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Abstract: 
In earlier work, we presented proof of concept 

for the use of signal processing tools for fast fault 
detection in a model free framework. In this paper, 
we elaborate on the concept by applying pseudo 
power signatures to detect faults. We introduce a 
Singular Value Decomposition (SVD) approach for 
the computation of pseudo power signatures and 
discuss some of the advantages of the approach. In 
particular, we expand the concept of pseudo power 
signatures to that of signature subspaces. New 
experimental data from a reliable B747 aircraft 
model are used to test the proposed schemes. 

1. Introduction 
The problem of fault detection and 

identification has been extensively studied for many 
years. From a purely statistical point of view, 
Wald’s Sequential Probability Test Ratio [1] can be 
considered a significant contribution to the 
development of on-line techniques. One should also 
mention the work of Basseville and Nikiforov [2] 
and the excellent survey of detection of change 
algorithms. Most of the fault detection methods 
available in the literature [3,4,5] are residual-based 
where one has a model for the system and can 
compare the actual output with those produced by 
the model. Also their input is noise free. If a system 
model is not available, many researchers advocate 
building a model using measured input-output data. 
In contrast, our current research is focused on those 
practical situations where (1) reliable models are 
not available (2) the inputs are not measurable (3) 
the inputs are not noise free.  

In such situations, one must use only the 
output data supplied by sensors. Our contention is 
that one can use signal-processing techniques on 
sensor data and enhance the effect of the fault, i.e., 
make it more apparent to the operator. In [6] we 
considered the special case of power transmission 
systems and proposed a model free approach based 
on filter bank processing and the definition of 
"instantaneous information vectors" for fault 
detection and identification.  In [7] we showed that 
a filter bank can separate a sensor signal into 
several orthogonal components and permits the 
definition of narrow frequency bands where the 
effect of a fault is easily seen. But the 
decomposition does not lend itself easily to the 
implementation of an automatic detection of change 
algorithm. 

In this paper we propose to use the pseudo 
power signature and some of its extensions to 
develop detectors of change. Our application of 
interest is aircraft safety and our test bed is NASA's 
model for a B747 aircraft implemented in the 
DASMAT environment by Gary Balas of the 
University of Minnesota [8].  

1.1 Mathematical Preliminaries 
Over the past years, extensive research has 

been done to the subject of time-frequency 
distributions for analysis of non-stationary signals. 
In most cases, they describe the energy distribution 
of the signal in a particular time-frequency region.  

Continuous Wavelet Transform (CWT) was 
designed to provide variable resolution over the 
time-frequency plane. The shifted and dilated 
wavelets ba,ϕ  provide a natural multiresolution of a 
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given function )()( 2 RLtx ∈  in time and frequency 
through the use of the time index parameter b  and 
the scale parameter a .  In general, the scale a  is 
inversely proportional to frequency, which implies 
that large scales correspond to low frequencies in 
the signal, and vice versa. 

The scalogram of a function )(tx  with CWT 
),( bac x

ϕ  is defined as  
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The signal energy over a given support, R , is 
defined as 
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Hence, the scalogram can be used as a time-
frequency energy density function. 

1.2 Pseudo Power Signature 
The basic idea is to develop a signature that 

characterizes the energy distribution of a signal in a 
manner that is essentially independent of the 
duration of the signal. We create this signature by 
defining an "instantaneous energy distribution" 
which is called the pseudo power signature. 

The ideal situation would arise if one could 
define a wavelet such that for a given class of 
signals the corresponding wavelet transforms are 
separable, i.e. 
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For any time interval 21 tbt << , the energy of 
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Hence, the signal 
2

)(as z
ϕ , suitably normalized, 

becomes a scale power density function that is 
independent of time - a power signature.  Moreover, 
for wavelets with compact support, the evaluation 
of the CWT depends only the values of the signal in 
a neighborhood of the time parameter (especially 

for small scales). Hence the signature can become 
essentially independent of the duration of the signal 
or the segment available. 

Since it has been shown that no admissible 
wavelet will lead to a separable transform for an 
energy signal, one needs to resort to decompositions 
that satisfy Eq. (3) in an approximate way.  

We note for future reference that a direct 
generalization of pseudo power signatures arises 
when one requires separability only for a set of 
scales. In this case, Eq. (4) will hold only for that 
range of scales and one can define a restricted scale 
power signature. 

2. The Matrix SVD Approach 
This section will present an approach to 

generate power signature for different signal classes 
using Singular Value Decomposition (SVD) of 
finite dimensional matrices. The methodology is 
based on a principal component analysis technique, 
and is derived from the decomposition of the CWT 
of a signal as a sum of separable terms.  This 
analysis is based on the following results [9]. 

Proposition 2.1 The CWT can always be 
expressed as  
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each i . The function sets { } iis  and { } iir  are 

complete in S  and  2L  respectively. 

The principal component of xcϕ , denoted by 

][ xcPC ϕ , is given by )()( 111 brasσ . The function 

1s  can then be used to define the pseudo power 
signature for the associated signal x . 

In essence, Proposition 2.1 provides a 
decomposition of the CWT function ),( bac x

ϕ  as a 
sum of separable terms. This decomposition is 
similar to the more commonly known SVD applied 
to finite dimensional matrices.  

Significant computational simplification is 
achieved if the determination of pseudo power 
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signatures is carried out for finite discrete signal 
sets and can be reduced to a standard matrix SVD 
problem. In [9], the author showed that under some 
reasonable smoothness conditions, a discretization 
of the CWT in both time and scale yields a suitable 
matrix that can be used to perform the principal 
components analysis.  Using the standard Matlab 
function one can write 

)(],,[ CWTSVDVSU =                            (6)                                         

where CWT is now the matrix of samples. In 
particular, the first row of V, becomes the discrete 
approximation to the pseudo power signature of X . 

It must be noted that this discretization of the 
CWT does not corresponds with a discrete wavelet 
transform. For example, the conventional discrete 
transform created by a multiresolution analysis is 
only concerned with scales grater than one and 
tends to ignore the details of a signal. Our 
discretization enables us to focus on any range of 
scales, and in fact, for fault detection, the details are 
often the most useful part of a signal. The most 
significant issue that arises from using a finite set of 
scales is that its interpretation as energy distribution 
must be modified even if the signal can be 
recovered from the discrete scale transform. To 
solve this problem, one can propose a discrete scale, 
discrete time transform.  

2.1. Off-line Flight Fault Detection with SVD 
Signature: Simulation Result 

For airplane fault detection applications, we 
assume that normal flight data are available and can 
be processed to determine a pseudo power signature 
for normal conditions.  During an actual flight we 
compute the CWT for sensor data and, at any given 
time, determine the correlation factor with the 
pseudo power signature. A consistent high 
correlation will mean that the scale power 
distribution is similar to that of the pseudo power 
signature and therefore to a normal flight condition. 
On the other hand, a small correlation will indicate 
an abnormal situation.  

We report here a typical experiment performed 
with the B747. The model is trimmed to a given 
flight condition: straight and level. Out of many 
input and output variables, we pick deflection of 
stabilizer as the input, and angle of attack as the 

output. Then an almost noise free (noise variance: 
0.03) is given to the input to produce a normal 
flight condition. In order to create a faulty test flight 
condition, at some pre-selected time we add a 
slowly increasing random noise with bigger 
variance (0.1) to the input. Figure 1 shows the 
output “angle of attack” for normal flight and test 
flight conditions. The noise is present from the time 
step 250, which corresponds to 12.5 seconds. The 
sampling interval is 0.05 second. Because the noise 
is slowly increasing, it is hard for a pilot to notice 
any abnormal change at the moment of onset of 
fault. Until about the 400th sample point (20 
seconds) or later, this change does not appear to be 
noticeable.  

Figure 1. Normal and Test Flight Conditions 
 

Using the matrix SVD technique described earlier, 
we determine the normal flight signature. We 
compute the CWT for the test flight and perform 
the correlation analysis with the normal flight 
signature. The correlation coefficient is defined and 
calculated as:  

Y
VY >⋅<

= 1ρ                          (7)                      
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where Y  is CWT of the test flight. 1V  is the first 
normalized principal vector of the normal flight, i.e. 
normal flight signature. 

Figure 2 illustrates the correlation indicator 
when the scale range is discretized in 100 values 
and the wavelet used is Daubechies' Db8. It is 
apparent that the correlation does not give fast or 
accurate information about the fault occurrence.  

In order to understand the lack of sensitivity of 
the pseudo power signature it is necessary to 
examine the distribution of the principal 
components produced by the SVD.  Figure 3 shows 
all principal singular values for Db8 with 100 scale 
values. It is obvious that using only the first 
principal component will produce very poor 
approximations since there are several singular 
values that are comparable in value to the first.  
That result points to the need for approximating the 
continuous wavelet transform with a sum of 
separable terms.  

Figure 2. Correlation Indicator in Daubechies 8 
with 100 Scale Numbers 

 

2.2 Refining the SVD Pseudo Signatures: 
Distance Indicator 

In this section we develop the alternative of 
improving the pseudo power signatures by 
considering approximations with more terms. As 
we shall show, this approach can be considered as 
defining a "signature subspace." For simplicity we 
consider only two terms of the approximation in the 
following, but the extension to more terms is 
immediately available. 

Figure 3.  Principal Singular Values of 
Daubechies 8 with 100 Scale Numbers 

 
 

Assume then that the CWT can be expressed 
as 

)()()()(),( 222111 brasbrasbacx σσφ +=            (8)                      

At any time 0b  one can see that the scale 

function )(., 0bcx
ϕ  is a linear combination of the 

functions (.)(.), 21 ss . Hence, one can write 

{ } ,,)(:, 21 ssspanbcx ∈φ b∀                                  (9)                      
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Moreover, if the vectors have been obtained 
using singular value decomposition, they are 
guaranteed to be mutually orthogonal.   

Under normal (fault-free) conditions, the CWT 
should belong to normal signature subspace at all 
times. Hence the distance to that subspace can be 
used to measure deviations from normal flight 
conditions. Eq. (10)~(12) illustrate this procedure. 
Here, 1V  and 2V  are the first two normalized 
principal vectors of the normal flight transform and 
they form a basis for the subspace of signatures.  
For any vector, Y , the projection of Y on the 
normal signature plane is of the form 2211 VV αα + . 
The coefficients are determined as projections on 
the basis vectors can be determined from 

><+><>=< 2121111 ,,, VVVVVY αα  

><+><>=< 2222112 ,,, VVVVVY αα         (10)                               

Since in the SVD the vectors of V are orthogonal to 
each other, Eq. (10) can be simplified to 

11, α>=< VY                                                         

22, α>=< VY                                                     (11) 

The distance of Y  to the normal signature plane is 
then computed as 

)( 2
2

2
1

2 αα +−= Yd                                   (12)  

            

2.2.1 Simulation Results 
 
Figure 4 shows the distance indicator using 

Daubechies' wavelet Db8 with the scale partitioned 
in 128 values. It is seen that at the start of fault, the 
distance from the test flight to the normal signature 
plane is increasing. This shows that the distance to 
the subspace indicator provides faster warning of 
fault than the correlation indicator and raw output 
data. It is apparent that one can easily increase the 
dimension of the subspace without a significant 
increase in the computations.  This option could be 
used to increase the separation between normal and 
faulty cases and to create distinct subspaces 
associated to different faults. 

In the absence of a model, it is necessary to 
perform experimental studies to determine the 

effect of design parameters. Here we have included 
preliminary experimental data on the effect of the 
wavelet to be used and the scales to be considered. 
Different Daubechies' wavelets (from Db4 to Db10) 
and different scale numbers (from 32 to 128) are 
experimented for testing sensitiveness of correlation 
and distance indicators. Figure 5 shows the distance 
indicator using Daubechies 4 with 100 scale 
numbers. Distance indicator using Daubechies 8 
with 32 scale numbers is shown in Figure 6. And 
Figure 7 shows the distance indicator using 
Daubechies 10 with 32 scale numbers. It appears 
that the type of wavelet to be used is important and 
we are currently developing criteria for its selection. 
The scales used are also important and we expect 
that incorporating minimal information about the 
system will permit the definition of scale selection 
criteria. For the cases presented here, one can see 
that Db8 with 128 scale numbers is more accurate 
than the other combinations of Daubechies wavelet 
length and scale numbers.  

A point of concern in Figure 4 is the fact that 
the distance indicator from test flight to the normal 
signature plane becomes smaller again after 350 
samples points, suggesting that the indicator is more 
sensitive to the transient created by the onset of the 
fault than to the faulty situation itself.  In order to 
explore this possibility, we built another faulty test 
flight condition with fault lasting for a very short 
time (2 seconds). Figure 8 shows the sensor 
readings for the faulty test flight and normal flight 
condition. The test flight shows the faults last in the 
range of sample point 250 and 350. Then flight 
condition is back to normal. Again, we used 
Daubechies' Db8 with 128 scale numbers to get 
distance indicator shown in Figure 9. It is easy to 
see that the distance drop also appears in this case.  
This result supports the hypothesis that our 
indicator is detecting the transient. It is therefore 
necessary to refine the sensitivity of the indicators. 
For this increase we propose to develop signatures, 
and subspaces, for faulty conditions and include, in 
the fault identification, the distance to those various 
signatures.  
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Figure 4. Distance Indicator in Daubechies 8 
with 128 Scale Numbers 

Figure 5. Distance Indicator in Daubechies 4 
with 100 Scale Numbers 

Figure 6. Distance Indicator in Daubechies 8 
with 32 Scale Numbers 

Figure 7. Distance Indicator in Daubechies 10 
with 32 Scale Numbers 
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Figure 8. Normal and Test Flight Conditions 
with Very Short Fault Duration 

Figure 9. Distance Indicator in Daubechies 8 
with 128 Scale Numbers for Very Short Fault 

Duration 

 

3. Conclusion and Future Work 
In this paper, we develop further the concept of 

signatures as tools to detect faulty conditions in a 
system. We have used the Singular Value 
Decomposition as the main vehicle to create such 
signatures.  In a very significant manner, we have 
been able to extend the concept to situations where 
the principal component is not sensitive enough. 
We have identified that the situation occurs when 
the wavelet transform has more than one significant 
principal value.  For those situations we have 
introduced signature subspaces. In this study we 
report the use of 2-dimensional signature subspaces, 
but the principle is easily extended to any number 
of dimensions, limited only by the number of scales 
used.  Our experimental studies also indicate that 
the type of wavelet may affect the sensitivity of the 
indicators. Our future work will continue to explore 
issues related to the use of signatures for model-free 
fault detection. In particular:  (1) find the reasons 
for the drop of the distance indicator some time 
after the onset of fault (see Figure 4). (2) Test 
different flight conditions with other inputs. (3) 
Develop criteria for wavelet and scale selection. (4) 
Develop combined signatures (using singular 
values, correlation coefficients and distance 
indicators) for faster and more accurate detection of 
faults. 

Finally, it is essential to point out that the model-
free approach cannot be assumed to be the answer 
to every situation. Any knowledge of the system 
under study should be used to produce better fault 
indicators. In this sense, the use of DSP techniques 
reduces the amount of detailed information that is 
necessary in residue-based approaches. 
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