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Abstract: The problem considered here is that of detecting events from the analysis
of sensing signals. Our approach is based on the continuous wavelet transform and
defines pseudo power signatures, as functions of the resolution and characterizing
the power distribution of an event. Detection of their presence can be used to
identify an event. These pseudo power signatures are, ideally, independent of the
duration of the event and can be therefore used to provide fast detection of changes
as required, for example, in fault detection problems.
The paper gives an overview of the concept of pseudo power signatures, some
of the issues associated with their determination and their application to signal
classification problems, focusing in fault detection.
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1. INTRODUCTION

The initial impetus for this research is a situation
in shallow stratigraphy (first 50m)where one esti-
mates underground layers by illuminating the sub-
surface with electromagnetic pulses and analyzing
the echo signal. The formalization of the problem
leads to the following classification problem:
There exists a collection, C = {E1, E2, . . . , En},
of events. Each event may leave an imprint on
a sensing signal, x(t), t0 ≤ t ≤ tf . Assuming
that only one event may affect the signal at any
given time, the time interval may be partitioned
as t0 < t1 < t2 . . . < tk, . . . < tf such that the
segment, xk(t), tk−1 < t < tK , is only affected by
the event Ej . Determination of the time partition
and the event sensed in each segment is the clas-
sification of the signal.

It is easy to see that the formulation fits many
different problems in signal processing. In fact
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some of the techniques developed have been tested
on speech signals. In this case, the events would
be phonemes and the classification would become
a speech recognition problem.

An application of particular importance, and that
is the focus of our current research, is the issue
of fault detection. In the simplest form, the sig-
nal is a sensor reading and there are only two
events; i.e, normal operation and faulty operation.
The classification of the signal would be a fault
detection system. As opposed to residue-based
fault detection, this approach does not require an
explicit mathematical model of the system and, in
particular, does not require measurements of the
inputs to a system. The fault detection scenario
has some additional features that make it specially
attractive as a signal processing problem.

Our approach for solving the classification prob-
lem is to use the continuous wavelet transform
to associate to each event a signature that can
searched for in the test signal. This signature
should be independent of the time that the event



affects the test signal. Transitions from one sig-
nature to another would mark transition from
one event to another, e.g., from normal to faulty
operation.

Initially, we tried to formulate the problem as
a wavelet selection issue; i.e, given a “suitable
class of signals,” Cs, find a wavelet that would
allow the representation of the continuous wavelet
transform (CWT), for members of the class, as a
product of a function of the scale and a function
of time; i.e., Find a wavelet, ψ(t), such that

cxψ(a, b) = s(a)r(b), x ∈ Cs.
The function s(a) would give the power distribu-
tion and would be independent of the duration of
the event. It would be a power signature for the
event. Early in the research, we determined that
the selection issue has a negative answer. For any
non-trivial, admissible wavelet, no energy signal
can have a separable CWT [1]. Hence, in order
to pursue this line one must establish approxima-
tions and thus, develop pseudo power signatures.
In effect, if the wavelet transform, cxψ(a, b), of a
signal x(t) ∈ L2 can be well approximated (in
some sense) by a function of the form s(a)r(b)
then the function s(a), normalized, could be con-
strued to be a pseudo power signature.

We now establish the notation used, give a more
formal statement to the pseudo power signature
problem and show some preliminary results using
singular value techniques. Next, we show why
we decided to state the problem as an inverse
projection issue. And we outline the frequency
domain approach that we are currently using to
solve the problem of determining signatures.

For the application to the detection of change in
fault detection, we show results from processing
sensor data from mathematical models of air-
planes.

1.1 Notation and Mathematical Preliminaries

In the following, ψ(t) ∈ L2(<) is an admissible
wavelet and the family of its translations and
dilations is ψab(t) = 1√
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We know that H = A⊗L2(<) and the continuous
wavelet transform is the map Γ : L2(<) → H
defined by cxψ = Γ[x]; x ∈ L2(<) with
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The adjoint transformation, Γ∗ : H→ L2(<), has
the definition xc = Γ∗[c]; c ∈ H, with
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It is essential to our developments that the space
of the continuous wavelet transforms (CWT ) is
a proper closed subspace, M ⊂ H. In particular,
regardless of the wavelet chosen, no function in
M can be of the form s(a)r(b) . Hence the inverse
transformation cannot be applied to this type of
functions. Instead, one has (see [1]):

Lemma 1.1. If Γ is the wavelet transform opera-
tor defined in Eq(1) then

K = ΓΓ∗ (2)

is an orthogonal projector in H with range M.
Moreover, one has Γ∗Γ = IL2(<)

2. A SINGULAR VALUE DECOMPOSITION
APPROACH

Since no element of the form s(a)r(b) can be
a wavelet transform, given a wavelet transform,
cxψ(a, b), it is reasonable to look for the separable
term that is, in some sense, closer to the trans-
form. The usual approach is based on the singular
value decomposition. In this case one solves the
minimization problem

J [s, r] =
­
cxψ(a, b)− s(a)r(b), cxψ(a, b)− s(a)r(b)

®
H

(actually one would write σs(a)r(b) with s(a), r(b)
on their respective unit balls). For our first nu-
merical implementations [1] we established that,
under certain conditions, one can well approx-
imate the problem with a conventional matrix
SVD problem. The numerical implementation of
the discretized CWT is based on an algorithm
developed by Shensa [2] . As supporting example,
we created three chirp signals {x1, x2, x3} given
by

x1(t) = e
j.5πtsinc(

t

3
)

x2(t) = e
j.55πtsinc(

t

3
)

x3(t) = e
j1.55πtsinc(

t

3
)

The signals, their frequency spectra {f1, f2, f3}
(the axis is expressed as a fraction of π) and their
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Fig. 1. The 3 signals and their signatures
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Fig. 2. Correlation graphs of the discretized CWT

pseudo power signatures {S1, S2, S3} are shown
in figure 1. The signatures were generated using
the Db4 wavelet. Now consider a signal created by
concatenating segments of each signal class: x1
over the interval [-125:-50], x2 over the interval
[-50:50], and x3 over the interval [50:115]. In [1]
we show that in this case, neither the STFT ,
nor the CWT permit a clear the identification
of the component signals or the transition points.
Furthermore, direct comparison of the CWTs of
each signal class with the CWT of the composite
signal is not feasible either because the CWT
support is dependent on the signal duration which
is, in general, unknown.

One can get an accurate picture of the signal
composition, with particular reference to the loca-
tion of the transition points, if one determines the
correlation of each Si with the discretized CWT
of the composite signal for each b. The results
are presented in Figure 2. The results show quite
clearly that there are 2 transition points in the sig-
nal, (the first around −50, and the second around

50), a situation which is not very evident upon
examination of the signal. Here, one can make the
legitimate assumption that the correlation values
must remain fairly constant over a range for the
signal to be classified as having support in that
range. Hence, one can conclude from the graphs
that the support of x1 is [−125 : −50], that of x2
is [−50 : 50], and that of x3 is [50 : 115]. The high
correlation values of S1 in the range [−50 : 50] can
be disregarded since S2 has a higher correlation
in that range than S1, and is more likely to be
present in the range [−50 : 50].
Further experimentation with the SVD approach
established the necessity of improving the tech-
niques to compute the continuous wavelet trans-
form, in particular by giving more flexibility in the
selection of scales. The next subsection presents a
numerical approach for computing the CWT that
relies on a mixed scale-frequency representation.

2.1 CWT Computations using FFT

If in the definition of the CWT given in Eq. (1)
one takes the Fourier transform of cxψ(a, b) with
respect to the time parameter b one obtains the
new transformation

C(a,ω) =
∞Z

−∞
cxψ(a, b)e

−jωbdb

=
√
aΨ(aω)X(ω)

In obtaining the previous result one assumes that
orders of integration can be interchanged. The
representation shows that for any given scale
the computation of the transform can be effi-
ciently performed in the frequency domain, for
any selected set of scales. Thus, one has a scale-
discretized wavelet transform. For numerical im-
plementations, one will also perform a discretiza-
tion in the frequency domain leading to a dis-
cretized wavelet transform (dWT). Moreover, one
can establish conditions on the set of selected
scales that will insure the inversion of the dWT
[3]. The overall computational complexity of this
dWT is comparable to that of an ordinary 2-D
FFT.

3. SVD SIGNATURES FOR MODEL-FREE
FAULT DETECTION. A CASE STUDY

In order to establish the validity of a DSP, model
free, approach for fault detection we first veri-
fied the capability of regular DSP techniques to
enhance ordinary sensor data. For this, we col-
lected data of computer simulated faults using a
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Fig. 3. Angle of attack sensor reading for normal
and faulty situation

public domain F14 model. Results of these ex-
periments are presented in [4]. In a representa-
tive experiment we simulated a drastic change
in the time constant of the actuator moving one
of the ailerons. The value was changed from its
nominal value to four times its nominal value in
a discontinuous manner. The processing used to
enhance the effect of the failure is the decom-
position of the signal into 16 orthogonal com-
ponents using a multi-resolution generated filter
bank. The wavelets generating the multiresolution
are Daubechis’ compact support wavelets [5].

The graphs in figures 3 and 4 display a repre-
sentative result showing the sixteen orthogonal
components of the angle of attack when the stick
is driven with a band-limited random signal, em-
ulating combat action. Figure 3 shows the angles
of attack in the faulted case and the difference
with the angle for the case of no fault. As can be
seen, the differences are very small and essentially
invisible in the sensor reading. The graph in figure
4, on the other hand, shows that some orthogonal
components have very different behavior pre and
post fault. Hence, the onset of the fault can be
readily established.

We decided to used the data from the F14 simu-
lation and apply to it the pseudo power signature
detection technique. The effect of the fault is
very small and a pseudo power signature of the
sensor signal would not be sensitive enough. In
the case of residue-based detection, one obviates
the problem by using readings referred to a nor-
mal model. Since we assume no model and the
orthogonal components appear sensitive to the
fault, we created a baseline behavior using the
lowest resolution view of the sensor data. The dif-
ference between this baseline and the actual sensor
reading is the details signal. The assumption is
that the effect of the signal will be, most likely,
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Fig. 5. Signatures obtained using 512 points and
window increment of 256 points

more significant at high frequencies. Hence the
details signal will show better the effect of the
fault. In view of the behavior of the orthogonal
components, the assumption appears reasonable.

The first step in our detection approach is to cre-
ate a pseudo power signature for the normal, pre-
fault condition. This is accomplished by comput-
ing the dWT of pre-fault details, computing the
SVD of the dWT and selecting the principal com-
ponent of the scale matrix. In order to establish
the consistency of the signatures we used a sliding
window and determined pre-fault signatures using
512 data points with distance between window
centers of 256 data points. Figure 5 shows three
such pre-fault signatures. The number of scales
used is 20. As can be seen, the consistency of the
signatures is very good, supporting the concept of
a signature for normal operation.

This normal operation signature was used in an
attempt to detect the onset of the fault. For this,
we computed the dWT for a record of sensor data
containing pre- and post-fault behavior. For each
value of the time parameter the correlation be-
tween the dWT and the signature was computed.
Figure 6 shows a typical result. It is evident that,
from the display, no conclusion can be derived
with regard to the onset of the fault.

A post-mortem analysis of these results suggests
several possibilities. First, a comparison of nor-
mal operation signatures with faulty operation
signatures showed that, even though there are
differences between signatures, these differences
are not very significant, especially at the lower
scales. Hence, either the details signal is not sen-
sitive enough, or the SVD approach for computing
signatures is not suitable.

In this paper we focus on the problem of im-
proving the determination of signatures. We first
examine the approximation problem and show
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that the best approximation to the CWT need
not yield the best approximation to the signal.
We then proceed to develop a new approach to
compute pseudo power signatures.

Using the facts that K = ΓΓ∗ is an orthogonal
projector and that separable terms cannot belong
to the range of this projector, for any separable
term one can write

eH = cxψ −K[s⊗ r] + (I −K)[s⊗ r] (3)

= Γ[x− Γ∗[s⊗ r]] +m⊥ (4)

where m⊥ 6= 0 ∈M⊥. Hence

||eH||2 = ||x− Γ∗[s⊗ r]||2 + ||m⊥||2

The SVD approach minimizes the left hand side;
that is to say, it minimizes the sum on the right
but does not guarantee that the time function
obtained from the separable term is a good ap-
proximation to the signal. We postulate that the
better signatures can be obtained by minimizing
the term ||x−Γ∗[s⊗r]||2. The next section presents
results in solving such minimization problem. The
approach offers several intriguing possibilities that
we are currently under research.

4. INVERSE PROJECTION SIGNATURES

In [3] we show how the minimization of the ap-
proximation error eH, defined in 3, can be ap-
proached from frequency domain approach. We
give here the essential details of such approach.
The map Γ∗ when applied to separable terms
takes the form

Γ∗[s⊗ r] =

= C−1
ψ

Z
a

Z
b

s(a)r(b)
1√
a
ψ

µ
t− b
a

¶
dadb

a2
(5)

Let now xsr = Γ∗[s ⊗ r] ∈ L2(<). For its Fourier
transform, one can show that

Xsr(ω) =C−1
ψ
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This last equation permits the definition of a map
Û as follows

Û [s](ω) =C−1
ψ
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The expression for eH, transformed to the fre-
quency domain, becomes



EH(ω) =X(ω)− Û [s](ω)R(ω) (8)

In particular, if the signal r(b) is robust enough
so that |R(ω)| > 0 whenever X(ω) 6= 0 then one
can attempt to make the error zero. A special,
but significant, case where one can make further
progress is for band-limited signals where the
support, χx, of X(ω) is a finite interval and one
can define an energy signal, r(b), such that

R(ω) = e−jωτ , τ 6= 0,ω ∈ χx
In this case the determination of a signature would
be equivalent to the determination of scale func-
tion s(a), such that X(ω) = Û [s](ω). This prob-
lem is approached from a computational point of
view where both the scale and the frequency are
discretized. Consider the equation

X(ω) =C−1
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Numerically, to solve this equation for s(a), one
replaces it by the set of equations

X(ωn) =C
−1
ψ

Z
a

s(a)
√
aΨ(aωn)

da

a2
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Our first approach to define signatures uses the
scale function

s(a) =

qX
k=1

σk
√
aΨ(aωk) (9)

In this case one can show that to determine the
vector σ = col{σ1, . . . ,σq} one must solve the
linear equation

Xd =Uψσ (10)

where Uψ is a matrix with entries

U(n, k) =

Z
a

Ψ(aωn)Ψ(aωk)
da

a

The evaluation of the matrix U can be efficiently
carried out using a rectangular rule on a basic
grid and using linear interpolation for other val-
ues. In general, the system of equations in 10 is
underdefined and one uses the minimum norm
solution. One of the problems still pending is a
criterion to select the centers ωk for the basis
functions Ψ(aωk). Our computations show that
this approach is sensitive to those values. Once
we determine improved signatures, the detection
issue follows easily.

5. CONCLUSIONS

We have solid evidence that signal processing can
be effectively used to process sensor data and
provide early fault detection. We are proposing
the use of pseudo power signatures as tools to
implement a fault detector. However, signatures
based on SVD of the discretized continous wavelet
transform appear not to have sufficient discrimi-
natory capability. One current line of research is
developing refined signatures using a frequency
domain approach. Another important issue that
is also under investigation is based on the effect
of noise on the sensitivity of the signatures. Fi-
nally, it should be pointed out that the concept
of pseudo power signatures, as used in our work,
is not restricted to the wavelet transform and can
be applied to any time-frequency distribution
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