample Reuse Algorithm is derived
from the worst case deterministic framework, the
technique is also applicable when considering the
random nature of the uncertainty. In such cases,
the worst-case properties of uniform distribution
given in the pioneering work [6, 2, 1] allow our
algorithm to be applied to eÆciently solve a wide
variety of robustness analysis problems.

Finally, we would like to point out that, in ad-
ditional to overcoming the NP hard barrier and
the conservatism issue, an overwhelming advan-
tage of this approach is that it provides solutions
to many robustness problems with complicated ro-
bustness requirement and uncertainty bounding
set for which there is no e�ective techniques in the
classical deterministic robust control framework.
For example, our algorithm can provide eÆcient
solutions for robustness problems with time spec-
i�cations and stability requirement and with the
uncertainty bounding set taken as a spectral norm
ball.

The organization of the paper is as follows. Sec-
tion 2 gives the problem formulation. Section 3
presents our Sample Reuse Algorithm. Section 4
is the performance analysis of the algorithm. Sec-
tion 5 applies the algorithm to examples.

2 Problem Formulation

We adopt the assumption, from the classical ro-
bust control framework, that the uncertainty is de-
terministic and bounded. We formulate a general
robustness analysis problem as follows.

Let P denote a robustness requirement. The def-
inition of P can be a fairly complicated combina-
tion of the following:

� Stability or D-stability;

� H1 norm of the closed loop transfer func-
tion;

� Time speci�cations such as overshoot, rise
time, settling time and steady state error.

Let B(r) denote the set of uncertainties with size
smaller than r. In applications, we are usually
dealing with uncertainty sets such as the following:

� lp ball Bp(r) := f� 2 Rn : jj�jjp � rg
where jj:jp denotes the lp norm and p =
1; 2; � � � ;1. In particular, B1(r) denotes a
box.

� Spectral norm ball B�(r) := f� 2
� : ��(�) � rg where � is the class
of allowable perturbations and � :=
fblockdiag[q1Ir1 ; � � � ; qsIrs ;�1; � � � ;�c]g
where qi 2 F; i = 1; � � � ; s are scalar
parameters with multiplicity r1; � � � ; rs and
�i 2 F

ni�mi ; i = 1; � � � ; c are possibly
repeated full blocks. Here F is either the
complex �eld C or the real �eld R.

� Homogeneous star-shaped bounding set
BH(r) := fr(���0) + �0 : � 2 Qg where
Q � Rn and �0 2 Q (see [2] for a detailed
illustration).

Throughout this paper, B(r) refers to any type of
uncertainty set described above. De�ne a function
jj:jj such that jjX jj := minfr : X 2 B(r)g for any
X , i.e., B(jjX jj) includes X exactly in the bound-
ary. By such de�nition, jjX jj = minfr : X��0

r
+

�0 2 Qg; jjX jj = ��(X); and jjX jj = jjX jjp in the
context of homogeneous star-shaped bounding set,
spectral norm ball and lp ball respectively.

To allow the robustness analysis be performed in
a distribution-free manner, we introduce the no-
tion of proportion as follows. For any � 2 B(r)
there is an associated system G(�). De�ne pro-

portion P(r) := vol(f�2B(r): G(�) guarantees Pg)
vol(B(r)) with

vol(S) :=
R
q2S dq; where the notion of dq is illus-

trated as follows:

� (I): If q = [xrs]n�m is a real matrix inRn�m,
then dq =

Qn

r=1

Qm

s=1 dxrs.

� (II): If q = [xrs + jyrs]n�m is a
complex matrix in Cn�m, then dq =Qn

r=1

Qm

s=1(dxrsdyrs).

� (III): If q 2 �, then dq =
(
Qs

i=1 dqi)(
Qc

i=1 d�i) where the notion
of dqi and d�i is de�ned by (I) and (II).

It follows that P(r) is a reasonable measure of the
robustness of the system [9, 19]. In the worst case
deterministic framework, we are only interested in
knowing if P is guaranteed for every �. However,



one should bear in mind that the uncertainty set
in our model may include worst cases which never
happen in reality. Thus, it would be \acceptable"
in many applications if the robustness requirement
P is satis�ed for most of the cases. Hence, due
to the inaccuracy of the model, we should also
obtain the value of P(r) beyond the deterministic
robustness margin.

Clearly, P(r) is deterministic in nature. How-
ever, we can resort to a probabilistic approach
to evaluate P(r). To see this, one needs to ob-
serve that a random variable with uniform distri-
bution over B(r), denoted by �u, guarantees that

Prf�u 2 Sg = vol(S
TB(r))

vol(B(r)) for any S, and thus

P(r) = Prf G(�u) guarantees Pg: It follows that
a Monte Carlo method can be employed to esti-
mate P(r) based on i.i.d. observations of �u.

It is interesting to know how the function P(r) de-
grades with respect to r when r increases from a to
b where b > a � 0. In a similar spirit, such a func-
tion has been proposed as Con�dence Degrada-
tion Function in [2] and as Probability Degradation
Function in [9, 10]. In this paper, we refer func-
tion P(:) as robustness degradation function for the
following reasons. Firstly, we introduce con�dence
interval for assessing the accuracy of the estimate
of P(r). To be useful, every numerical method
should be associated with an assessment for the
accuracy of the estimate. Monte Carlo simulation
is no exception. To avoid confusion, we reserve the
notion of \con�dence" for the purpose of interval
estimation. Secondly, we introduce the concept of
proportion for measuring robustness, which has no
probabilistic content. Thirdly, P(r) is a robustness
measure and is usually decreasing with respect to
r when P(r) is close to 1.

To construct such a function of practical impor-
tance, the conventional way is to grid the interval
[a; b] as a = �1 < �2 < � � � < �l = b and estimate
P(�i) by conductingN i.i.d. sampling experiments
for each �i. In total, we need Nl samples. In the
next section we show that the number of experi-
ments can be signi�cantly reduced.

3 Sample Reuse Algorithm

To improve eÆciency, we shall make use of the
following simple yet important observation.

Let q� be an observation of a random variable with
uniform distribution over B(r�) � B(r) such that
q� 2 B(r). Then q� can also be viewed as an ob-
servation of a random variable with uniform dis-
tribution over B(r).

In our algorithm, we 
ip the order of �i by de�ning
ri = �l+1�i for i = 1; 2; � � � ; l. Thus, the direction
of simulation is backward. Our algorithm is de-
scribed as follows.

Sample Reuse Algorithm

Input: Sample size N , con�dence parameter
Æ 2 (0; 1) and uncertainty radii ri; i =
1; 2; � � � ; l.

Output: Proportion estimate bPi and the related
con�dence interval for i = 1; � � � ; l. In the
following, mi1 denotes the number of sam-
pling experiments conducted at ri and mi2

denotes the number of observations guaran-
teeing P during the mi1 sampling experi-
ments.

Step 1. Let M = [mij ]l�2 be a zero matrix.

Step 2. For i = 1 to i = l do the following:

� Let r  ri.

� While mi1 < N do the following:

{ Generate uniform sample q� from
B(r). Evaluate the robustness re-
quirement P for q�.

{ Let ms1  ms1 + 1 for any s such
that rs � jjqjj.

{ If robustness requirement P is sat-
is�ed for q� then let ms2  ms2+1
for any s such that rs � jjqjj.

� Let bPi  mi2

N
and construct the

con�dence interval of con�dence level
100(1� Æ)%.

It follows that q� can be viewed as an observa-
tion of a random variable with uniform distribu-
tion over B(rj) if and only if rj � jjqjj. Hence, if
the robustness requirement P has been evaluated
for B(ri) at sample q

�, the result can be accepted
without repeated evaluation of P for all B(rj) such
that rj � jjqjj. Thus, sample reuse allows us to
save both the sample generation and the evalua-
tion of P for the sample. It is also interesting to
point out that the samples collected for each ri are
i.i.d. and thus con�dence interval can be rigor-
ously constructed based on the evaluation of P for
the samples.

4 Sample Reuse Factor

Let ni be the number of simulations required at ri.
De�ne sample reuse factor Freuse := Nl

E[Pl

i=1
ni]

;



where E(X) denotes the expectation of random
variable X . Obviously, Freuse measures the im-
provement of eÆciency upon the conventional
method. We demonstrate that the improvement
can be signi�cant in most applications.

Theorem 1 The sample reuse factor Freuse =
l

l�Pl

i=2

�
ri

ri�1

�
d where d = n for lp ball Bp(r)

and homogeneous star-shaped bounding set BH(r);
and d =

Ps

i=1 �(qi) +
Pc

j=1 �(�j) for spectral

norm ball B�(r) with �(:) de�ned so that �(X) =

2[min(m;n)]
2
+ 2jm � nj � min(m;n) + 1 if X 2

Cn�m and �(X) = [min(m;n)]
2
+ jm � nj if

X 2 Rn�m.

For illustration purposes, we choose ri = b �
(b�a)(i�1)

l�1 for i = 1; 2; � � � ; l. By Theorem 1,

Freuse = l

l�Pl

i=2

0
@1� 1

l�1

1� a

b

�i+2

1
A

d . Figure 1 shows

that the improvement over the conventional ap-
proach are impressive.
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Figure 1: Performance Improvement (A : l =
200; b = 2a; B : l = 100; b = 2a; C :
l = 100; a = 0; D : l = 20; b = 2a)

5 Illustrative Examples

In this section we demonstrate through examples
the power of Sample Reuse Algorithm in solving
a wide variety of complicated robustness analysis

problems which are not tractable in the classical
deterministic framework.

First, we consider an example which has been
studied in [11] by a deterministic approach. The
system is as shown in Figure 2.

P(s)C(s)

r +

_

e c

Figure 2: Uncertain System

The compensator is C(s) = s+2
s+10 and the plant is

P (s) = 800(1+0:1Æ1)
s(s+4+0:2Æ2)(s+6+0:3Æ3)

with parametric un-

certainty � = [Æ1; Æ2; Æ3]
T. The nominal system is

stable. The closed-loop roots of the nominal sys-
tem are: z1 = �15:9178; z2 = �1:8309; z3 =
�1:1256 + 7:3234i; z4 = �1:1256� 7:3234i: The
H1 norm of the nominal closed loop transfer func-
tion is jjT 0jj1 = 2:78. The peak value, rise
time, settling time of step response of the nom-
inal system, are respectively, P 0

peak = 1:47; t0r =

0:185; t0s = 3:175. In all of the following exam-
ples, we take l = 100. To guarantee that the abso-
lute error of the estimate for the proportion is less
than 0:01 with con�dence level 99%, we choose
N = 26; 492 based on the well known Cherno�
bound. Since the Cherno� bound is conservative,
we also performed a post-experimental evaluation
of the estimates by construct con�dence intervals
with con�dence level 99%.

Figure 3 is the robustness degradation curve, with
the robustness requirement P de�ned as stabil-
ity and H1 norm < 170% jjT 0jj1, and the un-
certainty set de�ned as the ellipsoid B2(r) :=
f� : jj�jj2 � rg.

Figure 4 is the robustness degradation curve
with the robustness requirement P de�ned as
D-stability with the domain of poles de�ned as:
Real part < �1:5, or fall within one of the two
disks centered at z3 and z4 with radius 0:3. The
uncertainty set is de�ned as the polytope BH(r) :=n
r�+ (1� r)

P
4

i=1
�i

4 : � 2 convf�1;�2;�3;�4g
o

where `conv' denotes the convex hull of
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Figure 3: Robustness Degradation Curve (Reuse
Factor = 43)

�i = [ 12 sin(
2i�1
3 �); 1

2 cos(
2i�1
3 �); �

p
3
2 ]T

for i = 1; 2; 3 and �4 = [0; 0; 1]T.

Figure 5 is the robustness degradation curve for
the case where the uncertainty set is B1(r) :=
f� : jj�jj1 � rg, the robustness requirement
P is : Stability, and rise time tr < 135% t0r =
0:25, settling time ts < 110% t0s = 3:5, overshoot
Ppeak < 116% P 0

peak = 1:7.

Finally, we consider the same example in [9] where
the class of uncertainty is de�ned as

� := fblockdiag[q1I5; q2I5; �1]g

where �1 2 C
4�4 and I5 denotes the identity ma-

trix of 5 � 5. By Theorem 1, we have d = 31.
Figure 6 shows the robustness degradation curve.
An improvement (of eÆciency) about 6 fold is
achieved by our algorithm.
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