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Abstract

Thisis the fourth part of a series of papers that provide a comprehensive survey of techniques for tracking maneuvering
targets without addressing the so-called measurement-origin uncertainty. Part | [1] and Part Il [2] deal with target motion
models. Part 11 [3] covers the measurement models and the associated techniques. This part surveys tracking techniques that
are based on decisions regarding target maneuver. Three classes of techniques are identified and described: equivalent noise,
input detection and estimation, and switching model. Maneuver detection methods are also included.
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1 Introduction

Thisis the fourth part of a series of papers that provide a comprehensive survey of the techniques for tracking maneuvering
targets without addressing the so-called measurement-origin uncertainty. Part | [1] and Part |1 [2] deal with general target mo-
tion models and ballistic target motion models, respectively. Part |11 [3] covers measurement models, including measurement
model-based techniques, used in target tracking.

In the history of development of maneuvering target tracking (MTT) techniques, single model based adaptive Kalman
filtering free of decision came into existence first. Decision-based techniques appeared next. Thiswas followed by multiple-
model algorithms, which have become quite popular. More recently, nonlinear filtering techniques, such as sampling based
algorithms, have been gaining moment.

This part surveysdecision-based techniquesfor MTT, that is, techniquesin which akey component is explicit decisionson
target maneuver. In subsequent parts, multiple-model approach, exact and approximate nonlinear filters, and sampling based
algorithms will be surveyed; performance analysis and evaluation as well as applicationswill be addressed. A summary part
will also be provided.

Thereare numerousmethodsfor adaptive estimation and filtering, decision making, and nonlinear filtering in the literature.
Only those that have been proposed for, applied to, or possess substantial potentialsfor MTT are included in this survey. On
the other hand, it is our intention to cast problems and techniquesin aslightly wider context than most previous treatments so
as to make more clear the forest rather than just trees.

In target tracking, the actual measurement systemis typically nonlinear, as described in Part [11. In this part, however, we
mainly focus on linear measurement systems for simplicity. This simplification has the following justification. Not only have
the techniques that handle nonlinear measurements been covered in Part |11, they are also to alarge extent independent of the
MTT techniques surveyed here, which focus on the uncertainty in the target motion due to possible maneuvers.

As stated repeatedly in the previous parts, we appreciate receiving comments and missing material that should beincluded
in this part. While we may not be able to respond to each correspondence, information received will be considered seriously
for the refinement of this part for itsfina publication in ajournal or book.

Therest of the paper is organized as follows. Sec. 2 briefly describes the methods considered in this part as awhole. Sec.
3 surveys maneuver detectors. Secs. 4, 5, and 6 cover three different classes of methods, referred to as equival ent noise, input
detection and estimation, and switching model, respectively. Concluding remarks are given in the final section.

*Research supported by ONR grant N00014-00-1-0677, NSF grant ECS-9734285, and NASA/LEQSF grant (2001-4)-01.



2 Decision-Based Approach to Maneuvering Target Tracking

In the decision-based approach, target tracking as a hybrid estimation problem involving both estimation and decision is
solved by combining estimation with explicit, hard decision. This approach is one of the most natural for MTT. It is covered
with varying degreesin several books on target tracking [4, 5, 6, 7, 8, 9, 10].

This approach to MTT distinguishes itself from other approaches in that the adaptation in estimating the target state is
directed by decisions regarding target maneuver, in particular, its onset and termination. This decision-directed adaptation
may take different forms. Most of these techniques amount to using two types of filters, one with a narrow bandwidth (e.g.,
low gain) for precision tracking in normal situations and the other with a wide bandwidth (e.g., high gain) for effective
tracking during target maneuvers. In this way, it aims at achieving good tracking performance in both situations rather than
a compromise. These filters may be based on the same or different models. When a single model is used in the linear case,
such adaptive techniques are traditionally considered as part of the so-called adaptive Kalman filtering. While more than one
model may be used, only oneisin effect at onetime.

Decision-based techniquesfor MTT devel oped so far fall into three classes, referred to as equivalent noise, input detection
and estimation, and switching model approaches and described in Secs. 4, 5, and 6, respectively.

Wefirst survey techniques for maneuver detection developed so far in the next section.

3 Maneuver Detection

Although the ultimate goal of MTT is estimation of the target state, in the decision-based approaches, estimation is directed
by decision regarding maneuvers. This makesreliable and timely decision the key in these approaches.

The fundamental questions here are: “Is the target maneuvering?’ In other words, whether the target is maneuvering is
crucia information here. Answering this question is a decision problem, which can be formulated as a hypothesis testing
problem

Hy : Thetargetis not maneuvering; H; : Thetargetis maneuvering

Many solution techniques are available in statistics for such problems.

Both maneuver onset and termination represent a change in the target motion pattern. This change exhibits itself more
or less in our observations of the target. Detection of maneuver onset and termination thus amounts to detecting a changein
the observations — a random process. This is known as change-point detection in statistics®. It has a very large body of
literature that includes abundant results (see, e.g., [11, 12, 13, 14, 15, 16, 17, 18, 19] and references therein). Unfortunately,
this treasure has been largely overlooked by the tracking community partly because most of it is not easily accessible by
engineering-oriented researchers. However, it could certainly facilitate development and design of better maneuver detectors.

Two other fundamental questions are: “When did the target start maneuvering?’ and “When did it stop maneuvering?’ In
other words, it isimportant to infer the onset time and termination time of a maneuver. The determination of maneuver onset
and termination times can be cast either as an estimation or decision problem. Estimation and decision are twins. They both
aim at inferring an unknown quantity using available information. Their basic differenceis that decision is the selection from
adiscrete (often finite) set of candidates, while all possible outcomes of estimation form a continuum. In the continuous-time
case, it would be more natural to formulate the determination of onset and termination times as an estimation problem, but a
decision framework appears to be more appropriate for the discrete-time case.

In maneuver detection, the focusis detection of maneuver onset, rather than maneuver termination. The two main reasons
for this are level of difficulty and the consequence of an incorrect decision. In general, it is more difficult to detect maneuver
termination than maneuver onset because nonmaneuver is a well-defined motion pattern — straight and level motion at a
constant velocity — while maneuver essentially includes all other motion patterns. For instance, a maneuver model has a
larger covariance of measurement residuals than a nonmaneuver model due to the fact that the latter has alarger state vector
and assumes more motion uncertainty than the former. Fortunately, timely detection of maneuver termination is usually not
as important as that of maneuver onset because tracking a maneuvering target assuming it is not maneuvering may have a
serious consequence (e.g., track 10ss), while tracking a nonmaneuvering target assuming it is maneuvering usually only suffer
minor performance degradation.

1Some people prefer “ change detection.”



3.1 Chi-Square Test Based

Most maneuver detectorsused in MTT are (true, quasi, or pseudo) chi-square significance test based. They employ a statistic
that istruly or approximately chi-sgquare distributed under H ; for maneuver onset detection or under H; for maneuver termi-
nation detection. Assume ¢ is (approximately) chi-square distributed with n degrees of freedom (denoted as e ~ y 2) under
Hy. Then achi-square test based maneuver detector will declare detection of a maneuver if

e> A= xi(a) )

where 1 — « isthe level of confidence, which should be set quite high (e.g., 95% or 99%). Note that e < X does not imply
absence of a maneuver.

Itiswell knownthat || y — 7 [|3-1= (y —9)'S " *(y — ) is x3, distributed for any n-dimensional Gaussian random vector
y ~ N(y,%). In this sense, chi-square test provides a check of the goodness of fit to judge if y indeed has the assumed
distribution (or if this statistical distance between y and § matches the distribution). Chi-sgquare test is perhaps the most
popular statistical test because of its simplicity, even though it is not necessarily optimal in any sense. Rigorously speaking,
the validity of a chi-square test relies on the assumption that individual terms are Gaussian and independent, which is not
necessarily valid in practice. Nevertheless, chi-square tests are commonly used in these situations.

In maneuver detection, two popular choices for y are measurement residual Z and input estimate .

Residual based. In this case, normalized residual squared €, = Z;CS,;lék is used, where 2, = zp — Z—; IS the
measurement residual and S, = cov(Z). Its moving sum e;, over a sliding window [k — s + 1, k] of length s as well as
fading-memory sume/, are

k k 1
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where s, is the effective window length of the fading-memory sum. Under the linear-Gaussian assumption and H o, residual
sequence (Z;) is zero-mean, Gaussian, and white. Then ¢, and €, are chi-square distributed with ., and sn, degrees of
freedom, respectively (i.e, ex ~ x3_, €5 ~ x2,.), Wheren, = dim(z). As aweighted sum of i.i.d. Gaussian variables,
e}, is not chi-square distributed, but by moment matching it can be approximately treated as a scaled version of a chi-square

variable, that is )
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Consequently, (1) can be used to detect maneuver onset, where e = €, €, or €. Note that a 2 variable has mean n and
variance 2n, and thuse; /s or €/, /s, (i.e., each term in the sum) becomes |ess random as the window length s (or s ,) becomes
larger, which however often implies alonger detection delay. The detection threshold A can be obtained from their respective
distributions.

As aready mentioned, chi-square tests based on residuals have been a fairly standard tool for maneuver detection. Its
applications are too numerousto list. A sample can befoundin [20, 4, 21, 5, 6, 9, 22, 7, 10] and referencestherein.

Input estimate (IE) based. If the target is not maneuvering, its control input (e.g., acceleration or its increment) u is
zero, and thus any estimate of the input that is linear in the measurement residuals? under the linear-Gaussian assumption
is zero-mean and Gaussian. Asaresult, e = 4'Y !4 is x2 distributed under Hy, where ¥ = cov(a) and n, = dim(u).
Consequently, (1) can be used to detect maneuver onset. Mainly because of their smplicity, the |E-based chi-square tests
are present in many |E-based algorithms [23, 24, 25, 26, 27, 28]. The test can also be used to detect maneuver termination
[20, 10]. It can be used based on amoving sum or fading-memory sum aswell, wheree j, = @}, %, iy, However, thetermsthat
form the sum are usually not independent and thus the sum is usually not really chi-square distributed. A rigorous analytical
determination of the corresponding detection probability P p isvirtually impossible since it depends on the generally unknown
input. Evaluation of Pp could be done by simulation.

3.2 Generalized Likelihood Ratio Test Based

Let v betheinput that is responsible for maneuver and let n be the maneuver onset time so that w ,, = 0 for k < nandu,, # 0
for k > n over the timewindow [k — s, k). Consider the following maneuver hypothesesin terms of input value

Hy : wu,=0 foralkelk—s,k) @
Hy (u,n) : up=tpy1 =--=ug_1 =u#0 forsomen e [k—s,k) (5)

2Thisistrue for almost al input estimates devel oped.



where theinput level v and the maneuver onset time n are unknown.
Thelikelihood ratio of H; vs. Hy with givenu andn is

Alu,n)= ——7—""- 6
() = = G, ©
where z* standsfor set of measurements {2, s, ...,z }. Many optimal solutions of the above hypothesistesting problem are

based on thislikelihood ratio, which is however unknown dueto its dependenceon « and . In such acase, ageneral principle
widely used is to replace the unknown likelihood functions by their maxima over the unknown parameters (u, n); that is, re-
place f (z¥|Hy (u,n)) with f (2% |Hy (4,7)) = max(y ) f (2¥|H1 (u,n)), where (4, n) = argmax(y, ) f (25Hi (u,n))
is the maximum likelihood estimate of (u,n). In essence, this principle replaces an unknown likelihood ratio with its most
probable likelihood ratio, which does make sense. The resulting likelihood ratio is known as the generalized likelihood ratio.
Then the generalized likelihood ratio (GLR) test compares thisratio or its equivalent with athreshold.

In the context of maneuver detection, the joint maximum likelihood estimate (i, 7) is found in two steps as follows.
Denote by J(u,n) = log A (u,n) thelog-likelihood ratio. First, find i(n) = argmax, J (u,n) asthe input estimate given
onset timen and then

(@,n) = arg dnax J[i(n),n] )
Themain reason for this two-step approach is the ease at finding w.(n). Thenthe GLR maneuver detector declares detection
of amaneuver if the generalized log-likelihood ratio

f (k| Ho)

exceeds a properly chosen threshold. In this case, the GLR estimates of the input and onset time @ and 7 obtained by (7) are
validated (see Sec. 5.1).

As shown in Sec. 5.1, under the linear-Gaussian assumption, i(n) = X(n)e(n) is easily obtainable (in fact, it is the
least-squares estimate of u given n), where ¥(n) = MSE[u(n)] is the mean-sguare error matrix of 4(n) and e(n) is given
later by (43); further, it can be easily verified that

J(@,n) = log ©)

Tli(n),n] = —3 (528752 + 5 ATla(n), ] ©

K

where z istheresidual at time x under H, and S,, = cov(Z}). Theincrement A.J due to the unknown input is given by
AJfa(n),n] = a(n)' [Sm)] " a(n) = e(n) S(n)e(n) (10)
Note, however, that & # X(7)e(n). As such, the above GLR test does not lead to the following maneuver detector
@' [S()] "t > A (11)

or (not equivalently)
e(R)'T(R)e(R) > A (12)

These two detectors are nevertheless used in some algorithms. Note that (11) is in general not a chi-sgquare test since @
given by (7) is not necessarily linear in the residuals. Also, implementation of the double maximization (7) over an window
[k — s, k) requiresinput estimators running for each x € [k — s, k).

Development and applications. The above GLR detector was proposed in [29] for fault detection and used in many MTT
algorithms. More details were given in [29, 19]. Prior to [29], a GLR-based maneuver detector was proposed in [30] in a
less general setting. The maneuver detection is based on the GLR test for detecting a maneuver-induced bias in the constant-
velocity (CV) filter'sresidual sequence (Z;). Thisbiasis modeled asby (n) = hy(n)T'u, where hy(n) = (k — n)* T, kisthe
current time, n is the maneuver onset time, 7' is the sampling period, and « is an unknown constant related to the maneuver
input magnitude. It was presented thereinthat i ;. (n) = X (n)ex(n) with

Sem)] = Y (h()’,  exln)= Y he(n);



The proposed GL R bias (maneuver) detector over the window [k — s, k) is

!

p X er(n) Se(n)ek(n) > A (13)
and the estimate of the maneuver onset isn = arg maxy_s<n<i €x(n) Xk (n)ex(n). To reduce the computational burden of
the algorithm, an approximate detector has also been developed therein. Application of the GLR-based maneuver detection
ina 1D tracking filter, discussed in Sec. 5.3.5, can also be found in [31].

Asdiscussed in [19, 32], while providing an appealing analytical framework for change detection, the GLR method has
its major drawbacksin the heuristic choosing of decision threshold and heavy computational burden.

3.3 Other Detectors

Marginalized likelihood ratio test. The marginalized likelihood ratio (MLR) method, proposed recently in [33], appearsto
be more efficient than the GLR test assuming more prior information. Its basic ideais to obtain the marginal ML estimate
7 that has the maximum likelihood for an average u, rather than using the joint MLE (4, n), as given by (7). In essence,
MLR test checks the ratio of average likelihoods, as opposed to the ratio of most probable likelihoods in the GLR test. The
hypotheistesting problem for H vs. H; isformulated with respect to the marginalized log-likelihood ratio (MLR)

o FESHL () E[f (25Hi (u,n))]
T =loe T Gy T T p ) (4
where
f(z;”|H1(n)):E[ (S|H1 u,n) /f 2M Hy ( un) (u) du (15)
Thetestis
J(7) >0 (16)

where J (7) = max,, J(n) isthe maximum MLR.

In this formulation the input « is considered as a random variable, in contrast to the GLR method where it is assumed
a deterministic constant. The prior of » can be chosen, for example, as diffuse uniform (noninformative). The input level
is eliminated by averaging over al possible levels. Clearly the crucia problem of threshold determination of the GLR test
is circumvented in the MLR formulation. Under some condition and with a special choice of the GLR threshold, both tests
coincide. Fairly efficient algorithms for estimating n were also presented in [33]. The MLR test is also more robust than the
GLR test to unknown noise levels.

Gaussian significance test based. In this detector, a maneuver is declared if a component @ ; of input estimate (assumed
to be Gaussian distributed) is statistically significant, that is, ai/ElW > A, where X; = var(d;) and the threshold A is
determined from the standard Gaussian distribution. Itisusedin, e.g., [34, 21, 4, 7, 28].

CUSUM based. The popular cumulative sum (CUSUM) algorithm [35, 36, 17, 19] can be applied to maneuver detection
with an input estimate ¢ as follows: Declare amaneuver if Sy, — ming_s<x<x Sk > A, where

Z log (f (2x|Hy(@,n)) / f (2| Ho))

k=k—s

is the cumulative sum of log-likelihood ratios. Therationale behind is the observation that .S 1, generally goes down with time
in the absence of maneuver, but goes up during maneuver, and thus the maneuver onset time corresponds roughly to the time
S}, reached its minimum. In the linear Gaussian case, Sy, is smply a sum of normalized residua squared e, = 5251215# A

maneuver detector for 2D tracking was developed in [37]. It uses the normalized residual S, 1/ ®z), with its scalar measure

1
N

which has the standard Gaussian distribution if the residual sequence Z;, is Gaussian and white. 7, and other possible
distance measures were discussed in [19] and relevant references therein. This detector is decoupled from input estimation

and computationally more efficient than the standard detector. The use of fading-memory sum, known as geometric moving

avarage in statistics, is well established in tracking, but it is only one of awide variety of choices available for change-point
detection. A successful use of a CUSUM maneuver detector was reported recently in [19].

N = 1, S; 'z with 1, =(1,1,...,1)



SPRT based. The celebrated sequential probability ratio test (SPRT) [38, 39, 17] can be applied to maneuver detection
with an input estimate 4 as follows: Declare maneuver if J(4,n) < B; declare no maneuver if J(a,n) > A; otherwise
no decision and continue to test using more measurements (i.e., k£ := k + 1). Here A and B are two thresholds, which can
approximately setto B = /(1 —a) and A = (1 — ) /a for given o = P{false detection} and 5 = P{miss detection},
and J(a,n) = log (f (2¥|H(a,n)) / f (2%|Ho)) arelog-likelihood ratio, which can be computed recursively by using the
residuals of the Kalman filters (KFs) matched to H, (@, n) for maneuveronsettime n = k—s, k— s+1, ..., k—1. Detection
of changes in process noise covariance () by SPRT was given in [40]. More recent results for change-point detection along
the line of SPRT and quickest detection can be found in [41, 11, 42, 43, 44]. Some of them have been applied to fault
detection, but not to maneuver detection to our knowledge, except that a quickest maneuver detector was given in [45] (with
a subsequent correction).

4 Equivalent-Noise Approach
Almost all types of target motion can be described by the following state-space model
Thr1 = fe(or, ug, wr) 17)

where x isthe state, u is the control input, and w is the process noise.

In the equival ent-noise approach, the basic assumption is that the maneuver effect can be modeled by (part of) awhite or
colored noise process sufficiently well. In other words, it is assumed that the above equation that describes target motions
can be simplified to

Trt1 = flag, wi)

with an adequate accuracy, where w* is equivalent noise that quantifies the error of this model in describing the target
motions, in particular, maneuvers. Of course, the statistics (e.g., the mean and covariance) of this noise w *, nonstationary in
general, are not known. Valid or not, this fundamental assumption converts the problem of MTT to that of state estimation in
the presence of nonstationary process noise with unknown statistics. Here lies the basic idea of the approach.

Numeroustechniques have been devel oped for such state estimation problemsin stochastic systems research over the past
severa decades, in particular, from late 1960's to early 1980’s. Almost all of them are limited to linear systems (so is our
description below), that is, assume that the system dynamics can be described by

Tpt1 = Frop + ka;; (18)

with noisew* of unknown statistics (e.g., mean w and covariance Q). Traditionally, its state estimation using a linear system
of observationsin white noise is considered as an essential part of what is known as adaptive Kalman filtering.

InMTT, the equivalent noise w* has been assumed to be either white or colored. The best-known example of theformer is
the popular (nearly) constant-acceleration (CA) models, while the best-known representative of the latter is the Singer model.
All models in the entire Sec. 4 of Part | [1] belong to this class. In particular, they are based on theories of white noise,
Markov processes, and semi-Markov processes. These models have been surveyed and, in our opinion, adequately described
inPart | [1], which will not be repeated here.

In order for this equivalent-noise approach to be effective for MTT, a basic requirement is that it must be able to respond
quickly enough to maneuver onset and termination. In other words, this approach has a modeling side, as described in Sec. 4
of Part I, and an adaptation side, which is almost always guided by decisions concerning maneuvers. In the remaining of this
section, we will focus on the adaptation side. More specifically, we will connect this MTT approach with adaptive Kalman
filtering techniques, point out their major differences, and briefly describe adaptation schemes developed particularly for this
approachto MTT. That is why this equivalent-noise approach is covered in this part dedicated to decision-based approaches.

There exists alarge body of literature on adaptive Kalman filtering. A well-known early publication is [46]. While many
of the techniques in this area have been developed for linear state estimation with unknown input, which is the topic of the
next section, more of the proposed techniques are directed towards the case with unknown noise statistics. The equivalent
noise w* is assumed white in almost all these adaptive Kalman filtering techniques. For white noise, mean and covariance
are clearly the two most important components of its statistics, and are in fact the only components considered in most cases,
which is often justified by the Gaussian assumption on the noise, supported by central limit theorems.

There are generally two classes of adaptive Kalman filtering techniques for linear state estimation in white noise with
unknown statistics. The first class, referred to as noise identification, explicitly identifies the noise statistics in real time and
state estimation is done using the identified noise statistics; the other class, referred to as adaptive gain below, accounts for



the effect of the uncertainty in the noise statistics on state estimation indirectly in the filter gain without explicit identification
of the noise statistics.

Relatively fewer techniques have been devel oped for gain adaptation (see, e.g., [47, 48]). [49] proposed adaptation of the
filter gain based on the deviation of the measurement residuals from orthogonality. More recent publications include [50],
which also proposed a gain adaptive KF for linear model with an unknown @) (and measurement noise covariance R). On
the other hand, abundant results are available for noise identification and particularly identification of covariances, which
were surveyed in [48, 51, 52], with many references. Four groups of methods were identified [48]: (a) Bayesian approach,
where Bayes' rule is used to update the prior distribution of noise statistics by measurements (see, e.g., [53]); (b) maximum
likelihood estimation, where noise statistics are estimated by maximizing a (log)likelihood function of them (see, e.g., [54]);
(c) correlation methods, where noise statistics are related to and then determined by the (sample) autocorrelation of the
measurement (residual) sequence (see, e.g., [47, 55]); and (d) covariance matching, where noise statistics are estimated by
matching between theoretical and sample covariances (see, e.g., [56]). A more detailed description of these methods was
included in [48], while the brief review included in [57, 58] emphasizes on the more recent results.

Some of these adaptive techniques have been introduced or implemented in the context of MTT [59]. We mention here
several examples: [60] implemented the algorithm of [47] for onlineidentification of @) in an EKF for tracking amaneuvering
reentry vehicle; similarly, also for maneuvering reentry, [61] used the procedure of [56] for noise adaptation; [62, 63] used
a least squares update of the process noise based on a fading-memory sum of the residuals; similar ideas of limited and
weighted limited memory covariance adaptation were implemented in [64] and [65], where the latter developed and applied
an EKF with adaptive noise estimation for a short range, air-to-air, maneuvering target interception scenario; [66] proposed
asimple adaptive algorithm for unknown (slowly varying or piecewise constant) @; and [67] provided an accurate procedure
for adaptive computation of () in an EKF for ballistic target tracking.

As stated before, afast response to maneuversis essential for the equival ent-noise approach to work well. Thisis much
more difficult to achieve than in the case where noise statistics vary not so quickly. As elaborated in [58], however, most
adaptive Kalman filtering techniques are not particularly suitable to handle fast-varying unknown noise statistics. In fact,
most of them are valid only for stationary noise or noise with slowly varying statistics. There are only a few exceptions,
including those presented in [68, 69, 70, 58], which are based on the use of multiple models — the topic of a forthcoming
part of this survey. In our opinion, it is this distinctive requirement of MTT that has prevented effective application of many
adaptive Kalman filtering techniques in MTT. As a matter of fact, common practice with this equival ent-noise approach to
MTT isto tune @ offline in advance. For example, a heuristic relationship @ », = F. Q1 F}, was used for the adaptation of
Q inapractical implementation of aballistic tracking filter [71].

A popular technique here is noise-level adjustment [56, 46, 9], [10]. It is assumed here that the effect of a maneuver on
state estimation can be accounted for by increasing the process noise level (covariance (Q): () scale up ) by afudge factor
¢ Qr—1 := ¢, Qr—1, or (b) switch to a pre-specified higher noise covariance: Q ,.—1 = Q2 > @1 toyield alarger covariance
for the measurement residual:

Sk = Hy(Fr—1Py_y k-1 Ff_ + Qr—1)H}, + Ry,

where ()1 isthe covariance of the process noise without maneuver. The upward and downward adjustments are initiated by
a detection of maneuver onset and termination, respectively. Usually the simple chi-square test based on a fading-memory
sum or dliding window of normalized measurement residual squares, as described in Sec. 3.1, is used, athough many other
maneuver detection techniques described in Sec. 3 can also be used. Note that for this simple test, downward detection is
more difficult than upward detection. A similar ad hoc implementation of noise-level adjustment for MTT can be found in
[34].

Another major difference between conventional adaptive Kalman filtering and the requirementsfor MTT isthefollowing.
While adaptive Kalman filtering normally deal s with white noise models, colored noise models (aswell aswhite noise models)
arewidely used in MTT, asdescribed in Part |. This difference has not been emphasized probably because Markovian colored
noise models can always be converted to white noise models by, e.g., state augmentation.

5 Input Detection and Estimation

Let the dynamics of a maneuvering target be given by (17). The basic idea of this approach is to explicitly estimate the
unknown control input u, and then estimate the state using the estimated input 4, although it may be more accurate (but
less tractable) to estimate the state and input jointly. Compared with the equivalent-noise approach, which does not rely on
explicit estimation of the unknown input, this approach is more direct and appears more appealing in general when the input
isindeed estimable. We shall refer to this approach as input detection and estimation (IDE), although the simpler term input



estimation may be more preferable, which unfortunately is usually associated with a particular method in this approach due
to historical reasons.

Since amost all techniques in this approach only deal with linear dynamics, we will consider only the following linear
system

Tpyr = Frprg +ugp + Drwy (19)
2z = Hpzp +op (20)

where u, = Gruy, istheinput level and Fj, = Fey usually (see Part 1). In generd, it is assumed that uj;, # 0 when the target
is maneuvering at time £ and u, = 0 when the target is not maneuvering. Only a linear measurement system is considered
here, asjustified in Sec. 1.

With this linear system, the MTT problem becomes that of state estimation with unknown input. As for the case with
unknown noise statistics, this problem also belongs to adaptive Kalman filtering. Unlike the unknown noise statistics case,
where few adaptive Kalman filtering techniques are directly applicableto MTT, many adaptive Kaman filtering techniques
for unknown input are applicableto MTT directly.

Clearly, the key to this IDE approach is the estimation of the input process (u). There are three main uncertainties
associated with (u): (8) unknown input level G, uy, that may or may not vary during maneuver, (b) unknown maneuver onset
time n, and () unknown maneuver termination time m. In other words,

(ugy ={...,0,...,0,up, Upt1,..,Up_1,0,...,0,...}

In general, this IDE approach has the following three essential ingredients: (a) estimation of input; (b) state estimation
using the estimated input; and (c) detection of maneuver onset and termination. The maneuver detection component is needed
because otherwise the estimated input may be statistically insignificant, leading to inferior performance of the state estimation.

5.1 Estimation of Input

The description below follows [72].

Let {#, P} be the unified notation for both prediction {Z y—1, Prjx—1} and update {Zyx, Py(x }- Similarly, let 2, =
zr — HZy, — 0y, and Sy, = cov(Z) be the corresponding measurement residuals and covariances, respectively. Consider now
two KFs . = {@}, P;} and Fy = {&¥, P¥}. F. assumesthat input terms are all zero, while the hypothetical KF 4 uses
perfect knowledge of the nonrandom input. Note that . and F. have the same covariances (e.g., P, = P,f6 and S} = ij)
andfiltergan(i.e, K = K ,’f) since the input terms are assumed nonrandom. It is straightforward to show by elementary
manipulationsthat [72]

& =i+ Ay, (21)
where
Adppor = &y — Fper = Grws (22)
Adg = & — 3 = UnGruy (23)
u = [u,, U, un 4] u=Tiu
_ 0 k<n
G, = Gy k=n+1n+2,...,m
LkaGm k>m
G, = [Lk7n+1; Lk,n+27 . ,Lch]; n<k<m
Lj,j :I, LkJ' :Lk_lLk_g---Li, k >i, LkJ' :O,k‘ <1
L; = FU;, Uj=I1-K;H;
T}, is amatrix such that u;, = Tju is an empty vector (i.e., T, = [] is an empty matrix without an element) if £ < n,
u, = u(i.e, Ty = I)if k£ > m, otherwise u, = [u},,u;,,...,u;,_]" (i.e, Tp = [diag(l,...,I),0] is a matrix with

(k —n) x (m —n) blocks). Note that G ,u; = Zf;; Liit1u;, K =n+1,n+2,...,m. Notethat matrix G, relatesthe
input uy, toits contribution Az, to state prediction. Such alinear relation exists because the system is linear.
It thus follows that
i =Az + 5 (24)



where Az, = HpAzZ,. Since Z} is easily obtainable while S,fé is actually not obtainable, (24) is in the form of y;, =
hi(ug) +vg (Withy, = 2 and vy, = Z,f) and thus can be viewed as an observation model of u ;. Notethat () measurements
yr = Z;, arelinear in theinput uy; (b) under the linear-Gaussian assumption of the KF, the measurement noise v, = 227,6_1
is zero mean and white with covariance 51:\1@71- This equation is the basis of several IDE methods, described below.

Assume that observations over the time window [k — s, k] are given. Under the linear-Gaussian assumption of the KF, it
follows from (24) that the log-likelihood function of (uy,n, m) is given by

k
1 ~ -
log f (7 |ug,n,m) = —3 > (5 - HeGrup)'(S5) (37 — HuGruy)
k=k—s
1., 1 e
el —§(Zk — Hkuk)’Sk I(Zk — Hkuk) (25)
wherezj = [(2;_,)", (Fi_s41)"s-- -, (B)']"s Sk = diag[S}_, Si_ 44, -- -, Skl and

To be precise the prediction version (e.g., 2}, = Z,*clkfl) should be used.
Consequently, the input levels and maneuver onset and termination times can be estimated by the maximum likelihood
method as
(s, 72, )M = arg max log f(2*[ug, n,m) (26)

In view of (24), it is aso reasonable to estimate (uy, n, m) by the following weighted |east-squares method directly without
the linear-Gaussian assumption:

(tig, 7, m)"S = arg min Jy(ug,n,m) (27)
ug,n,m
where
Jk(uk,n,m) = (iz — Hkuk)'Sle(i; — Hkuk) (28)

Under the linear-Gaussian assumption, J; (uy,, n,m) = —2log f(z}|u, n, m) and thus (i, 7, m)"S = (g, n, m)ML.
The solution of the above ML or LS problem for uy, given (n,m) is

iy (n,m) = Xg(n,m)ex(n,m) (29)

where
Se(n,m) = MSE[0y(n,m)] = (H},S, "Hy) ™! (30)
ex(n,m) = H}S; 'z} (31)

Note that given (1, m), alinear unbiased estimator of u, using dataz; = Hyuy, + Z; with known E[z}] and cov(z} )
exists if and only if H;, has full column rank (i.e., det(H} H;) # 0) [73]. This formulation reveals the condition under
which alinear unbiased estimator of uy, exists. See [72] for more details. Under the linear-Gaussian assumption, G (n, m)
using the prediction version (eg., Z; = Zj,, ;) isunbiased and Gaussian distributed with covariance X (n,m): G (n,m) ~
NTu, X, (n,m)]. Thisprovides ajustification of the simple chi-square test for maneuver detection, described in Sec. 3.1.

In the literature, the maneuver termination time is never included in the problem formulation. The only exception known
to the authors is [72], from which the above formulation follows. While this has little impact on the peak error following
immediately a maneuver onset, it is significant in reducing the peak error due to maneuver termination.

5.2 State Estimation
(21) suggests that given an estimate i1, of the input uy,, the state can be estimated simply by
Ty = Ty + ATk (wp,n,m)=(an,n,m)
that is,
B = Eppy + Gai (32)

Gyp = &hp + UsGrlly (33)



where G = Gl (n,m)— (i) - =
It follows from (21) and the above equation thati’f\k—l — Zpjp—1 = Grup — Grliy & G (ug — ), and thus

N N L 3 N
Ty — xk“@—l N T — mk‘k)—l + Gk(uk - uk)

Since P#

k=1 = MSE(7,_,) = El(zx — i‘k#\k_l)(ﬂfk - i“k#‘k_l)’] = Py, wehave

k|k—1
Pyji—1 = MSE(#gj5—1) & Py + GiZi Gy + Cora Gl + GiClag (34)

where Czzq = E[(zr — :f:k#lk_l)(uk — 1,)']. Note that the maneuver onset and termination times affect 5, and P, only

through Gy, and X, = MSE(y,). It was argued in [23] that Ci#ﬁ(};c = 0 because i1y, is alinear combination of uncorrelated
measurement residuals. In fact, i, isindeed alinear combination of measurement residuals Z;, but they are not uncorrel ated
even under the linear-Gaussian assumption; furthermore, even if they are, we could not conclude C 5#;1@;6 = 0 in generd.
General formulasof C';+5 G/, aregivenin [72). Clearly, ignoring C ;4 G/, leadsto

Pyp—1 ~ Py + GiZh G (35)

Consequently, it is thus seen that the state estimation can simply be done approximately by a correction in the estimate
and error covariance. Thisis often referred to as state estimate correction. It should be noted that the correction equations
(32) and (35) are approximate since they do not account for the error arising from estimation of (n, m).

5.3 Various Algorithms

While a general formulation and solution of the problem of estimating the input level and the effective interval is givenin
Sec. 5.1, most IDE agorithms developed are under some simplifying assumptions. More specifically, they are based on one
or more of the following assumptions.
(A) Constant-input assumption: The unknown input level is constant during a maneuver (i.e., over [n, m — 1]), that is,
Up =Upt1 = - =Up-1 = U
(B) Maneuver-duration assumption: A maneuver may terminate only after it is detected at time k; that is, maneuver
duration is always larger than maneuver detection delay.
(C) Congtant-delay assumption: A maneuver starting at time n may only be detected at time n + s; that is, a maneuver
detected at time k always started at time k — s (i.e., nonzero input starting at k — s — 1).
Clearly, al these assumptions are quite restrictive for realistic applications. It appears that Assumption (C) is most
restrictive while Assumption (B) is probably least restrictive.
With Assumption (A), we have Guy, = Gru and Hyu, = Hyu, where Gy, = 0if k < n, G, = Ly jn G it k> m,
otherwise G, = G, with
k—1
Grpn = Z L, it1 (36)
=n
and } } } }
Hy = [Hllcfs? Hllcferla v aH—IIc]I = [(Hk*SGk*S)Ia (kas+1Gk'78+1)I7 ey (Hka)l]l

As such, G (n, m) becomes

ir = Xrep (37)
k
' = HSp'He= ) HST'H; (38)
i=k—s
~ k
ev = HS;'zp= > HS'% (39)
i=k—s

With Assumptions (A) and (B) and the assumption that a maneuver is detected at &, we have Gruy, = Gruy = Gppuif
k > n and G,u; = 0 otherwise, and Hyu;,, = Hju, whereif n > k — s then

I:Ik = [Hllc—s: Hllc—s+1: s :Hllc]l = [07 v aOa (Hn+1Gn+1,n)la (Hn+2Gn+2,n)la R (Hka,n)l]l (40)



Assuch, i, (n, m) becomes i, = Syey,, where &, and e, are given by (38)—(39) with H; given by (40), that is,

ﬁk = Zkek (41)
k k

st o= Y H = Y (HiGin)'S; H(HiGin) (42)
i=k—s i=n+1
k ~ k

e = ST = > (HiGin)'ST' 2] (43)
i=k—s i=n+1

With Assumptions (A)~C) and the assumption that a maneuver is detected at &, we have Gyu, = Gruy = Gy pu and
Hju;, = Hpu, where

= [y By, ) = (HiGrn)'| (44)
Assuch, iy, (n, m) becomesii, = Yxe, where X, and ey, are given by (38)~(39) with H; = H;G; .

[(Hn+1Gn+17n),a (Hn+2Gn+27n),7 LR

5.3.1 Generalized Likelihood Ratio Algorithms

In this algorithm, proposed in [ 74, 75] with Assumptions (A) and (B), input estimates & 4 (n) for all possible maneuver onset
time n are computed and the one that maximizes the log-likelihood log f(Z ; |G, n) is taken to be the input estimate and the
corresponding n as the onset time estimate 7. The maneuver detection in this algorithm is done based on the generalized
likelihood ratio (GLR) test, hence the name GLR algorithm. Specifically, this algorithm for MTT consists of the following.

o [nput estimation. For eachn = k —s, ..., kK — 1, obtainthe MLE i} (n) = arg max, log f(Z}|u, n), whichis given
by (41)—43) under the linear-Gaussian assumption. Then @i (1) = arg maxg_s<n< 10g f(Z|0x (), n).
e Onset time estimation. Obtain the MLE

n = arg max  log f(zj|0k(n),n) = argk}glggdﬁth(u/»( n),n) (45)

which is given by (10) under the linear-Gaussian assumption.
e Maneuver detection. A maneuver is declared if
05 () Sk () 10 (7) > A (46)
e State estimate correction. Use (32) and (35) if amaneuver is declared.

Note that since max y ) AJg (u,n) = AJy (0, 7) under the linear-Gaussian assumption arigorous GLR detector should
use AJy(0,7) > X', whichin genera differsfrom (46). Note also that @1, (72)' Sy, (7) "0k () = ex(n)' Sk (0)er () does not
hold in general, although it is not uncommonly used.

In order to avoid a possible overcompensation, which for instance may arise from detecting the same jump repeatedly,
an ad hoc technique was suggested to reinitialize the GLR after state estimate correction. This will also make it possible to
detect a sequence of successive jump inputs to the system [75]. Another issue is the choice of the window length, whichis a
trade-off among input estimation accuracy, detection delay, and computational load.

5.3.2 Recursive GLR Algorithms

A recursive form of the above GLR algorithm was proposed in [74], [75] to save computation. A more general form was
givenin [76] asfollows: for given n,

O, = Fp 1P 1 +Gro1n (47)
H, = Hy (9 —F, 19 1) (48)
U, = Fp1¥_y + K Hy, (49)
b= S+ HLS T H (50)
ex = ep—1+HS 'z (51)
0 = Seex (52)

The first three equations compute [, recursively. (50)—(52) are awell-known recursive form of (42)—(43).



Tracking application. The above GLR algorithm was illustrated in [74, 75] via a smple example of 1D MTT using a
KF with a CV model for ajump maneuver scenario. It was later applied to a more realistic 2D MTT scenario in a generic
surface-to-air engagement in [76], which involves high nonlinearities in both target maneuver and measurement model, and
the simulation results presented demonstrate working capabilities of the algorithm. Another application employing GLR
technique was reported in [77] for MTT for homing missile guidance. The main problem encountered arises from the sudden
and high magnitude jumpsin the target lateral acceleration, modeled as afirst-order Gauss-Markov processwith an additional
unknown constant-bias term (see Part I). This model was considered within the framework of the 2D general curvilinear
motion model (see Part I) with polar measurements. A bank of EKFs was used to estimate the bias as part of the target
state. The bank isformed by starting at each instant in awindow a new EKF with an initial estimate from the nominal filter
and a large initial bias covariance to alow the EKF to track the bias near its onset time. The most likely EKF is selected
according to (45) and the corresponding time instant is taken to be the maneuver onset time. Then the test (46) is used to
verify maneuver detection. If maneuver is declared, the most likely filter becomes the nominal and the whole process is
restarted. A probabilistic weighted sum of thefiltersin the bank (i.e., MM approach) was also implemented as an alternative.
This same ideawas also considered in [31].

5.3.3 Degenerated Kalman Filter for Input

It iswell known that a recursive LS estimator of an unknown but constant parameter can be viewed as a special case of the
KF of the parameter. Since in the linear Gaussian case the above recursive GLR algorithm isin fact arecursive LS estimator
in the information form, (50)—(52) may be viewed as the information form of the KF for estimating unknown constant u
using measurement model (24). This recognition, made explicit in [78], enables us to utilize the power of the KF to handle
the case with a certain specia time-varying unknown input by treating the input as the state of alinear system with known
dynamics but unknown onset time. The resulting algorithm [ 78] is a straightforward implementation of the GLR method with
aKF incorporated for input estimation. It generalizes the earlier decoupled bias correction KF of [79], which solves the pure
estimation problem (without addressing the problem of bias detection) in the presence of time-varying unknown bias, but
without considering the uncertainty in the bias onset time.

It should be noted that the KF used hereisin fact degenerated because the dynamics equation for the input is nonrandom.
It appears more natural to assume the input as random and apply a truly KF here. It turns out that by so doing we arrive
at an algorithm, known as variable state dimension, discussed in Sec. 6.1. However, a fundamental dilemma to represent
maneuver by the input is that potentially time-varying unknown input is better modeled as nonrandom, but far more prior
knowledge than what is usually available is needed to have a meaningful model of its dynamics other than the nearly constant
oneupy1 = ug + We-

Thefollowing standard covariance version of the KF was presented in [ 78]

— — — _1 —
Y = Spot — Seoi Hy, (HpSe—1Hy, + Sk) HiXe—a (33)
0y = Opo1+ Se 1 HL S, (B — Hilpo1) (54)

which is computationally more efficient than the information form when dim(z) < dim(z).

5.3.4 Input Estimation Algorithm

The input-estimation (IE) algorithm was first developed for MTT in [23] using asimplified batch LS formulation of (28) that
corresponds to Assumptions (A)—C). It consists of three steps:

e [nput estimation. Given by (37)—39).
e Maneuver detection. A maneuver is declared if the estimated input is deemed statistically significant, that is, if
0,2 g > A (55)
asdescribed in Sec. 3.1.
e State estimate correction. Use (32) and (35) if amaneuver is declared.

Thisalgorithm was implemented in [23] for aMTT problem using aplanar CV target model in Cartesian coordinates (see
Part I) with direct Cartesian position measurements, where the unknown input represents accel eration along each coordinate.



Although this algorithm is attractive in several aspects, it suffers from two major deficiencies, which stem from assuming
constant input (Assumption A) and known onset time (Assumption C). These assumptions are rather unrealistic in typical
target tracking applications, and lead to undesirable performance [80, 9]. Another complication arises from the linearity
assumption of the measurement model, which israrely truein practice, and thus additional work (e.g., unbiased measurement
conversion, as discussed in detailsin Part |11) is needed, giving rise to additional errors.

To overcome these deficiencies and improve the performance of the original algorithm, a number of extensions and
enhancements have been proposed in the literature.

Enhancement by decoupled maneuver detector. Theorigina |E algorithm devel oped in [23] doesinput estimation before
maneuver detection because the detector (55) usesinput estimates. Sinceamaneuver islesslikely to occur thanthe CV motion
and the batch LS based input estimator is computational demanding, this implies a huge waste in computation. To improve
computational efficiency, it would make much better sense if the input is estimated only after a maneuver is declared since
the latter requires much less computation. Such an |E algorithm was proposed in [37] with comparable performance to the
origina algorithm. The maneuver detection proposed therein amounts to checking if the actual multiple-step measurement
residual matches its Kalman prediction based on a zero-input model. This detector was reported in [37] to have a higher
detection probability than the residual-based detector (Sec. 3.1), at the same level of false darm. Theoretically the same
input estimator and state estimate corrector are used as in the original |E algorithm, except that a recursive form of the input
estimator for asimplified 1D problem was also given in [37]. Unlike the original 1E algorithm, however, the input estimation
and maneuver detection here are not directly coupled.

5.3.5 Enhanced Input Estimation Algorithm

It was proposed in [31] to enhance the original |E algorithm by relaxing Assumption (C) of a constant delay of maneuver
detection. Theideais to consider at time £ a number of hypotheses regarding the maneuver onset time n, (e.g., al possible
n =1,2,...,k— 1, or some subset) and evaluate their likelihoods by running in parallel the respective input estimators as
inthe original |E algorithm. Then either the probabilistically weighted average of all input estimates or the most likely input
estimate is taken to be the final estimate of the input. (Likewise for the estimate of the maneuver onset time.) The latter is
methodologically equivalent to the GLR algorithm presented above. The difference lies in the concrete implementation for
the chosen target/measurement model. Maneuver detection and state estimate correction are done exactly the same asin the
original |E algorithm. We will refer to the resulting algorithm as the enhanced | E (EIE) algorithm.

The development in [31] was done for a one-dimensional tracking problem, resulting in an easily implementablerecursive
formulation of the algorithm in closed form. There are two subtleties in the problem setting considered. First, a three-state
CA modd is chosen as the basic maneuver-free model, where the input stands for ajump in the acceleration level, rather than
the acceleration itself. Second, the input isnonzeroonly at k = n = m — 1 (i.e., an impulse) since the input represents a
jump in the acceleration. These subtleties greatly simplify the development of the recursive implementation.

This enhancement accountsfor the uncertainty in the maneuver onset time and optimizes the size of the data batch needed
for input estimation. Thusit is capable of coping with the “detection delay problem” of the original |E algorithm. The cost
is a possibly large increase in input estimation so as to “analyze the past” with respect to maneuver onset time. This makes
the development of a recursive version essential. The recursive input estimator is theoretically equivalent to the origina
batch input estimator, as shown in [81], but computationally more efficient. This however was achieved primarily dueto the
simplicity of the particular 1D problem setting considered. For more general and morerealistic problems, further devel opment
isneeded. Theuse of aCA model in principle leads to a degradation of estimation accuracy during a nonmaneuvering motion
as compared to the CV model-based KF. While it has a limited value in direct application, this EIE algorithm did serve as a
basis for further devel opment and refinement for solutions to more realistic tracking problems.

For the case with correlated measurement errors, a practical situation typically arising in radar tracking at high measure-
ment frequency, [82] reported an MTT application of the EIE agorithm, along with some adjustments, after decorrelation
using atechnique similar to the one described in Sec. 8.4.1 of [10].

5.3.6 Modified Input Estimation Algorithm

The modified input estimation (MIE) algorithm proposed in [25] is a modification and enhancement of the original |E and
EIE agorithms.

Thetime-correlated Singer model of acceleration was adopted in this algorithm as the zero-input model so asto cover the
CV motion and maneuvers of a small magnitude since the standard | E algorithm is known to be insensitive to low maneuvers



and to require along detection window for accumulating sufficient maneuver statistics. In such a setting the unknown input
stands for a stepwise changein the target acceleration level. A “naive’ direct implementation of the ideawas found, however,
to suffer from the side effect of hampering the maneuver detection since the Singer process noise would tend to suppress
the increase in residuals. To improve the maneuver detection sensitivity, it was proposed to estimate the input based on the
so-called pseudoresiduals, introduced particularly for this purpose, explained below.

Thetarget model (19) is modified as

Fxp 4+ Gug + wy, k<n
ZTpr1 = Flzp + B(u—w)] + Gu + wy, k=n (56)
Fzp + Gu + wy, k>n

wherez = (x,v, z,%, y, 2,%, ¥, 2)', F, G and ) are defined in Singer model, w, is zero-mean and white, B = [0, 0, I]’,
and uo and u are the input levels before and after a change occurs at time n.  The use of u o and u (rather than ug = 0
and u) makes it possible to estimate piecewise-constant input levels by a successive application of the input estimator. The
measurement matrix is H = [I, 0, 0]. Thismodel differsfrom (19) with G yu = Gup fork < nand Grup = Gufork > n
only in that it assumes the acceleration change occurs suddenly (i.e., as an impulse) at time n and thus does not affect the
target position and velocity during the course of change, similarly to the case considered in the implementation of the EIE
algorithm [31]. As such, this model represents a maneuver as a specific combination of impulse and step changes.
For any hypothesized maneuver onset time n, the pseudoresidual is defined for k > n as

Ju(n) = ye(n) — Heu, £>n (57)

for k < n it coincideswith theresidua Z,, = 2, — H#x—1, Where

K—n—1
H, = H(FE)"B+H » (FEYG (58)
=0
Ye(n) = zx—2s 1 —HF%, =2, — 2,1 — HF D&y, (59)

with D = diag(0,1,0) and E = diag(0, I, I), which take velocity components and remove position components of the
state vector, respectively. Note that (z,, — z,—1) is the measured position displacement over the sampling interval (¢ _1, ]
and HF'z, is the corresponding predicted nonmaneuvering displacement based on the velocity estimate &, = D, a a
hypothesized maneuver onset time n. (57) thus provides a measurement model for the unknown input « in the form

yn(n):ﬂ—nu+gn(n)7 k=n+1, ...,k (60)

It was claimed in [25] with evidence that the unknown pseudoresidua § ,(n) has zero mean. The covariance of . (n) was
found approximately i
S! = HFDP,,DF'H' + R, + R,_1, k=n+1,...,k (61)

Also, it was not shown that ¢, (n) is white, which is nonethelessimplicitly assumed in the derivation therein.
Based on this measurement model, the MIE algorithm uses the same input estimator and maneuver onset-time estimator
as those of the EIE algorithm. Its maneuver detector is given by [i (i) — uo]'S) [k (72) — ug] > A, where[25]

k—1 k
Sk = B{[ar(n) — uoll@n(R) —uol} =Sk + Sk Y | Y (Vi +Via) = Wi— W/ | 5 (62)
i=n+1 | j=i+1

with V; ; = H/(S}) *HFDP,,,DF'H'(SY)"*H; and W; = H/(S?) 'R;(S?.,) ' H; 1. It is computational more effi-
cient than that of the EIE algorithm. Essentially the same state estimate corrector as those used in the other |E agorithmsis
employed, given by . o
ftk“c = JA?Z‘O]C + Glag(n) — uo), Pk|k = P]gﬁc + szkGL,
where G, = (UpF)(Ug_1 F) - - (Upny1 F)B + Gy G, and {i;ka, P:ﬁc} isfrom the KF assuming input ug.
The MIE agorithm, by utilizing a more precise target model and more sophisticated measurement model for input es-
timation, succeeds to improve the EIE algorithm considerably regarding the detection window length and implicitly the



computation involved. Additional computational savings also come from the possibility to pre-compute H,. off-line and to
compute G, for 7 only, rather than for each n in the window, asin the EIE algorithm.

We now suggest an analytic performance comparison between the input estimators in the MIE and EIE algorithms [72].
Given two optimal LS estimators 4; and 4. of u based on measurement models z; = H;u + v; with zero-mean v; and
cov(v;) = Ry, i = 1,2, respectively. Let A; and A, be two nonsingular matrices such that A;z; = Hu + A;v;, 1 = 1,2.
Then, @; has a smaller MSE matrix than - if and only if H'[(A;1R1A})™! — (A2RxAL)1H > 0 since MSE(4;) =
[H'(A;R;A})"YH]~1. Treating 4; and a» as the input estimators in the MIE and EIE algorithms, respectively, we have
Hy :=Hy, Hy == Hy, Ry := S}, and Ry .= Sy = HFPy_y_ F'H' + HQ_ H' + Ry,. For simplicity, we may consider
only the steady state, where P._yj,_1 = Py),. It appears from this analysis that the MIE input estimator is not uniformly
superior to the EIE input estimator — their relative merit depends on the problem at hand.

It was claimed in [26] that the MIE a gorithm “is better than the IMM method in performance and computation,” which is
supported by the simulation results presented in [25]. However, our own simulation results indicate that the IMM algorithm
performs dightly better than the MIE algorithm in our scenarios, and with a better design than those used in [25], the IMM
algorithm performs about the same as the MIE algorithmin their scenarios. Such simulation results depend highly on scenar-
ios, design parameters, and many other factors. They are insufficient for arriving at an overall conclusion, which requires a
fair performance comparison over an ensemble of realistic tracking scenarios (e.g., the benchmark tracking problems[83, 84]
or some random scenarios).

An MIE agorithm using measurements in radar spherical coordinates has been presented in [26] for a morerealistic 3D
tracking problem. To cope with the problems arising from the use of mixed coordinates, the pseudomeasurement method in
the radar LOS coordinate system (CS) was used (see Part 111). This enables decoupling of the coordinate axes so that three
1D filters can be used, leading to considerable savingsin computation. For this purpose the decoupled KF in LOS CS of [26]
was employed to serve as a zero-input KF within the framework of the MIE algorithm. The implementation in the LOS CS
was obtained after accounting for the respective coordinate transforms concerning the pseudoresidual and its covariance.

5.3.7 Generalized Input Estimation (GIE) Algorithm

While the EIE and MIE agorithms were developed aimed at overcoming the deficiencies of the original |E algorithm due
to ignoring the uncertainty in the maneuver onset time (i.e., Assumption C), the generalized |E (GIE) algorithm, proposed
recently in [27], is intended to relax the restrictive assumption concerning the evolution of the input (i.e., Assumption A).
Here the unknown input is model ed as alinear combination of known basic time functions, defined over the detection window.
This problem setting is more general than the constant-input model of the original 1E algorithm. Due to the linearity of this
input model, the original I1E algorithm works in principle, except that the constant weights used in the linear combination
need be determined, which can be easily estimated by essentially identical estimator of a constant input [27].

We now briefly describe some features of the algorithm and its development in a way that is significantly more elegant
than the original descriptionin [27].

The unknown input is assumed to have the form

Ug = Zai@i(tti) = ga(tn)'a (63)
i=1
where p(t) = [¢,(t),...,p,(t)]" is the vector of known (or to be designed) scalar functions of timeand a = [a} ...d.]

denotesthe stacked vector of unknown constant vector-val ued weightsto be determined. Then, wehaveu ;. = [(p(tn)'a)’, . . .,
(p(tr—1)'a)')] = ®ra, where @, = [p(tp),...,¢(tk—1)]’. It isthus clear that with this input model, estimation of atime-
varying input u; becomes estimation of the time-invariant weight vector a since ® ;. is assumed known. As such, without
Assumption (A) this input model enables us to apply the results that rely on Assumption (A) by recognizing the relationship
Gruy = Gi®pa = Gra and Hyu, = Hy®,a = Hya. More specifically, with Assumptions (B) and (C) and the
assumption that a maneuver is detected at k, as implicitly made in [27], we have 4, = Xjex, MSE(ar) = X and thus
a, = Ppap, MSE(l,) = @4, P}, where X, and e, are given by (38)~(39) with the replacement H, = H,G;®, =
Hi[Lig—s, Lik—st1,-- - Li k] P

Note, however, that the estimability of u; and a differsin general unless ¢, (t,,) are chosen such that &, is square and
nonsingular. A necessary condition for estimability of a (i.e., invertibility of X ;) was givenin [27]. In fact, it can be shown
using results of [85] that a necessary and sufficient conditionis that Hy, has full column rank (i.e., det(H} Hy) # 0) and Sy,
asusedin (28) is nonsingular.



The same maneuver detector and state estimate corrector as in the original 1E algorithm were used in the GIE algo-
rithm of [27] utilizing the relation @}, %, *a), = e, Syey,. Note, however, that i} MSE(ti,) ~tdx = @}, aj, does not hold
unconditionally.

Consequently, we have shown that the GIE agorithm for an unknown time-varying input modeled by (63) can be derived
from the original | E algorithm for estimating an unknown but constant « in the following system:

Tp1 = Frap + Gru + Dpwy

with atime-varying G, by replacement G, := ®; and u := a. Inthis sense, this “generalized” |E algorithm does not really
generalize the original 1E algorithm. It isin fact the original |E algorithm combined with input model (63). In other words,
thereal contribution of the so-called generalized | E algorithm is the introduction of the input model (63). The problem setting
of input estimation with atime-varying matrix G, is, however, more general than that of the GIE agorithm since the choice
of G, is not restricted to @, by the input model (63). We emphasize this since in practice this means that the designer is
allowed to choose G, evolving in other manners, depending on the specific tracking application.

5.3.8 Multiple Input-Level Algorithm

In the multiple input-level method, proposed in [86], the set of all possible values of the unknown input « is partitioned into
a number of quantization levels and each level i is represented by a single point (value) «? in it. It then assumes that the
unknown input can take on only one of these representative values at any time. As a result, it actually assumes that these
representative values form a partition of the set of all possible values of the unknown input. By total expectation theorem,
the state estimator isgiven by &y, = Elax|2*] = 3, @} P{ur = u'|*}, where &}, = Blay|2*, ux = u’] isthe optimal
estimate assuming uj, = u'. Each &, can be found by aKF. Under the linear-Gaussian assumption, it is easy to verify that
the state estimate is linear in the control input w:

i = Fro1@h_ypo1 + Ki(zr — HeFi1 8y p—y) + UpGrort!
where Uy, = I — K}, Hy,. If the same previous estimate is used in each KF (i.e., 5'3“2_1|k_1 = Tp_1|k—1, Vi), then
T = Fro1Zp-1p—1 + Kr(zk — HrFpo1Zp—1jp—1) + UrGr_10s, (64)

where 4, = >, utP{u;, = u'|z*}. Asaresult, only a single KF, rather than a bank of KFs, is needed. As such, the
problem of optimal estimation with unknown input reduces to the problem of optimal estimation with known input, along
with determining the probabilistic weights P{u; = u?|z*}. Additional assumption is needed to determine the probabilistic
weights. A reasonable one for some applications is that the input sequence (u ) is a semi-Markov process (see Part 1), or
more specifically, a sojourn-time dependent Markov chain. Under this assumption, an efficient recursion for the calculation
of the probabilistic weights can be readily obtained. Superior performanceis obtained if it is combined with colored rather
than white noise model [86] (see Part 1).

Without the assumption that the same previous estimate is used in each KF, a bank of filter would be needed in general
and thus this algorithm is in fact a degenerated case of a multiple-model algorithm.

5.3.9 Other IDE Algorithms and Implementations

We now briefly review other references concerning, or closely related to the IE agorithms. [87] proposed a simplified
version of the original |E algorithm. [24] further developed the original |1E algorithm in an information filter framework and
proposed a highly efficient decoupled algorithm for radar target tracking of maneuvering aircraft (see also [88]). [45] (with a
subsequent correction) proposed an MTT tracking algorithm which involves recursive estimation of the input and a maneuver
detector minimizing detection delay. [28] applied the |E techniques for tracking a reentry vehicle in the terminal phase from
radar measurements. The overall adaptive tracker, based on a nonlinear reentry vehicle dynamic model [2], consists of an
EKF (zero-input based), a recursive version of the IE algorithm, a standard “ ko” -type maneuver detector, and a standard
state estimate corrector. [89] proposed a maneuver detector for the |E algorithm based on a detectable maneuver set. [90]
suggested an algorithm as a combination of a multiple input-level estimation and GL R-based maneuver detection. [91, 92]
developed input detection and estimation for MTT based on FIR filters.



5.4 Comparison of GLR and IE Algorithms

It has been well known, as made explicit in [93], that there is a duality between maneuver detection (and identification) as
well as fault detection and identification (FDI) and a duality between MTT and state estimation of systems subject to faults.
As aresult, there is a duality between the developments of algorithms for MTT (in particular, |E agorithms) and FDI (in
particular, GLR agorithms).

The|lE and GLR agorithmswere devel oped largely inthe MTT and FDI areas, respectively, which emphasize on estima-
tion and detection, respectively. As aresult, the IE and GLR algorithms are slightly more estimation-oriented and detection-
oriented, respectively. This difference reflects well in the naming of the algorithms developed in the two areasin view of the
fact that generalized likelihood ratio tests were well established in hypothesis testing long before. It is unfortunate that not
enough cross connections were given by researchersin these two areas. Results developed originally in one area were often
redeveloped in the other area, although some of such devel opments might have been inspired by results in the other area.

Theinput-estimation parts of GLR and |E are essentially the same since ML and L S estimators coincide under the linear-
Gaussian assumption. They differ mainly in the detection part.

6 Switching-Model Approach

In this approach, there are two classes of models: maneuver (e.g., CA or coordinated turn) models and nonmaneuver (e.g.,
CV) models; tracking is done by afilter that uses one model at one time; the decision as which model to use is madein real
time using measurement information (and prior information if any), hence the name switching model approach.

In a broad sense, algorithms in the equivalent-noise or IDE approaches also belong to this approach since following
different decisions these algorithms take different actions, which may be construed as filtering based on different models. For
instance, an upward noise-level adjustment may be viewed as switching from a model with a lower noise level to one with
a higher level; state estimate correction or not using input estimates may also be interpreted as filtering based on different
models, although this interpretation may appear farfetched to some people.

The switching-model approach has three aspects: modeling, decision, and filtering.

In principle, all target motion models, including those described in Part |, can be potentially used either as a maneuver
or nonmaneuver model. As such, this approach is capable of providing valuable flexibility in actual implementation for vast,
diversified applications. In reality, however, only a very small subset of those models described in Part | has been proposed
or implemented with this approach. The best explanation here is probably the fact that in history more attractive approaches,
such as multiple-model methods, had come into vogue before this approach could take off.

Ideally, different filters may be used for different model s so as to take advantage of the specifics of each model. In practice,
the variety of filters used for different modelsis very limited — almost al of them are KFs or EKFs. This stems from two
facts: the popularity of the KF, along with its simple extensions such as EKF, and alack of effective practical nonlinear filters.
In this sense, this approach is better not referred to as “ switching filter” approach.

We now describe several algorithmsin this approach.

6.1 Variable State Dimension Algorithm

Thevariable state dimension (V SD) algorithm, proposed in [20], usesa CV model and a CA model for the target dynamicsto
achieve good tracking performancein both non-maneuvering and maneuvering situations. The CV and CA models have been
adequately described in Part |. Switching from the CV model to the CA model is triggered by a detection of maneuver onset,
and the CA model is switched back to the CV model when the maneuver is declared over. The maneuver detector proposed
in [20] is based on the chi-square test using a fading-memory sum of measurement residuals (see Sec. 3.1). As proposed in
[20], once a maneuver is detected at time k, it is assumed that the target had a constant acceleration (see Assumption (C) in
Sec. 5.3 starting at £k — s — 1, where s is the effective window length, the CA model based filter is properly initialized at
k — s, and all measurements after k — s are reprocessed to obtain all components of the state vector. No such retrodiction was
proposed in [20, 10] after switching back to the CV model from the CA model. In view of the fact that the maneuver onset
and termination times are both uncertain, the main reason appears to be: While use of the CV model when acceleration is
present will lead to unacceptable performance, use of the CA model in the absence of acceleration will degrade performance
only dlightly. Thisis afortunatefact, for as explained before the detection of maneuver termination is more difficult than that
of maneuver onset.

In hindsight, the VSD algorithm may be referred to as switching accel eration-model algorithm. It can also be viewed as
an IDE agorithm where input (accel eration) is model ed as arandom process with a (nearly) constant dynamicsand estimated



as state components.
It was reported in [20, 10] based on limited simulation results that the VSD algorithm outperformsthe original |1E algo-
rithms for the scenarios considered.

6.2 Enhanced VSD Algorithm

The above original VSD method was modified in [94] to enhance performance by using (a) two-stage decision, (b) measure-
ment concatenation, and (c) an improved initialization of the maneuver filter.

The two-stage decision, referred to as double decision logics in [94], consists of two decision logics connected in series.
While one and only one filter is running at any particular time, the first decision logic is used to detect any abnormality in
the measurement residuals to determine possible maneuver onset or termination by comparing a proper abnormality measure
with a threshold. If a possible maneuver onset (or termination) is declared, then the maneuver (or nonmaneuver) filter is
initialized and it runsin parallel with the other filter, and the second decision logic is then activated at sometime. The second
decision logic performs the so-called maximum likelihood test to eliminate the filter with arelatively smaller likelihood (i.e.,
poorer performance), although it would be better if a sequential probability ratio test were used.

The overall two-stage decision proposed is the same for maneuver onset and termination. Thefirst stage, however, differs
in the two situations. While detection of maneuver onset is based on the use of input estimate, a maneuver termination is
detected using a fading-memory sum of the residuals from the maneuver filter. Thisinput estimate based detection is chosen
for two major reasons: it is more efficient than the fading-memory sum chi-sguare detector and it provides estimates of the
detected acceleration, which serves to initialize the acceleration components of the maneuver filter more precisely than the
retrodiction procedure of the original V SD algorithm. (Very similar ideas were followed in the more recent work on the VV SD-
IE algorithm in [95].) Once maneuver is confirmed, the maneuver filter is initialized using the input estimates by analogy
with (65)—67), discussed |ater.

I'n our opinion, the replacement of single-stage decision with two-stage decision is asignificant innovation. It may achieve
asimultaneous reduction in the rates of fal se switching and missed switching, at a price of adlightly longer decision time and
apossibly higher level of sophistication. Essentially the same idea was introduced and implemented in [96, 97] for variable-
structure multiple-model estimation. It appearsthat multiple-stage decision has an even better potential. In the limit, however,
it becomes soft decision, which is hardly distinguishable from estimation, such as what the multiple-model approach does.
Fuzzy-set enthusiasts would add that thisis al so where the merits of afuzzy set lierelativeto acrisp set. Thismay also inspire
some readersto try fuzzy decision based techniquesfor MTT.

The measurement concatenation proposed is a model whereby fast sampled measurements are stacked while maintaining
their proper relationships with the states. It provides a means of improving the tracking performance by increasing the
measurement rate without increasing the state estimation update rate. It is the opposite of the sequential processing of vector
measurements. |ts application may be restricted by the allowable computational resource. It does have some subtleties, such
as the presence of correlation between the concatenated measurement and process noise sequences.

6.3 Two-Stage Filtering

A KF based on a CA model can be implemented by a combination of two filters, one based on a CV model and the other for
estimating the accel eration alone, even though accel eration is clearly coupled with position and velocity. Such afilter isknown
as a two-stage filter [79]. Compared with the direct implementation, it has reduced computation and memory requirements,
among other things.

Sincethe VSD agorithmsrun both CV and CA filters, albeit at different times, anatural ideaisto implement them astwo-
stagefilters. Thisidea, suggested in [98], was pursued in [99, 100, 101, 102]. Their tracking filter consists of a primary (CV)
filter and secondary (acceleration only) filter. The acceleration filter is turned on and off by a maneuver detector. It operates
on theresidual data of the CV filter. The output of the secondary (acceleration) filter is used — when maneuver is detected —
to correct the output of the CV filter, in away similar to state estimate correction of the |E algorithm. A principal difference
however is modeling the acceleration (input) as a (white or colored) random process [99, 100, 101]. As an implementation
of the so-called biasilter, the acceleration filter estimates the acceleration using the measurement residuals of the bias-free
(i.e., CV) filter. The overall estimate is based on the estimates of the CV and acceleration filters. The two-stage algorithm of
[103] was proven therein to be equivalent to the CA filter under a restrictive algebraic sufficient condition, which would be
rarely satisfied for practical systems[104]. Another two-stage estimator was proposed in [104] as an extension of the original
estimator of [79]. Itisoptimal (equivalent to the augmented optimal estimator) in ageneral setting. Further, optimal two-stage
KFs were obtained in [105]. These optimal algorithms can facilitate development of two-stage trackers because two-stage



tracking has certain advantages over the VSD algorithms in terms of reduced computational load and faster response to
manuever ending. For example, it may be integrated with the IDE approach: detect maneuver onset by a bias estimate based
test, and use the optimal bias filter and optimal correction upon detection in an optimal manner. A number of publications
exist for separate estimation of the bias (unknown input) for nonlinear dynamic systems [106, 107, 108]. They can also be
applied to input detection and estimation.

An implementation of a two-stage tracker was proposed in [102] within the -3 filter framework. This implementation
was also discussedin [7].

6.4 An Integrated VSD-IE Algorithm

The EIE algorithm of Sec. 5.3.5 uses a CA model for nonmaneuvering motion, which is known to cause performance degra-
dation when the target moves at nearly constant velocity. To overcome this drawback, a variation was proposed in [95] that
integrates three major techniques: (@) the input estimator (in a recursive form) of the |E algorithm, as practically given by
(50)—(52), to estimate the input and detect maneuver using the CV filter, (b) the ML estimator of the maneuver onset time,
together with the respective maneuver detector and state estimate corrector, and (c) the VSD technique of running a CA filter
initialized by the estimated input with the estimated onset time. Simply put, this algorithm applies a recursive form of the
EIE algorithm to obtain maneuver onset time estimate 7 and input estimate 4, (1) and to detect maneuver using the CV filter
{#*, P*}, and then if amaneuver is declared at time k, it switchesto a CA filter {z, P}, initialized by 3

. 3 N
[ Lklk—1 ] = “hlk—1 + G104k (1) (65)
Tglk—1 | Tklk—1
Buir = () ©
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where £, = MSE[iix(7)] and G = G| n=n, given by (36). The unknown target acceleration is to be further estimated by
the CA filter until the maneuver is declared over.

Thisintegrated V SD-IE algorithm gives a better solution to the MTT problem than both the EIE agorithm and the VSD
algorithm. Since an accurately initialized CA filter is used, its performance is superior to that of the IE algorithm during
maneuver. On the other hand, its maneuver detection and onset time estimation appearsto be more accurate than what is done
in the VSD algorithm. Additionally, the simple yet accurate initialization of the CA filter eliminate the need for the awkward
retrodictivefiltering in the VSD algorithm that causes computational discontinuities.

6.5 Other Switching-Model Algorithms and Implementations

[109] proposed a switching-model scheme between nonmaneuvering and maneuvering models by a likelihood ratio detector.
In[30], aswitching-model algorithm, referred to as a decision directed tracker therein, was devel oped for tracking 2D maneu-
vering aircraft. It uses anearly CV model for nonmaneuvering motion and the Singer model for maneuvers. The maneuver
detection is based on a GLR test for detecting a maneuver-induced bias in the CV filter's residual sequence. In [110, 111]
switching to a (nonlinear) turn model is triggered by a maneuver detection. Many other earlier implementations that belong
to the switching-model approach can be found in [21] and references therein.

6.6 Model Switching vs. Input Detection and Estimation

While the input is treated as a deterministic process in the IDE approach, it is usually modeled as a random process in
the switching model approach. Since no good prior dynamic model of the input u ;, as a random process is available, it is
customarily modeled as nearly constant: w11 = ux + wg. When the input responsible for the maneuver is acceleration, this
becomes the popular CA model. In this case, all differences between the VSD algorithm and the | E algorithm stems from the
fact that the unknown input (acceleration) is estimated as part of the state vector in the former, but as a separate nonrandom
parameter in the latter.

SWe point out that thisinitialization of the CA filter by the state estimate corrector in the input estimator actually fits well into the two-stage filter.



Maneuver onset time estimation is well integrated with input estimation in some IDE algorithms, which has not been
found in the switching model algorithms. On the hand, almost all IDE agorithms devel oped so far are limited to the linear
Gaussian case. Switching model approach does not have this limitation in general.

Inview of the prosand cons of each approach, the following integrationisworth exploring, as suggested in[72]. Maneuver
detection is based on two-stage decision, where the first stage is based on a sophisticated change-point detection algorithm
and the second stage is based on sequential probability ratio test between the two filters, one based on the model currently in
effect and the other based on the newly activated model. The input and its onset time estimates are obtained as in the IDE
approach using results from the nonmaneuver filter. These estimates are used only to initialize the two-stage maneuver filter
in the same spirit asin the integrated V SD-IE algorithm in that the state estimate correction of the IDE approach is used.

7 Concluding Remarks

Many decision-based a gorithms and techniques have been devel oped for maneuvering target tracking (MTT). They can be
classified into three categories: equivalent noise, input detection and estimation, and switching model.

The equival ent-noise approach assumes that target maneuver can be covered by an equivalent noise and then MTT be-
comes state estimation in the presence of this unknown nonstationary noise. It appears that the only major attractive feature
of this approach isits simplicity. While many techniques have been developed in the area of adaptive Kalman filtering, few
of them have a good applicability in MTT mainly due to the highly nonstationary nature of the equivalent noise.

Theinput detection and estimation approach convertsthe MTT problem into that of state estimation with unknown input,
generally considered as another area of adaptive Kalman filtering. It explicitly estimates the unknown input that is responsible
for target maneuver. This approach is attractive in that it is basically free of maneuver models: It attempts to estimate the
unknown target maneuver directly from the available measurement information without the need to have a maneuver model.
A fundament dilemma here is; Potentially time-varying unknown input is better modeled as nonrandom, but little prior
knowledge about its dynamicsis available.

In the switching-model approach, the model in effect switches between a maneuver model and a nonmaneuver model.
It is most general and flexible of all three approaches. In a broad sense, it includes the other two approaches as special
cases. Its distinctive power for adaptation to the environment lies in its flexibility in choosing an appropriate model for the
situation encountered. If needed, each model-based filter can be adaptive. However, it relies on good maneuver detection
more crucially than the other two approaches.

Although the basic ideas of the equival ent-noise and input detection and estimation approacheswork for nonlinear tracking
problems, their algorithms developed so far are mostly restricted to linear systems and their simple nonlinear extensions. In
contrast, the switching-model approach applies to nonlinear problems almost as easily asto linear problems.

Within the framework of decision-based adaptation for MTT, integration of different approaches appears to be most
promising.

Advancesin maneuver detection have been surprisingly limited, although it is the basis of all decision-based approaches.
Essentially only two types of maneuver detectors have been developed: those based on the simple chi-square test (using
either residuals or input estimates) and those based on the generalized likelihood ratio test. Considerably more effort should
be directed towards searching and adapting effective techniques in the rich resources of statistics, in particular, change-point
detection.

References

[1] X.R.Liand V. P Jilkov. A Survey of Maneuvering Target Tracking: Dynamic Models. In Proc. 2000 SPIE Conf. on Sgnal and
Data Processing of Small Targets, vol. 4048, pages 212236, Orlando, Florida, USA, April 2000.

[2] X.R.LiandV.P Jilkov. A Survey of Maneuvering Target Tracking—Part |1: Ballistic Target Models. In Proc. 2001 SPIE Conf. on
Sgnal and Data Processing of Small Targets, vol. 4473, pages 559-581, San Diego, CA, USA, 2001.

[3] X.R.LiandV.P Jilkov. A Survey of Maneuvering Target Tracking—Part 111: Measurement Models. In Proc. 2001 SPIE Conf. on
Sgnal and Data Processing of Small Targets, vol. 4473, pages 423-446, San Diego, CA, USA, 2001.

[4] A. Farinaand F. A. Studer. Radar Data Processing, vol. I: Introduction and Tracking, vol. 1I: Advanced Topics and Applications.
Research Studies Press, Letchworth, Hertfordshire, England, 1985.

[5] S.S.Blackman. Multiple Target Tracking with Radar Applications. Artech House, Norwood, MA, 1986.
[6] Y.Bar-Shaomand T. E. Fortmann. Tracking and Data Association. Academic Press, New York, 1988.
[7] S.S.Blackman and R. F. Popoli. Design and Analysis of Modern Tracking Systems. Artech House, Norwood, MA, 1999.



(8]
(9]

(10]

(11]
(12]

(13]

(14]
(19]
(16]
(17]
(18]
(19]
(20]

(21]

[22]

(23]

[24]

[29]

[26]

[27]

(28]

[29]
(30]

(31]

(32]

(33]

(34]
(39]
(36]
(37]
(38]

P. L. Bogler. Radar Principleswith Applications to Tracking Systems. Wiley, 1990.

Y. Bar-Shalom and X. R. Li. Estimation and Tracking: Principles, Techniques, and Software. Artech House, Boston, MA, 1993.
(Reprinted by YBS Publishing, 1998).

Y. Bar-Shalom, X. R. Li, and T. Kirubaragjan. Estimation with Applications to Tracking and Navigation: Theory, Algorithms, and
Software. Wiley, New York, 2001.

A. N. Shiryaev. Optimal Sopping Rules. Springer-Verlag, New York, 1977.

N. Kligene and L. Telksnys. The Methods for Detecting Instants of Change in Random Process Properties. Automation and Remote
Control, pages 1241-1316, 1983. Translation from Russian.

M. Basseville and A. Benveniste. Design and Comparative Study of Some Sequential Jump Detection Algorithms for Digital
Signals. |EEE Trans. on ASSP, 31(3):521 — 535, June 1983.

M. Basseville and A. Benveniste, editors. Detection of Abrupt Changes in Sgnals and Dynamical Systems. Springer-Verlag, 1986.
M. Basseville. Detecting Changes in Signals and Systems. Automatica, 24(3):309-326, May 1988.

L. Telksnys, editor. Detection of Changes in Random Processes. Optimization Software, Inc., New York, 1986.

M. Basseville and I. Nikiforov. Detection of Abrupt Changes: Theory and Application. Prentice Hall, Englewood Cliffs, NJ, 1993.
T. L. Lal. Sequential Changepoint Detection in Quality Control and Dynamical Systems. J. R. Satist. Soc., 57(4):613-658, 1995.
F. Gustafsson. Adaptive Filtering and Change Detection. Wiley, 2001.

Y. Bar-Shalom and K. Birmiwal. Variable Dimension Filter for Maneuvering Target Tracking. |EEE Trans. Aerospace and Electronic
Systems, AES-18(5):621-629, Sept. 1982.

M. S. Woolfson. An Evaluation of Manoeuvre Detector Algorithms. GEC J. of Research (Chelmsford, England), 3(3):181-190,
1985.

J. R. Cloutier, C. F. Lin, and C. Yang. Maneuvering Target Tracking via Smoothing and Filtering Through Measurement Concate-
nationn. AIAA Journal of Guidance, Control, and Dynamics, 16(2):377-384, March-Apr. 1993.

Y. T. Chan, A. G. C. Hu, and J. B. Plant. A Kalman Filter Based Tracking Scheme with Input Estimation. |EEE Trans. Aerospace
and Electronic Systems, AES-15(2):237-244, Mar. 1979.

M. Faroog and S. Bruder. Information Type Filters for Tracking a Maneuvering Target. |EEE Trans. Aerospace and Electronic
Systems, 26(3):441-454, 1990.

I. H. Whang, J. Lee, and T. Sung. Modified Input Estimation Technique Using Pseudoresiduals. |EEE Trans. Aerospace and
Electronic Systems, 30(1):220-228, 1994. Also published in No. 2, pp. 591-598.

T. K. Sung and J. G. Lee. A Decoupled Adaptive Tracking Filter for Real Applications. |EEE Trans. Aerospace and Electronic
Systems, 33(3):1025-1030, 1997.

H. Lee and M.-J. Tahk. Generalized input-estimation technique for tracking maneuvering targets. |EEE Transactions on Aerospace
and Electronic Systems, 35(4):1388-1402, 1999.

S.-C.Leeand C.-Y. Liu. Trajectory Estimation of Reentry Vehicle by Use of on-Line Input Estimator. Journal of Guidance, Control,
and Dynamics, 22(6):808—, 1999.

A. S. Willsky. A Survey of Design Methods for Failure Detection in Dynamic Systems. Automatica, 12(6):601-611, Nov. 1976.

R. J. McAulay and E. J. Denlinger. A Decision-Directed Adaptive Tracker. |EEE Trans. Aerospace and Electronic Systems, AES-
9(2):229-236, Mar. 1973.

P. L. Bogler. Tracking a Maneuvering Target Using Input Estimation. 1EEE Trans. Aerospace and Electronic Systems, AES-
23(3):298-310, May 1987.

T. H. Kerr. Decentralized Filtering and Redundancy Management in Multisensor Navigation. |EEE Trans. Aerospace and Electronic
Systems, AES-23:83-119, 1987.

F. Gustafsson. The Marginalized Likelihood Test for Detecting Abrupt Changes. 1EEE Trans. Automatic Control, AC-41:66-78,
Jan. 1996.

E. Bekir. Adaptive Kalman Filter for Tracking Maneuvering Targets. AIAA Journal of Guidance, 6(5):414-416, Sept.-Oct. 1983.
E. S. Page. Continuous Inspection Schemes. Biometrika, 41:100-115, 1954.

D. V. Hinkley. Inference about the Change-Point in a Sequence of Random Variables. Biometrika, 57:1-17, 1970.

Y. T. Chan and F. Couture. Manoeuvre Detection and Track Correction by Input Estimation. |EE Proc.-F, 140(1):21-28, Feb. 1993.
A. Wald. Sequential Analysis. Wiley, New York, 1947.



(39]
[40]

(41]

(42]

[43]
[44]

[45]

[46]
[47]

(48]
[49]

(50]

(51]

(52]
(53]

(54]

(59]

(56]
(57]

(58]

(59]

(60]

(61]

[62]

(63]

[64]

[65]

[66]

J. O. Berger. Satistical Decision Theory and Bayesian Analysis. Springer-Verlag, Mew York, 1985.

P. M. Newbold and H. C. Yu. Detection of Changes in the Characteristics of a Gauss-Markov Process. |EEE Trans. Aerospace and
Electronic Systems, AES-4(5):707-718, 1968.

D. Bertzekas. Dynamic Programing and Sochastic Control. Mathematics in Science and Engineering. Academic Press, New York,
1976.

J. L. Speyer and J. E. White. Shiryaev Sequentia Probability Ratio Test for Redundancy Management. AlAA Journal of Guidance,
Control, and Dynamics, 7(5):588-595, 1984.

I. V. Nikiforov. A Generalized Change Detection Problem. |EEE. Trans. Information Theory, 1T-41(1):171-187, 1995.

D. P. Malladi and J. L. Speyer. A Generalized Shiryaev Sequential Probability Ratio Test for Change Detection and Isolation. |[EEE
Trans. Automatic Control, AC-44(8):1522—-1534, 1999.

T. C. Wang and P. K. Varshney. A Tracking Algorithm for Maneuvering Targets. |EEE Trans. Aerospace and Electronic Systems,
AES-29(3):910-924, July 1993.

A. H. Jazwinski. Sochastic Processes and Filtering Theory. Academic Press, New York, 1970.

R. K. Mehra. On the Identification of Variances and Adaptive Kalman Filtering. |EEE Trans. Automatic Control, AC-15(2):175-184,
Apr. 1970.

R. K. Mehra. Approaches to Adaptive Filtering. |EEE Trans. Automatic Control, AC-17(5):693-698, Oct. 1972.

R. L. T. Hampton and J. R. Cooke. Unsupervised Tracking of Maneuvering Vehicles. |EEE Trans. Aerospace and Electronic
Systems, AES-9:197-207, Mar. 1973.

G. Chen and C. K. Chui. A Modified Adaptive Kalman Filter for Real-Time Applications. |EEE Trans. Aerospace and Electronic
Systems, AES-27:149-154, Jan. 1991.

L. Chin. Advances in Adaptive Filtering. In C. T. Leondes, editor, Control and Dynamic Systems: Advances in Theory and
Applications, vol. 15. Academic Press, New York, 1979.

A. Moghaddamjoo. Approaches to Adaptive Kalman Filtering. Control-Theory and Advanced Technology, 5(1):1-18, Mar. 1989.

A. P.Sage and G. W. Husa. Algorithms for Sequential Adaptive Estimation of Prior Statistics. In Proc. 1969 |IEEE Symp. Adaptive
Processes, University Park, Nov. 1969. Penn. State Univ.

P. L. Smith. Estimation of the Covariance Parameters of Nonstationary Time-Discrete Linear Systems. In Proc. 2nd Symp. Nonlinear
Estimation Theory and Its Applications, pages 325-328, San Diego, CA, Sept. 1971.

P. R. Belanger. Estimation of Noise Covariance Matrices for a Linear Time-Varying Stochastic Process. Automatica, 10:267-275,
1974.

A. H. Jazwinski. Adaptive Filtering. Automatica, 5(4):475-485, July 1969.

X. R. Li and Y. Bar-Shalom. A Recursive Hybrid System Approach to Noise ldentification. In Proc. 1st IEEE Conf. Control
Applications, pages 847-852, Dayton, OH, Sept. 1992.

X.R. LiandY. Bar-Shalom. A Recursive Multiple Model Approach to Noise Identification. IEEE Trans. Aerospace and Electronic
Systems, AES-30(3):671-684, July 1994.

C. B. Chang and J. Tabaczynski. Application of State Estimation to Target Tracking. |EEE Trans. Automatic Control, AC-29(2):98—
109, Feb. 1984.

R. P. Wishner, R. E. Larson, and M. Athans. Status of Radar Tracking Algorithms. In Proc. Symp. Nonlinear Estimation, San Diego,
CA, Sept. 1970.

C. B. Chang, R. H. Whiting, and M. Athans. On the State and Parameter Estimation for Maneuvering Reentry Vehicles. |EEE
Trans. Automatic Control, AC-22(2):99-105, Feb. 1977.

K. Spingarn and H. L. Weidemann. Linear Regression Filtering and Prediction for Tracking Maneuvering Aircraft Targets. |EEE
Trans. Aerospace and Electronic Systems, AES-8:800-810, Nov. 1972.

F. R. Castella. An Adaptive Two-Dimensional Kalman Tracking Filter. IEEE Trans. Aerospace and Electronic Systems, AES-
16:822-829, Nov. 1980.

K. A. Myers and B. D. Tapley. Adaptive Sequential Estimation with Unknown Noise Statistics. |EEE Trans. Automatic Control,
AC-21:520-523, Aug. 1976.

D. G. Hull, J. L. Speyer, and W. M. Greenwell. Adaptive Noise Estimation for Homing Missiles. AIAA J. Guidance, Control, and
Dynamics, 7(3):322-328, May-June 1984.

P. O. Gutman and M. Vegler. Tracking Targets Using Adaptive Kalman Filtering. |EEE Trans. Aerospace and Electronic Systems,
AES-26:691-699, Sept. 1990.



(67]

(68]

(69]

[70]

(71]

[72]

(73]

[74]

(79]

[76]

[77]

(78]

[79]
(80]

(81]

(82]

(83]

(84]

(89]

(86]

(87]

(8]

(89]
(90]
(91]

(92]

M. E . Hough. Improved Performance of Recursive Tracking Filters Using Batch Initialization and Process Noise Adaptation. AIAA
Journal of Guidance, Control, and Dynamics, 22(5):675-681, 1999.

R. L. Moose, M. K. Sistanizadeh, and G. Skagejord. Adaptive Estimation for a System with Unknown Measurement Bias. |IEEE
Trans. Aerospace and Electronic Systems, AES-22(6):732—739, Nov. 1986.

M. Niedzwiecki. Identification of Nonstationary Stochastic Systems Using Parallel Estimation Schemes. In Proc. 27th Conf.
Decision and Control, pages 258-263, Austin, TX, Dec. 1988.

M. Niedzwiecki. Multiple-Model Approach to Finite Memory Adaptive Filtering. In Preprints of 11th IFAC World Congress, vol.
3, pages 154-159, Tallinn, USSR, Aug. 1990.

G. P. Cardillo, A. V. Mrstik, and T. Plambeck. A Track Filter for Reentry Objects with Uncertain Drag. |EEE Trans. Aerospace and
Electronic Systems, AES-35(2):395-409, Apr. 1999.

X. R.Li, V. P Jilkov, and P. Zhang. Input Detection and Estimation for Maneuvering Target Tracking. Submitted for publication,
2002.

X. R. Li, Y. M. Zhu, J. Wang, and C. Z. Han. Optimal Linear Estimation Fusion—Part |: Unified Fusion Rules. Submitted for
journal publication, May 2002.

A. S. Willsky and H. L. Jones. A Generalized Likelihood Ratio Approach to the Estimation in Linear Systems Subject to Abrupt
Changes. In Proc. 1974 IEEE Conf. On Decision and Control, Nov. 1974.

A. S. Willsky and H. L. Jones. A Generalized Likelihood Ratio Approach to the Detection and Estimation of Jumps in Linear
Systems. |EEE Trans. Automatic Control, AC-21:108-112, Feb. 1976.

J. Korn, S. W. Gully, and A. S. Willsky. Application of the Generalized Likelihood Ratio Algorithm to Maneuver Detection and
Estimation. In Proc. 1982 American Control Conf., Arlington, VA, June 1982.

K. Schnepper. A Comparison of GLR and Multiple Model Filters for a Target Tracking Problem. In Proceedings of the 25
Conference on Decision and Control, pages 666670, Athens, Greece, December 1986.

C. B. Chang and K.P. Dunn. On The GL R Detection and Estimation of Unexpected Inputsin Linear Systems. |EEE Trans. Automatic
Control, AC-24(3):499-501, 1979.

B. Friedland. Treatment of Biasin Recursive Filtering. |EEE Trans. Automatic Control, AC-14:359-367, Aug. 1969.

Y. Bar-Shalom, K. C. Chang, and H. A. P. Blom. Tracking a Maneuvering Target Using Input Estimation Versus the Interacting
Multiple Model Algorithm. IEEE Trans. Aerospace and Electronic Systems, AES-25(2):296-300, Apr. 1989.

M. Farooq and S. Bruder. Comments on " Tracking a Maneuvering Target Using Input Estimation. |EEE Trans. Aerospace and
Electronic Systems, 25(2):300-302, 1989.

J-A. Guu and C.-H. Wei. Tracking a Maneuvering Target Using Input Estimation at High Measurement Frequency. International
Journal of System Science, pages 871-883, 1992.

W. D. Blair, G. A. Watson, and S. A. Hoffman. Benchmark Problem for Beam Pointing Control of Phased Array Radar Against
Maneuvering Target. In Proc. 1994 American Control Conf., pages 2071-2075, Baltimore, MD, June 1994.

W. D. Blair, G. A. Watson, T. Kirubargjan, and Y. Bar-Shalom. Benchmark for Radar Resource Allocation and Tracking Targetsin
the Presence of ECM. IEEE Trans. Aerospace and Electronic Systems, AES-34(4):1097-1114, Oct. 1998.

X.R.Li, K. S.Zhang, J. Zhao, and Y. M. Zhu. Optimal Linear Estimation Fusion—Part V: Relationships. In Proc. 2002 International
Conf. on Information Fusion, Annapolis, MD, USA, Aug. 2001.

R. L. Moose. An Adaptive State Estimator Solution to the Maneuvering Target Problem. |EEE Trans. Automatic Control, AC-
20(3):359-362, June 1975.

Y. T. Chan, J. B. Plant, and J. Bottomley. A Kalman tracker with a simple input estimator. |EEE Transactions on Aerospace and
Electronic Systems, AES-18(2):235-241, 1982.

M. Farooq, S. Bruder, T. Quach, and S.S. Lim. Adaptive Filtering Techniques for Maneuvering Targets. In Proceedings of the 34th
Midwest Symposium on Circuits and Systems, pages 31-34, Monterey, CA, USA, 1992.

H. Leeand M. Tahk. A Detection Scheme of Input Estimation Filter. In Proc. KACC' 95, Seoul, Korea, Oct. 1995.
S.J. Shinand T. L. Song. Input Estimation with Multiple Model for Maneuvering Target Tracking. Submitted.

0.-K. Kwon and K.-S. Yoo. Manoeuvre Detection and Target Tracking in Uncertain Systems Using FIR Filters. In Proc. 31st IEEE
Conf. on Decision and Control, pages 6465, Tucson AZ, Dec. 1992.

S. H. Park, W. H. Kwon, O.-K. Kwon, and P. S. Kim. Maneuver Detection and Target Tracking Using State-Space Optimal FIR
Filters. In Proc. 1999 American Control Conf., page 4253, San Diego, CA, June 1999. Also Tech.Rep. No. SNU-EE-TR-1999-8,
Seoul National University. Available online: http//haedong.snu.ac.kr.



(93]

(94]

(99]

(96]

[97]

(98]

(9]

[100]

[101]

[102]

[103]

[104]

[105]
[106]

[107]

[108]

[109]
[110]

[111]

T. H. Kerr. Duality Between Failure Detection and Radar/Optical Maneuver Detection. |EEE Trans. Aerospace and Electronic
Systems, AES-25:520-528, July 1989.

J.R. Cloutier, C. F. Lin, and C. Yang. Enhanced Variable Dimension Filter for Maneuvering Target Tracking. | EEE Trans. Aerospace
and Electronic Systems, 29(3):786—797, July 1993.

Y. H. Park, , J. H. Seo, and J. G. Lee. Tracking Using Variable-Dimension Filter With Input Estimation. |EEE Trans. Aerospace
and Electronic Systems, AES-31(1):399-408, Jan. 1995.

X. R. Li, X. R. Zhi, and Y. M. Zhang. Multiple-Model Estimation with Variable Structure—Part 111: Model-Group Switching
Algorithm. |EEE Trans. Aerospace and Electronic Systems, AES-35(1):225-241, Jan. 1999.

X. R. Li, Y. M. Zhang, and X. R. Zhi. Multiple-Model Estimation with Variable Structure—Part 1V: Design and Evaluation of
Model-Group Switching Algorithm. |EEE Trans. Aerospace and Electronic Systems, AES-35(1):242-254, Jan. 1999.

T.E. Bullock and S. Sangsuk-lam. Maneuver Detection and Tracking with a Nonlinear Target Model. In Proc. 23 |EEE Conf.
Decision and Control, Las Vegas, NV, Dec. 1984.

A. T. Alouani, P. Xia, T. R. Rice, and W. D. Blair. A Two-Stage Kalman Estimator for State Estimation in the Presence of Random
Bias and for Tracking Maneuvering Targets. In Proc. 30th IEEE Conf. on Decision and Control, pages 2059-2062, Brighton,
England, Dec. 1991.

A. T. Alouani, P. Xia, T. R. Rice, and W. D. Blair. A Two-Stage Kalman Estimator for Tracking Maneuvering Targets. In Proc. of
IEEE 1991 International Conference on Systems, Man, and Cybernetics, pages 761-766, Sharlottsville, VA, Oct. 1991.

A. T. Alouani, T. R. Rice, and W. D. Blair. Two-Stage Filter for Estimation in the Presense of Stochastical Bias. In Proc. 31th IEEE
Conf. on Decision and Control, Chicago, IL, June 1992.

W. D. Blair. Fixed-Gain Two-Stage Estimators for Tracking Maneuvering Targets. |EEE Trans. Aerospace and Electronic Systems,
AES-29(3):1004-1014, July 1993.

A. T. Alouani and W. D. Blair. On the Optimality of Two-Stage State Estimation in the Presence of Random Bias. |EEE Trans.
Automatic Control, AC-38(8):1279-1282, Aug. 1993.

C.-S. Hsieh and F.-C. Chen. Optimal Solution of the Two-Stage Kalman Estimator. | EEE Trans. Automatic Control, AC-44(1):195—
199, Jan. 1999.

C.-S. Hsieh and F.-C. Chen. Genera Two-Sage Kalman Filters. IEEE Trans. Automatic Control, AC-45(4):819-824, Jan. 2000.

J. M. Mendel. Extension of Friedland’s Bias Filter Technique to a Class of Nonlinear Systems. |EEE Trans. Automatic Control,
AC-21:296-299, Apr. 1976.

A. K. Caglayan and R. E. Lancraft. A Separated Bias |dentification and State Estimation Algorithm for Nonlinear Systems. Auto-
matic, 19(5), 1983.

D. H. Zhou, Y. X. Sun, Y. X. Xi, and Z. J. Zhang. Extension of Friedland’s Separate- Bias Estimation to Randomly-Varying Bias of
Nonlinear Systems. |EEE Trans. Automatic Control, AC-38(8):1270-1273, Aug. 1993.

J. S. Thorp. Optimal Tracking of Maneuvering Targets. |EEE Trans. Aerospace and Electronic Systems, AES-9:512-519, July 1973.

J. A. Roecker and C. D. McGillem. Target Tracking in Maneuver Centered Coordinates. |EEE Trans. Aerospace and Electronic
Systemns, AES-25:836-843, Nov. 1989.

T. Kawase, H. Tsurunosono, N. Ehara, and |. Sasase. Two-Stage Kalman Estimator Using an Advanced Circular Prediction for
Tracking Highly Maneuvering Targets. In Proceedings of ICASSP98, 1998. Submitted to |EEE Trans. Aerospace and Electronic
Systems.



