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Abstract – The most important problem in the application
of the multiple-model approach is the design of the model
set used. This paper deals with this challenging topic in
a general setting, along with model-set choice and com-
parison. General and representative problems of model-set
design, choice, and comparison are considered. Modeling
of models as well as true mode as random variables is pro-
posed. Several general methods for design of model sets are
presented by minimizing distribution mismatch, minimizing
modal distance, and moment matching. The concept of rel-
ative efficacy of each model in a set and its two quantitative
descriptions are introduced. Optimality criteria and perfor-
mance measures for model-set design, choice, and compar-
ison based on base-state estimation, mode estimation, mode
identification, hybrid-state estimation, information metrics,
and hypothesis testing are presented. Several computa-
tionally efficient and easily implementable solutions of the
model-set choice problems based on sequential hypothesis
testing are presented, some of which are optimal. Examples
that demonstrate how some of these theoretical results can
be used as well as their effectiveness are given. Many of
the general results presented in this paper are also useful
for performance evaluation of MM algorithms.

Keywords: Multiple models, model-set design, variable
structure, adaptive estimation, target tracking.

1 Introduction
Hybrid estimation is the estimation of a hybrid process,

such as the state of a hybrid system, which involves two
types of components: those varying continuously, known as
base states, and those that may jump only, known as modes
or modal state [12, 29]. In systems terminology, a base
state is the state of a conventional system, while each mode
represents a possible system behavior pattern or structure.
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Hybrid estimation has two major goals: base-state estima-
tion, which is the conventional state estimation, and mode
estimation or identification, which actually amounts to de-
cision.

Multiple-model (MM) method is a major adaptive ap-
proach to hybrid estimation. It is cost-effective, robust,
and has a parallel structure. In the MM method, a set of
models is designed to cover modes and the overall esti-
mate is obtained by a certain combination of the estimates
from the filters based on these models, respectively. The
MM method has received a great deal of attention in recent
years due to its unique power and great success in handling
problems with both structural and parametric uncertainties
and/or changes, and in decomposing a complex problem
into simpler subproblems, particularly in target tracking
and fault detection and isolation (see, e.g., [12] for a long
list of references).

The MM method was initiated in [24]. Many applica-
tions (or reinventions) of this MM estimator can be found
in the literature under various names (see, e.g., [12]). The
first generation of MM algorithms does not consider pos-
sible jumps in mode and can be referred to as autonomous
MM algorithms in that model-based filters do not interact
with each other. In the second generation, such as the GPB
[1, 10] and IMM [8] algorithms, the mode is assumed to
be able to jump among members of a set, usually modeled
as Markovian transition. These first two generations have
a fixed structure in that they use a fixed set of models at
all times, although each model in the set could be time-
variant or adaptive. They have certain fundamental limi-
tations, which stem from the fundamental assumption that
the mode at any time can be represented sufficiently accu-
rately by one of the models in a fixed set that can be de-
termined before measurements are received and its inabil-
ity to incorporate certain types of prior information. The
third generation, known as variable-structure MM (VSMM)
[18, 14], overcomes these fundamental limitations by using
a variable set of models determined in real time adaptively.



For a survey of the MM approach, the reader is referred to
[12]. An easily accessible account of the VSMM approach
is given in [14], while the IMM algorithm and its variants
for target tracking are surveyed in [25].

There are two major directions to improve the MM solu-
tion of a given hybrid estimation problem: develop a better
MM algorithm in general and design a better model set in
particular.

Model-set design is the most important issue in the ap-
plication of MM estimation. The performance of an MM
algorithm for a given problem depends largely on the set of
models used and the primary difficulty in the application of
the MM method is the design of the model set. Numerous
publications have appeared in which ad hoc designs were
presented. Unfortunately, very limited theoretical results
on this important issue are available. It was shown theoret-
ically in [18] that the use of too many models is as bad as
the use of too few models. A circular criterion for model-
set choice was presented in [18]. When the mode space is a
continuous region, a necessary and sufficient condition was
presented in [19] for a convex combination of estimators
to be superior to each individual estimators, based on re-
spective model sets. In order to apply the MM method to
problems with uncertain parameters, two important ques-
tions are: (a) which quantity is best selected as the esti-
matee (i.e., the quantity to be estimated) and (b) how to
quantize the parameter space optimally. [13] provides the-
oretical results on the optimal selection of the estimatee.
A procedure to determine the choice of the quantization
points was presented in [27] given the number of quanti-
zation points. A necessary condition for the effective per-
formance of MM estimation was presented in [9] for a jump
linear time-invariant system in terms of its dc gain.

This paper presents theoretical results on model-set de-
sign, choice, and comparison. Modeling of models as well
as true mode as random variables is proposed. Several gen-
eral methods for design of model sets, along with the initial
model probabilities, are presented. They include distribu-
tion approximation, minimizing mismatch between mode
and models, and moment matching. As a theoretical basis,
criteria and performance measures for model-set choice,
comparison, and design are proposed, including those for
base-state estimation, mode identification/estimation, and
hybrid estimation, as well as by hypothesis testing. A num-
ber of solutions to model-set choice problems are presented
based on sequential hypothesis testing.

An important question in the model-set design is: How
effective a model is when it is used in a model set? Albeit
important, we are not aware of any (theoretical) attempt at
answering this question. Another contribution of this paper
is the introduction of the concept of the relative efficacy of
a model in a set and the development of several methods of
computing it.

Examples are given that demonstrate how the above the-

oretical results can be used for model-set design and choice.
These results provide insights that are helpful for model-
set design, choice, and comparison, such as a better under-
standing of the function of each model in a set and how to
select the parameter values of a model.

Since this paper is quite long, we provide the following
table of contents
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2 The Problems of Model-Set Design,
Choice, Comparison, and Adapta-
tion

Model-set comparison and choice deal with the follow-
ing problem: given a family of candidate model sets, com-
pare these sets and determine which set is the best. Model-
set choiceis more decision oriented in the sense that it sim-
ply determines which set is the best without emphasizing
how much better it is than the other sets. Model-set com-
parison pays more attention on how much better one model
set is than another.

Model-set design differs from the comparison and
choice in that it does not necessarily have a given family
of candidate model sets. It determines the model set to
be used for a given problem. Typical issues in model-set



design include: How many models should be used in the
set and how to determine this number? Given the number
of models, how to design each model in the set? What is
the structure of each model set and each model? What pa-
rameter values to use given the structures of models and
model sets? Clearly, model-set comparison and choice can
be viewed as integral parts of the model-set design.

There are two types of model-set design: offline and
online. Offline design is for the total model set or the ini-
tial model set in a variable-structure approach, as well as
for the fixed-structure approach. In a fixed-structure algo-
rithm, the model set used cannot vary and is determined
a priori by model-set design. In a variable-structure al-
gorithm, the model set in effect at any time is determined
by an adaptation process, known as model-set adaptation,
which may be viewed as an online (real-time) design pro-
cess and will depend on the total model set determined a
priori if such a set exists. A natural and promising VSMM
approach to estimation is the recursive adaptive model-set
(RAMS) approach [15, 14]. It consists of two functional
components: model-set adaptation and model-set sequence
conditioned estimation. Model-set adaptation is the more
difficult component. It decides what model set to use at
each time. It can usually be decomposed into two tasks:
propose proper candidate model sets and select the best set
from these candidates. The whole problem thus amounts
to model-set design in real time while the second task is
model-set choice. There could have many ways of propos-
ing candidates, which is the primary task of a particular
VSMM algorithm. This paper focuses on offline model-set
design, along with model-set choice and comparison, while
[15, 14] deals with model-set adaptation, in particular, on-
line mode-set choice.

A fundamental assumption of the MM method is that
the possible true mode at any time is matched exactly by
one of the models used at that time. It is usually the case in
realty, however, that none of the models in the set in effect
matches exactly the true mode at the time. Many questions
thus arises, such as

� “Which model should be deemed the best if the true
mode does not match any of the models?”

� “Which set is best if the true mode falls in the com-
mon part of the coverage of several model sets?”

Such questions are important for model-set design but
are not easy to answer in a general setting. The results of
this paper can be used to answer such questions theoreti-
cally.

3 Probabilistic Modeling of Models
and Modes

In this paper, a mode refers to the physical behavior
pattern or structure of a system/process (or its precise math-

ematical model), and a model refers to the (possibly sim-
plified) mathematical representation or description of the
system or process on which an estimator is based (see [14]
for a more detailed explanation). Such a distinction is nec-
essary where mismatch between the model and mode is of
concern.

Denote by � the mode space, that is, the set of possible
modes under consideration. In general, mode space � may
be either a discrete (finite or countable) set or a continuous
region. In the latter case it is assumed that a system mode
may only jump from a point in � to another one, rather than
vary continuously.

A contribution of this paper is the recognition of the
need for and introduction of probabilistic modeling of mod-
els as well as the true mode.

The need to have a proper description of the true mode
is evident: Without such a description, model-set design
and performance evaluation of MM algorithms are essen-
tially groundless — we can always find a scenario under
which any given realizable “optimal” model set is worse
than some other model set. Deterministic descriptions of
the true mode in the form of “typical” or “representative”
scenarios are prevailing in the literature of MM estimation,
particularly for performance evaluation. Such determinis-
tic descriptions have certain drawbacks. For example, the
choice of particular scenarios is fairly arbitrary, and thus
the corresponding performance evaluation results are less
objective or convincing since the performance of MM algo-
rithms is highly dependent on test scenarios. (The scenario
dependenceof the performance of a hybrid estimation al-
gorithm is elaborated in [17].) It is impossible to develop
general, systematic methods for model-set design on the ba-
sis of such “arbitrary” descriptions of the true mode.

We propose to model the true mode as a random vari-
able � � � � �, where � is the mode space and � is the
sample space. The random variable � may be continuous,
discrete, singular, or hybrid. Let ����� and ����� be its cu-
mulative distribution function (cdf) and probability density
function (pdf) if exists, respectively. In practice, they can
be obtained by past data using statistical techniques or sim-
ply from experience. For example, a transposed (i.e., sym-
metrical) three-phase overhead transmission line in a power
system has three simple modes (i.e., normal, single-phase to
ground fault, and phase-to-phase fault) and several compos-
ite modes (e.g., two-phase to ground fault and three-phase
to ground fault). Data of the past operation records (e.g.,
fault rate and percentage of fault type) provide the required
probability distribution of the mode. For a particular appli-
cation of MM estimation, if ����� is not available at this
stage, the benefit of having such a cdf — as presented in
this and other papers — suggests that it may be worthwhile
to obtain such a cdf. This is a manifestation of guidance of
theory to practice. Without such guidance, most practical
probabilistic models (e.g., Gaussian models, Poisson mod-



els) would not have been developed and probability theory
would have very limited practical value.

Similarly, we also propose that the problem of design-
ing a model set � (and the corresponding initial model
probabilities) be formulated as that of designing a random
model � with range � ; that is, design a random vari-
able � � � � � , where � is the sample space. As
such, the following needs to be determined: (a) cardinal-
ity �� � (i.e., number of models); (b) all elements � � of
� � ������� � � � ������ (i.e., model locations/values);
(c) prior (or initial) model probabilities ��� � ��. Note
that cdf ����� of �, or equivalently, probability mass
function (pmf) 	���� � ��� � �� summarizes all infor-
mation needed. While this concept of random model may
appear alien to a practitioner, we need only to recall that
a random variable is (corresponds to) in fact nothing but
a properly defined set of deterministic numbers. It is ex-
actly in this way that a set of deterministic models used in
the MM method, along with the above constraints (a)–(c),
defines a random model.

More generally, the second and third generations of
MM algorithms require design of (Markovian) laws govern-
ing model transitions based on transitions of the true mode.
Even more generally, the true mode is better modeled as a
random process ��
� � ���� � � ��� � �; that is, ��
� is a
family of random variables, indexed by 
 � � and defined
on a common probability space ���� � � �. Similarly, the
problem of model-set design is better formulated as the de-
termination of a random process ��
� � ���� � � � � � �
�, where � is the total model set. These more general
formulations are useful for model-set adaptation and design
of model transitions. For offline model-set design (the topic
of this paper), however, it usually suffices to consider � and
� as random variables, which are completely described by
their cumulative distribution functions.

For simplicity, we assume that the true mode is continu-
ous in this paper. The same approach works for other cases,
although modification is sometimes needed. We always as-
sume that the model is discrete (in fact, finite).

For many applications, the true mode � has a real phys-
ical meaning directly and the above probabilistic modeling
is clearly reasonable. For many other applications, how-
ever, � is an index of underlying structures (or behavior
patterns) and it is difficult, if not impossible, to define a
proper distance metric directly for � convincingly with a
clear interpretation. In such cases, cdf of � may possibly
be defined over an abstract space where the elements of �
are arranged such that the neighboring elements correspond
to the neighboring structures in the physical world. Then a
question is how to define the neighbor concept for struc-
tures in the physical world? This question can be answered
by using, e.g., Kullback-Leibler distance between the distri-
bution or likelihood functions of any two structures � � and
�� .

4 Formulation of Model-Set Design
Following the previous section, the true mode (at any

time) can be reasonably modeled as a continuous random
variable in many cases, while it is better modeled as a dis-
crete (or hybrid) random variable in many other cases. In
any case, its sample space � is usually much larger than the
model set � affordable in practice.

From the probabilistic modeling of the true mode and
models, it is clear that the model-set design is essentially a
problem of finding a discrete random variable � to approx-
imate a given random variable �, which can be continuous,
discrete, singular, or hybrid, depending on the application. 1

Unfortunately, to our knowledge, there is no generally ac-
ceptable solution to this problem in the literature.

We propose three classes of systematic solutions in Sec-
tions 5, 6, and 7 below.

5 Minimum-Mismatch Design
The first solution is based on the idea of finding the cdf

����� of a discrete random variable (model) � to approxi-
mate the cdf ����� of any given random variable (mode) �.
We describe this solution in the scalar case (i.e., for scalar
� and �) first and extend it to the vector case later.

5.1 Scalar Case
Assume that the cdf ����� of true mode � is known.

Given a tolerance �, we want to construct the cdf ����� of a
discrete random variable (i.e., model set) such that �������
������ 	 � for all �.

It can be shown that for any given cdf ����� we can
find the cdf ����� of some discrete random variable that is
arbitrarily close to ����� in terms of the following distance
metric

���� ��� � ���
���

������ � ������ (1)

where � � ��
�
	. In other words, the problem un-
der consideration always has a solution. Further, a general
procedure of finding such a cdf ����� is presented in Ap-
pendix A.1. What we present below amounts to applying
the results therein to model-set design.

What is the minimum number of models needed? The
following lemma answers this question.

Lemma 5.1. Given a tolerance � in the above distance
metric, the minimum number of models needed is given by

�� � � �
���� � smallest integer not smaller than 
���

A proper tolerance � is not always easy to come by. In
some cases, the number of models �� � is predetermined
directly from, say, resource for processing or computation.

1This probabilistic view also makes it quite intuitive the fundamental
finding of [18] that the optimal model set � for the MM approach is
� � � — the performance of MM estimators deteriorates if either extra
models are used (� � �) or some models are missing (� � �) — and
the deterioration worsens as� and � become more mismatched.



�

�
............................................................

...................

..............................

...................................

.......................................

.............................................

.........

.................

.........................

.................................

...........................................

.........................................
��

�����

�������� ��

�

���

�

���

�

���

�

���

�

���

�

�

�

�����

Fig. 1: Approximating a cdf by a stair-case type cdf with given
tolerance.

Theorem 5.1 (Minimum-set design). Given �� �, the
model set � �, along with the pmf 	�, (i.e., the random
model) that minimizes the distance metric defined by (1),
that is, for � � � ,

���� 	�� � �� ���
����� with given �� �

���
���

������ � ������

is given by

�� � ��
���

�
����� �

�� 
��

�� �
�

(2)

� � 
� � � � � �� �
�� � ������� � � � ������

along with the following evenly distributed pmf (i.e., initial
model probabilities):

	��������� � ��� � ���� � ���
�




�� � � � � 
� � � � � �� � (3)

Proof. It follows from Appendix A.1 and is in fact self-
evident.

This design is depicted in Fig. 1. Note that �� is chosen
to satisfy (2) only from the elements of �, and thus �  �.

This approach to model-set design is intuitively appeal-
ing. It partitions the mode space into equally probable re-
gions and places a model at the “center” (in fact, median) of
each region. As such, all models are equally loaded in that
they are equally likely to take effect and cover an region of
equal probability. It uses the minimum number of models.
It is also perfectly consistent with the common practice of
assigning equal initial probability to every model.

Nevertheless, this approach has several weaknesses.
First, it is applicable only to cases where cdf of � is avail-
able. Second, some or all models �� may happen to be
located in an area of a low probability density. In this case,

the models and the mode in effect are likely to have a large
mismatch, which implies inferior performance of the cor-
responding MM algorithm. Third, a few models may have
to cover a large region of true mode with a low probability
density and thus lead to poor results if the true model turns
out to be in this region. Finally, to have a small tolerance in
cdf error, the separation between consecutive models may
be inevitably small in the areas where � has a high probabil-
ity density, which is often to be avoided in MM estimation
mainly to save computation. In such a case, we may ei-
ther uphold the tolerance (and thus the separation) or relax
it to increase the separation and thus reduce model-set size.
The latter may be justified by the fact that a larger error in
������ � ������ does not necessarily result in poorer per-
formance of the MM algorithm.

In view of the above and that it is intuitively appealing
to have a model at each peak of the pdf �����, we recom-
mend the following. First, place a model at each peak; then
use the above approach to obtain the other models; if de-
sirable, adjust the locations of these other models so that
models are distributed slightly more uniformly over �.

5.2 Vector Case
When � is not scalar, in general, (2) does not yield

a unique solution � � ������� � � � ������ because

� ��� � ���	�
��� has infinitely many solutions. In this case,

the mode space in general can be partitioned into equally
probable regions ��, represented by models ��. Several
ways of determining the location �� and the regions �� are
currently under investigation. For example, they may be
determined such that �� satisfies (2) and has the smallest
expected distance to points in ��; that is, �� is the cen-
ter of probability mass in �� (see Sec. 6). Applications of
set-partitioning results (see, e.g., [2]) are currently being
explored.

We now describe a design procedure for the 2D case,
which uses a “minimal” number of models given any toler-
ance on mismatch between the cdfs of the mode and (ran-
dom) model. It can be easily extended to higher dimen-
sions.

Consider the cdf of a 2D mode �: ����� �� � � ��� ��.
As explained before, design of a model set along with the
initial model probabilities (i.e., model weights) amounts to
constructing a random variable � (i.e., a random model)
with a certain cdf ����� ��. Our goal is to determine loca-
tions of a “minimal” number of models along with proba-
bility weights such that the resultant cdf ����� �� satisfies
the requirement �����
 ������ ��� ����� ��� 	 �.

Let ���� �� � ����� �� � ����� �� be the differ-
ence in cdf. Assume for simplicity that � ��� �� is con-
tinuous. In Fig. 2, the origin and the upper right corner
stand for ��
��
� and �
�
�, respectively, at which
� ��
��
� � � and � �
�
� � 
. Note that � ��� �� is
monotonically increasing.



The procedure consists of three steps, as illustrated in
Fig. 2.
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Fig. 2: Illustration of 2D model-set design by minimizing cdf mis-
match.

First, determine the equal-height lines ����, �����, � � �,
����������, ��, where � is an integer such that � � 
 �
��� � 
�� 	 ��. This means that � ���� ��� � 
 � �� for
any point ���� ��� on the line �����.

Second, determine the points ��� ��� � � � � �� . The
location of �� is ���� ���. It minimizes �� ����
� �
� �
� ���� among all points on ����. The point �� deter-
mines two reference lines for the next point ��. Its loca-
tion is ���� ���, which minimizes �� ���� ��� � � ���� ����
among all points on �����. �� is determined likewise.

Third, determine the model locations ������ � � � ���.
We place models on the horizontal and vertical lines de-
termined by points ��� ��� � � � � �� . For the line ��-�� it
uses the next line ��-�� as a reference. Note that � ���� ��
is monotonically increasing on the line ��-��. If a point
���� �

� is the lowest point such that ����� �
� � � , then

choose ���� �
� as a model location. This process is done

from left to right (i.e., for �� � � � � � ��) and from bottom up
(i.e., for ��� ��� � � �).

The weight of each model is determined at the same
time the model location is determined. The weight is “how
high” a jump is needed at each model location. The upper
bound on the height of a jump of a model at �� �� �� is
determined by the difference ���� �� along the line � ���-
���� at or above �.

The model locations and weights on the horizontal line
��-�� are determined in exactly the same way.

Fig. 5.2 shows an example of the true pdf and the model
locations designed, depicted by the sharp peaks. In the de-
sign, the tolerance � � ��
 was chosen. The resultant model
locations concentrate around the major peaks of the true
density. Fig. 4 shows the error ���� ��. It is bounded by
� � ��
, as required.

6 Minimum-Distance Design
In the previous section, we design a model � to approx-

imate the true mode � by constructing a cdf ����� that is

Fig. 3: The true pdf and designed model locations.

Fig. 4: ���� �� — the difference in cdf.

close to the cdf ����� — the design is actually done in the
space of the distribution functions. Alternatively, the design
can also be done in the vector space of random variables;
that is, find an � that is close to � in their vector space di-
rectly. In order to do this, a metric of the closeness between
model and mode is needed.

Closeness metric between model and mode. The dis-
tance metric in the vector space of random variables is
most often defined as the square root of the mean-square
value ������ � ��������	��	�, where ����� � �� �
����� ���. Of course, other metrics can also be defined,
such as ������ � ��������	��	�, where ����� �
��� ���������	�	�. When � and � are vectors, �����
is actually a scalar metric of the families of vectors, since
a random vector actually corresponds to a family of vectors
in a linear space. We will consider the more general metric
with an arbitrary 	 but we are more interested in the case
	 � 
� �.



For � � � and � � � , we have

�������	 � �����������		

�
�
����

��� � ���
�
�

����������� � ����

� �����������		
�

�
�

�
����

��������� � ���������� (4)

It is thus seen that the closeness of � and � depends on
����� � ��� � �����, the model probability conditioned
on the true mode �. A study of the conditional probability
��� � ����� will be reported later.

In this paper, for simplicity, we assume

��� � ����� � 
������ �

�

 � � ��
� � �� ��

(5)

This is equivalent to assuming that

��� � ���� � � � � �� � ���� � ��� � ���� � � � � �� � ����
is a partition of the mode space �; that is, each model covers
a subset (region) of the mode space exclusively, which is
often so perceived in practice. With this assumption, (4)
becomes

�������	 �
�
�

�
��

����������� (6)

We now present several general results under this as-
sumption.

Theorem 6.1(Optimality conditions of model set). As-
sume that � � ���� � � � � ��� is a partition of the mode
space �, where �� is covered by model �� exclusively in
the sense �� � ��� � �� � ���. Then, the following con-
ditions hold for the optimality in the sense of minimizing
distance metric ������ defined above.

A. Given any partition � � ���� � � � � ��� of mode space
�, a model set � � ���� � � � ���� is optimal if
each model �� is a (generalized) centroid of the cor-
responding partition member ��:

�� � ���
�
� �����

�
��������� � ��	 (7)

B. Given any model set � , a partition is optimal if and
only if points in any partition member � � are closer
to �� than to any other �� � � almost surely:

�� � �� � ������ � �������

��� �� �������� � ��
that is, a point � must be assigned to its nearest neigh-
bor �� among all � � � ; further, the set of equal-
distance points may be assigned to either �� or �� :

��� � �� � ������ � ������ 	 �������� � ��

Remarks. (a) This theorem basically states that under
the stated assumption, if exists, the optimal model set is
within the class in which models are located at the (general-
ized) centroids of members of a nearest-neighbor partition
of the mode space. (b) The generalized centroid reduces
to the conditional mean (i.e., the centroid (mean) of � �)
��� � ����� � ��	 if ����� � ����������� or the con-
ditional median (i.e., the median of � �) if ����� � �����.
(c) Both conditions are quite intuitive. (d) This theorem
does not address the issue whether an optimal model set
that minimizes the above metric is existent or unique, or
whether a solution that meets conditions A and B is existent
or unique. (e) The optimality conditions of this theorem ac-
tually hold for closeness metrics more general than defined
above.

Most importantly, this theorem provides a theoretical
basis for iteration procedures to find an optimal model set
under the stated assumption. For example, we may start
with an initial partition of mode space; find a candidate of
the model set as the (generalized) centroid of each parti-
tion member; use the nearest-neighbor rule to obtain the
corresponding (updated) partition; and repeat this process
until convergence. Alternatively, we may start with an ini-
tial model set; use the nearest-neighbor rule to obtain the
corresponding partition; obtain an update of the model set
as the (generalized) centroid of each partition member; and
repeat this process until convergence.

The above centroid model set has several nice and intu-
itive properties, as presented in the next theorem.

Theorem 6.2(Properties of optimal model set). Any
model set that covers each �� by its centroid �� � ����� �
��	 exclusively (i.e., �� � ��� � �� � ���) has the fol-
lowing properties:

(a) The (random) model and mode have the same mean:
���	 � ���	.

(b) The modeling error is orthogonal to model: ����� �
���	 � �.

(c) �����	 � �����	 � �����	 and thus �����	 �
�����	 � �����	, meaning that cross power of the
mode and model is equal to the power of the model.

(d) ���� � ���� � ���	 � �����	 � �����	 and thus
���� ������ ���	 � �����	 � �����	, meaning
that minimum MSE is the power of the mode minus
the power of the (optimal) model.

(e) ���������	 � �������������	 and thus �������
��	 � �������������	 .



Remarks. (a) It follows from Theorem 6.1 that given
a partition of the mode space, a model set that covers � �
by �� � ����� � ��	 exclusively is optimal in the sense of
minimizing MSE matrix �������������	 and thus mini-
mizing MSE scalar �������������	. (b) Property (b) is
actually orthogonality principle for optimal linear estima-
tion. The model � as an estimator of mode � appears to be
not necessarily linear, but it turns out to be linear under the
stated assumption [see proof of (b)].

7 Moment-Matching Design
In some practical situations, some moments, but not the

complete distribution, of the true mode � are known. In
some other situations, we do not have a good knowledge of
a proper tolerance ������ � ������ 	 �, but only want to
match the moments of � to the known moments of �.

Given up to the �th moments of �, we want to find a
discrete random variable � (i.e., the number and locations
of points �� with the associate probability mass 	�) such
that

����	 � ����	� � � 
� � � � � �

Several questions arise immediately. For example, what
is the minimum number of models such that up to the �th
moments of � and � are matched? How to design the cor-
responding pmf (locations �� and probability masses 	�) of
�? Given the number of models �� �, how to design pmf of
� that matches as many as possible the lowest moments of
�? For simplicity, we will consider only matching mean and
covariance in this section since it is the common practice.

Let the pmf of � be

	� � �� � ���� � �� � ��

�� � � � �
� � � � � �� ��� � � ���� � � � ������

Then, the mean and covariance of � are

�� �
�
���

��	�� �� �
�
���

��� � ������ � ����	�

7.1 Minimum Model-Set Design
The following theorem answers the first question above

for � � �.
Theorem 7.1(Minimum models). The minimum num-

ber of models needed for � to match the mean �� and co-
variance �� of the true mode � is rank of �� plus one: min-
imum number of models � rank���� � 
.

Now consider the problem of design ���
� � 	�� � � ��

such that �
���

	� � 
�
�
���

��
� 	� � ����

���
���
� � ������

� � ����	� � �� (8)

In fact, we only need to design ���� 	�� � � �� such that�
���

	� � 
�
�
���

��	� � ��
�
���

���
�
�	� � ���� (9)

where � � rank����. All designs presented below are for
this standard problem. Given a problem with known mean
�� and covariance ��, the design ���� 	�� � � �� can be
converted to design ���

� � 	�� � � �� by ��
� � ����

���	
����,

which satisfies (8), where �� � �diag����������.
Theorem 7.2 (Minimal-set design). The design

���� 	�������� with

� 	 	� � 
� 	�� � 	�� 	�� � 	�� � �
� 	����

��
� � �� ��

� � �
� 	��
��	�� ��

� � ��
� 	��
��	�

...

	�� � 	�� 	�� � 	���� ��� � � 
� � � � �  �

	���� � �
� 	����

��� � �� ��� �
�
������ ��� �
� 	��

��	�
��

�

� � 
� � � � �  � ����� �
�
����
� 	��

��	�
��

satisfies (9), where �� � ��� � 	� � 	�� � � � �� 
� � � � � ��
,
and the superscript denotes dimension of a vector.

Fig. 5 illustrates this design with a minimal model set
for � � 
, �, and � � �, respectively. For � � �, ��

is at the center of the cube, while all other models are on
the surface of the cube; �	 is at the center of the bottom
square. Note that the coordinates of every model are either
� or��
� 	��

��	�. The mean and covariance are matched
by the probability mass:

��
��� 	

�
� � 	����.

Corollary . In this design, � 	 	� � 
 is a free parame-
ter for us to choose. If we choose 	� � � (i.e., delete ��),
we actually have � � 
 models, which by Theorem 7.1 is
the smallest possible number of models to match mean and
covariance.

Remarks. (a) Although the model �� is not needed to
match mean and covariance, in practice, such a model lo-
cated at the expected true mode is usually very beneficial
for MM estimation. (b) The value of 	� affects higher order
moments — a greater 	� implies that the distribution of �
is more concentrated around the mean. (c) This minimal-
set design depends very much on not only the choice of
the coordinate system but also the artificial labeling of each
coordinate (e.g., the locations and the probability masses
of the models would vary if �� and �� of Fig. 5(c) were
interchanged). The latter dependence is entirely artificial
and is better eliminated, while the former dependence is
inevitable because the coordinate directions (after transfor-
mation from �� to �) are actually eigenvector directions.

Minimal-set designs are not unique. Fig. 6 illustrates
another simple minimal-set design in the 3D case. Its
extension to a higher dimension is straightforward. In
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(c) 3D case

Fig. 5: Illustration of a minimal-set design.

this design, a model with probability mass 	 is placed on
each positive semi-axis of equal distance ! from the origin
(i.e., �� � !"�, ��, where "� � ���������� 
���������	�

is the �th coordinate vector); the last model is ���� �
#��
��
� � � � ��
	� with probability mass �. It is clear that
the mean and covariance are �� � � and �� � ���� if
� � 	 and ! � # � 
�

�
	. As for the design of Fig. 5, if

desirable, an additional model may be placed at the origin
with probability 	� without affecting mean and covariance.
Then 	 � �
� 	������ 
�. In Sec. 7.3, � �� 	 and ! �� #
are chosen to obtain a minimal set with an equal distance
between models.

The minimal-set design of Fig. 5 has attractive fea-
tures that the model locations and probability mass are de-
termined recursively as dimension increases and that all
self skewnesses are equal to zero in the design of Fig. 5:
����� �� ��� �	�� � ��� 	 �.

7.2 Symmetric Model-Set Design
All the above minimal-set designs clearly have an

asymmetrical distribution spatially and possibly probabilis-
tically. For many applications in practice, it is appealing
that the models are symmetrically distributed and invariant
to the artificial labeling of coordinates. For this reason, we
present the following theorem.
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Fig. 6: Illustration of another minimal-set design.

Theorem 7.3(Minimal symmetric-set design). The de-
sign ���� 	������� with the following symmetric distribution

� 	 	� � 
� 	� � �
� 	�������� � � 
� � � � � ��

�� � �� �� � ����� � "�

�
�


� 	�
� � � 
� � � � � �

satisfies (9), where "� � ���������� 
���������	� is the �th
coordinate vector.

As for the design of Theorem 7.1, � 	 	� � 
 is a
free parameter for us to choose whose value affects higher-
order moments. If we choose 	� � � (i.e., delete ��), we
actually have �� models. In practice, however, the use of
model �� is usually very beneficial for MM estimation.

Fig. 7(a) illustrates this symmetric-set design for � � �,
where �� is at the center of the cube, while all other models
are at the center of a boundary square of the cube. Note
that if �� is not used, all models are located symmetrically
on an axis (representing an eigenvector direction) with an
equal distance from the origin; thus, the mean is matched
provided an equal probability mass is assigned to all models
and the covariance is matched by such a special assignment
that all models on each axis have a total contribution of 
 to
the covariance.

In this design, there are only two models along each
axis direction, excluding ��. In many applications, more
models are needed for an MM estimator to perform well.
Therefore, we present the following extension of Theorem
7.3.

Theorem 7.4 (Symmetric-set design). The design
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Fig. 7: Illustration of a symmetric-set design.

���� 	������� with the following symmetric distribution

� 	 	� � 
�

	��������� � 	��������� � �
� 	�����!�#���

� � 
� � � � � ��  � 
� � � � � $

�� � �� ���������� � ����������� � "�

�
!��


� 	�
�

� � 
� � � � � ��  � 
� � � � � $

satisfies (9), where ! � !�� � � � � � !� � � and
#� � � satisfy

�
���




#�
� 
�

�
���




!�#�
� 


A simple and meaningful choice for !� and #� is

!� �  !�� #� � $�  � 
� � � � � $

which yields !� � ���, !� � ��� for $ � �, and !� �


�
�, !� � ���
�, !� � ���
� for $ � �. Fig. 7(b)
illustrates this symmetric-set design for � � � and $ � �.

A possible drawback of this symmetric design is that
the models are distributed highly unevenly in space, albeit
symmetrically. We now present a design that is much more
evenly distributed. This can be accomplished by rotating
models ���������� and ���������� for  � � such that
they are more evenly distributed. We only consider � � �
and $ � � with !	 � !�, as shown in Fig. 8. It can be
extended to the general case.

Let

"�� � "�� "�� � �"�� � "������
�
�� "�� � �"�� � "�� ��

�
��

"	� � �"���� � "�� ��
�
�� "���� � �"��

for � � 
� � and  � 
� �� �� �. Note first that a key to the

Fig. 8: Illustration of a more evenly distributed model-set design.

design of Theorem 7.4 is
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��
���
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Similarly, we may use

cov��� �

� �
���




#�
"��� � � � �

�
���




#�
"��

��
In our simple case with � � � and $ � �, it becomes

cov��� �
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"��
#�

�
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�
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#�

�
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�
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�
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#	

�
We may choose

!� � 
��
�� !� � �!�� !	 � !� � �!�� #� � ��

 � 
� � � � � �

� 	 	� � 
� 		������� � 	��������� � �
� 	����
�!��

� � 
� ��  � 
� � � � � �

Note, however, that while this design has zero mean, its
covariance is no longer equal to the identity matrix.

7.3 Equal-Distance Model-Set Design
The above symmetric-set designs do not have an even

model distribution in space. In practice, it is sometimes de-
sirable to have a set of models that are evenly distributed.



Fig. 9: Illustration of a diamond model-set design.

For instance, this may be the case when each model is con-
sidered to be able to cover a region of the same size.

Diamond set. For this purpose, consider the diamond-
set design illustrated in Fig. 9 for the 2D case. Note that
the set of models on the whole diamond consists of hexag-
onal layers of models: 
 at the center (�th layer), � on the
first layer (i.e., those on the unit circle), 
� on the second
layer (� of them are on the circle of radius �), 
� on the
third layer (� of them are on the circle of radius �), and so
on. Alternatively, the model set may also be viewed as con-
sisting of even finer (circle) layers of models: Models on
each layer have equal distance from the origin (i.e., are on a
circle of radius �� 
�

�
�� ��

�
�� �� �

�
��
�

�� �, and so on,

respectively). In general (the square of) the radii of these
circles are given by

%��� �

�
��
�
����� � � ����� �� � odd� 
 	  	 ���

�

��
�
����� � � � 
�� � even� 
 	  	 �

� � 


where the double subscript � stands for the  th circle that
passes through the models on the �th hexagonal layer, for
example:

%��� � �

�
����� � �
���� � 


%��� � ��
�
����� � �� � ��

%��� � ��
�
����� � 
� � ��

%��� � ��
�
����� � �
���� � ��

%��� � ��
�
����� � ������ � ��

%�	� � ��
�
����� � �� � 
��

%�	� � ��
�
����� � 
� � 
��

%�	� � ��
�
����� � �� � ��

Clearly, this diamond set is symmetric and has equal
distance between any two adjacent models. Furthermore,
the following theorem states that this diamond-set design
can also be used to match arbitrarily given mean and co-
variance of the mode by simply assigning each model on
the same (hexagonal or circle) layer equal probability.

Theorem 7.5 (Diamond-set design). Consider a
diamond-set design as illustrated in Fig. 9. Assign each

model on the �th (hexagonal or circle) layer an equal prob-
ability 	� such that all probability masses sum up to unity.
Let the total contribution to the covariance from the models
on the �th layer be ��. Then this diamond-set design satis-
fies (9) if

�
��� �� � � , where $ is the number of layers.

Remark. In particular, 	� and �� can be chosen so that
�� � �� � ��$ and every model has the same probability
or the total probability mass of models on different layers
are equal.

The simplest possible diamond-set design (with one at
the center and six on the first layer) was implemented in
[19] for an example of maneuvering target tracking using
MM algorithms.

There are many equal-distance sets. In 3D for example,
the well-known regular tetrahedron, cube, regular octahe-
dron, regular dodecahedron, and regular icosahedron each
leads to an equal-distance set design by placing a model at
every vertex. However, the above diamond-set design is, on
top of its regularity, attractive for several other nice proper-
ties, such as the ease for design (as stated in Theorem 7.5)
and its economy in the sense of using a small number of
models to cover a large region.

In reality, each model is effective only over a finite re-
gion. Call this region the effective coverage region of the
model. Two natural questions are: Given the mode space
� and the effective coverage region �� of each model,
what is the minimum number of models needed and where
should the models be placed? Clearly, a lower bound on
the number of models needed is �� � � &��&�, where &�
and &� are the volumes of � and ��, respectively. As-
sume that � and �� are (�-dimensional) balls of radii %�
and %�, respectively. Consider a diamond set in which for
every diamond cell, each cell vertex to the cell center is %�.
Then every point in the inscribed ball ' of the union of all
models’ �� is covered by at least one ��. It appears that
this diamond set covers ' using model coverage regions
with the smallest number of models in general.

More generally, the diamond set has a small Hausdorff
distance to the mode space relative to other (equal-distance)
sets of the same number of models (vertices). For two (fi-
nite) sets � and ' with a distance metric ��� ��, � � �
and � � ', the Hausdorff distance between � and '
is defined as ���'� � ����(���'�� (�'����, where
(���'� � ������ ���
�� ��� ��. Note that the use of
Hausdorff distance here — which corresponds to the worst
case in distance between model and mode — is more rea-
sonable than the more popular distance between two sets:
���'� � �������
�� ��� �� (which corresponds to the
best case and is often zero for model-set design).

Equal-distance minimal-set design. The diamond set
has many nice features, but it is not a minimal set. A min-
imal set with equal distance between models can be ob-
tained by the minimal-set design of Fig. 6 with a special
choice of �	� �� !� #� such that all models are separated by



an equal distance. Clearly, ��� � � � ��� have an equal dis-
tance of

�
�!. So, we need only to place ���� in a place

such that its distance to every model in ���� � � � ���� is�
�!. Specifically, choose the set �	� �� !� #� of nonnega-

tive numbers to satisfy

�	� � � 	� � 
 (unity probability)

!	� #� � � (zero mean)

!�	� #�� � 
 (identity covariance)

�!� #�� � #���� 
� � �!� (equal distance)

(the last equation above follows from setting �� � �
������ � ��� ���������  	 �), which yields

� �

� 	��
�� 


� 	 �
� � 	� � 


�
�

! �

�

	�
 � 	���
� # �

	

�
!

Then, the design of Fig. 6 has a minimal set that satisfies
(9) and has equal distance between models. As such, this
design places a model at each vertex of a convex �� � 
�-
hedron with equal edge length

�
�! (e.g., an equilateral tri-

angle in 2D and a regular tetrahedron in 3D). Note, how-
ever, that ���� is closer to the origin than �� (� 	 �)
(i.e., the polyhedron is not centered at the origin) because
����� � ��� � �#� � !� � ��� � ���.

8 Model Efficacy
Each model has a certain relative effective coverage re-

gion of the true mode within the model set in use. In this
section, we introduce the concept of relative efficacy of
the coverage of a model, along with its quantitative mea-
sures. Specifically, we introduce a window function � ����
to quantify the efficacy of model �� in covering the true
mode � relative to other models in the set. The larger the
����� is, the more effective (i.e., perform better) the model
�� is (relative to other models in the set) given �. Knowl-
edge about such relative efficacy is quite useful in model-set
design.

The prior (unconditional) model probabilities ��� �
���� � �� are used as the initial model probabilities in
an MM algorithm. We would like to determine these prob-
ability from a probabilistic description (pdf or pmf) of the
true mode � given the model set � . This is essentially a
problem of how to define the pmf of a discrete random vari-
able with a given sample space so that it best approximate
a given random variable with a larger sample space. To our
knowledge, however, there is no generally acceptable solu-
tion to this problem, although the theoretical results of Secs.
5, 6, and 7 are indeed applicable. As a by-product, the prior
model probabilities ��� � ���� � �� can be obtained
from the relative efficacy.

8.1 Probability-Based Efficacy
Given a model set � � ������� � � � ������, the cor-

responding pmf can be determined using the above window
function �����:

��� � ���� � �� �
�
�

���������� (10)

where ����� are in general functions of ������ � � � �����
and satisfy


 �

����
���

��� � ���� � �� �
����
���

�
�

����������

which is guaranteed by the following requirements:

����� � ��

����
���

����� � 
� (11)

�� � �� � � 
� � � � � �� �
Additionally, it is desirable to have ������ �
������ �����, except possibly for the models on the
boundary. Fig. 10 depicts such a family of window
functions.
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Fig. 10: Relative efficacy ���	� of each model in set
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By Bayes’ rule, we have the following conditional pdf

����� � ��� �
����������

�
����������

� �� � �

This leads to, dropping conditioning on � � � ,

��� � ����� �



����
����� � ������ � ���

� ����� (12)

This result also follows from (10) and the fact

��� � ���� � �� �
�
�

��� � ������ � �������



It is thus seen that the relative efficacy of the coverage by
model �� given the true mode � [i.e., the window function
�����] can be defined to be equal to the probability of model
�� (in the model set) given �. Also, it follows from (10) that
the initial probability ��� � ���� � �� is then in fact
the average (expected) efficacy of the coverage by model
�� relative to other models in the set.

This equation also makes it explicit that the initial
model probabilities depend on the distribution of the true
mode.

8.2 Test-Based Efficacy
Alternatively, relative efficacy of model coverage can be

defined based on hypothesis testing as follows. Consider
testing (optimally)

)� � � � �� vs. � � � vs. )��� � � � ���� (13)

using all available data *���, which is a function of the true
mode �. For a given �, the probability that ) � is not rejected
by an (optimal) test is taken to be the relative efficacy of � �.
More precisely,

����� � ��)� not rejected����+

where + is the number of hypotheses that are not rejected
at the end of the test, and

��)� not rejected��� �
� ����)� not rejected�*������	

�

�
��)� not rejected�*������*���*

where ��)� not rejected�*���� is the probability that )�
is not rejected given data *���. In practice, the probabil-
ity ��)� not rejected��� is approximated by relative fre-
quency. Even more precisely, we define

����� �

�



+�*�
��)� not rejected�*������*���* (14)

because the number + of hypotheses not rejected at the end
of the test actually depends on the observation *.

Note that although theoretically equivalent, we do not
define

����� � ��accept )����
mainly for implementation considerations. First, compared
with a test of a fixed sample size, a sequential test, such
as those proposed in [15], appears more appropriate for
several reasons, for example: (a) superiority in efficiency,
(b) symmetry in the roles the decision errors played 2, and
(c) ease at determining (approximate) decision thresholds.
However, a sequential test will not necessarily accept a

2E.g., for a binary test, type I and type II errors are symmetric in some
sequential tests and Bayes tests, but not in Neyman-Pearson type tests.
However, it is often too subjective in assigning cost associated with a de-
cision error in a Bayes test.

hypothesis in all cases (e.g., when two models are lo-
cated symmetrical about the true mode). Second, � ����
is quite small for most values of � � �. This means that
��reject )���� � ��accept )���� for most � � � and
thus the former definition is superior in terms of efficiency
and accuracy if a sequential test is used since ��)� not
rejected��� � 
� ��)� rejected��� �� ��accept )����.

The rationale for division of + in (14) is that we do not
rank the hypotheses that are not rejected at the end of the
test using finite samples and thus we may think they are
equally likely to be true. Alternatively, we may perform
a test among the hypotheses not rejected. The drawback is
that the results of such a test tends to be not reliable.

Note that the model efficacy so defined also has the
properties of (11).

8.3 Determination of Model Efficacy
We will use ��� ��� and ��� ��� to denote probability-

based and test-based model efficacies, respectively. Clearly,
the above definitions of model efficacy are valid for vector-
valued �. They are in fact also applicable to the cases where
� is not defined over a metric space. In these cases, the
model efficacies ����� for different � are simply a set of
unordered (isolated) probabilities.

The test-based model efficacy ��� ��� can be computed
as follows. For each given value of �, generate � sam-
ples of the corresponding data * by randomly generating
process and measurement noise; for each sample of data *,
run a sequential procedure (e.g., those of [15]) to test hy-
potheses (13); finally, ��� ��� is computed by (14) using, for
� � 
� � � � � �� �,

��� ��� �



�

��
���


����+� (15)

where +� is the number of hypotheses not rejected at the
end of the test in the  th run, and 
��� � � if )� is rejected
in the  th run and 
 otherwise. Note that � is fixed for all
times when generating *. The error probability (common to
all hypotheses) used in the test can be viewed as the error
probability (or 
� confidence) of the model efficacy.

We now consider the determination of the probability-
based model efficacy. Note first that

��� ��� � ��� � ������ � ��
� � ���� � ���*� ��� � ����	
� � ���� � ���*����� � ����	
�

�
��� � ���*����� � ����*���*

This provides a theoretical basis for the following gen-
eral method of obtaining the relative efficacy (i.e., win-
dow function) ����� via Monte-Carlo simulation: For ev-
ery fixed true mode �, generate a random sample of mea-
surement *�� � � � � *� to compute the model probabilities



��� � ���*� �� � ���  � 
� � � � � � using model set
� � ������� � � � ������ with the initial model probabil-
ities given by (10). Then, we have

��� ��� �



�

��
���

��� � ���*� �� � ��

�



�

��
���

��*� �� � ���

��*��
��� � ���� � ��(16)

where ��*� �� � ��� is the mode �� likelihood. Note,
however, that ����� so determined depends on the initial
model probabilities ��� � ���� � ��, whose computa-
tion by (10) presumes knowledge of � ����. In view of this,
to be more accurate, an iteration can be used: Once � ���� is
obtained as above, the initial model probabilities is updated
by the use of (10) via numerical integration; then � ���� is
updated again and the process is repeated. This process can
be started with some set of initial model probabilities, such
as the one given below using a rectangular window. For-
tunately, it is our experience that the model efficacy is not
sensitive to the initial model probabilities because the like-
lihoods dominate.

We emphasize that all * in the above determination of
��� ��� and ��� ��� are observations at a fixed time (i.e., not
time sequences) at which � is the true mode of the system
in effect. If time sequences of observations *  are used, the
procedure would lead to ��� ��

� and ��� ��
�, which are

not addressed in this paper even if � is only a sequence of
constant �.

For process (state or signal) estimation, the above re-
sults still hold for the case where � and � are not allowed
to vary because

������� � ����� � ���������� � ����
� ��� � ������ � ��
� �����

Note, however, that ���� � ,� �� ����
����������������. In

the case where � or � may vary, the (marginal) model
efficacy is actually a function of time $:

��������� � ��� � ������ � ��

� 


�

��
���

��� � ���*� �� � ��

where ��� � ���*� �� � �� are the model �� proba-
bilities at time $ obtained in an AMM estimator given the
 th measurement sequence *� ; � and � stand for the true
mode and model in effect at time $ and � and * denote
the true mode and measurement sequences through time
$. Note that ��������� depends on the past true mode
��� in that *� is generated by a fixed ��� but varying

�. This time-varying efficacy has the following backward
recursion:

�����������
� ����� � �� �������� � ����
�

�
�����

����� � �� �� � ���

������� � ������� � �������� � ��
�

�
�����

����� � �� �� � ��� �
������ � ����

�
�
�

������������������

where the last equation above follows from a time-varying
version of (10); �������� is the pdf of � conditioned
on ���, which governs the transition of the true mode;
and ����� � �� �� � ��� �

������ � ���� is
the (backward) transition probability of model � � to model
�� given true mode sequence ���. Given these transition
probabilities and pdf, the time-varying relative efficacy of
each model ��������� can be computed at least in prin-
ciple backward in time.

8.4 Simple Windows
One of the simplest classes of windows in the scalar

case consists of rectangular windows, assuming �� are ar-
ranged in an increasing order,

����� �

���
���� ��
� ��� ������		 � � 

���� �������� ���� �����
�	 � � �� �
���� �������

� � �������

� 	 otherwise
(17)

where 
����	 is the indicator function, defined by

������ �

�

 � � �
� � �� �

These rectangular windows amount to assuming the follow-
ing coverage regions �� of models ��:

�� � �� � �
 � � 	 ��� �������
���� � �� � ������� �������� 	 � �
�

�� � �� � ����� ������ � � 	 ��� ����������
� � �� � � � � �� � � 


With these rectangular windows, we clearly have

��� � ���� � �� (18)

�

�����
� �������	�

�� ����� � � 
��
�������������	�

����� � � �� �� ���������	�

���������	�
����� otherwise

(19)

In particular, if �� are determined by (2), these rectan-
gular windows give the discrete uniform pmf given by (3).



This provides a justification of the model-set design (2): Its
prior model probabilities is (discrete) uniformly distributed
such that the mode space is partitioned into equally proba-
ble regions, each represented by a model.

The above results clearly can be extended to multi-
dimensional cases straightforwardly.

The discrete uniform pmf (3) is widely used in prac-
tice. It is clear from the discussion so far in this paper that
this practice is justified only when the models �� are deter-
mined by (2), given a distribution of the true mode.

We may want to use some other simple window func-
tions in practice. Often, ����� could be chosen to have a
bell or trapezoidal shape centered at ��, except for the end
window functions (see results later for an empirical sup-
port). The use of such window functions increases the prob-
abilities of the models located at high probability density ar-
eas, as compared with the rectangular windows. Although
this windowing technique does resemble those or the de-
sign of digital FIR filters or spectral estimators, it should be
noted that a window is chosen here to quantify the efficacy
of a model. This differs vastly from the underlying criteria
there.

If the model set � � ������� � � � ������ is quite
dense (i.e., model separation is small), the model proba-
bilities can be computed approximately by

��� � ���� � �� � ��������� � �
�
�

������

that is, the model probabilities are proportional to the pdf
values. This follows from (19) as the model separation
approaches zero.

9 Criteria and Measures for Model-
Set Comparison, Choice, and De-
sign

In this section, it is assumed that the mode space is actu-
ally a region (not necessarily a subspace) in a metric space
in which the distance measure

�
���������	, denoted by ���,

is defined, where the expectation may be conditional; each
model is a point in this metric space; and a model set � is
a discrete set of models (modal points). Note that in gen-
eral � need not be a subset of � since a model may be a
simplified representation of a mode3.

Since model sets differ from the mode space, the su-
periority of one model set to another one should be prop-
erly defined. The appropriateness of a definition should be
judged by the ultimate goal of the MM estimation for the
particular application. In other words, a variety of criteria
and measures is reasonable; which one is more appropriate
depends on what the ultimate goal is. The following mea-
sures and optimality criteria are introduced in view of the

3In some cases a model may correspond to a point in the metric space
outside �.

fact that MM estimation is usually used for (i) base-state
estimation, (ii) mode identification, (iii) mode estimation,
which amounts to soft identification of the mode, and/or
(iv) hybrid estimation (i.e., simultaneous base-state/mode
estimation and identification).

In practice, the size of a model set, that is, the number
of models in the set, is of a major concern. Also, the more
cluster-like the model set is, the better usually. This is, how-
ever, considered at most indirectly in most of the following
measures and criteria.

The criteria and measures are presented below in a form
that is not conditioned on data, which is applicable directly
to an offline design. For an online model-set design or adap-
tation, their data-conditioned versions may be used.

9.1 For Base-State Estimation
A model �� is said to match a mode better (or be a bet-

ter representation of a mode) than model �� if its model-
based optimal estimator is a better estimator of the base
state of the hybrid system given the system mode. A model
set � is said to be better for base-state estimation than set
' at a given time if

��� ����� � ��� ����� (20)

where � is the base state; ��� and ��� are the (optimal) es-
timators based on sets � and ', respectively. For a given
mode �, ��� ����� � ����� ����

���� ������� �	, where �
is over both � and measurement * at the time. In the case of
an unknown mode �, �������� � ���������

����������	,
where � is over �, *, and �. A model set � may be deemed
uniformly better than set ' if (20) holds uniformly with re-
spect to time. Note that, in general, there is no uniformly
optimal model set if the exact set of all possible system
modes (more rigorously, the exact digraph with the exact
transitions) is not known perfectly. That is part of the rea-
son why a variable-structure algorithm may be superior to
a fixed-structure algorithm.

It is sometimes more tractable to replace � in (20) with
some optimal estimator of �, such as the following:

���� � ����� � ���� � ����� (21)

where ��� is the optimal base-state estimatorbased on the
mode space � � �, (more precisely, � � �, the digraph
used is the exact total digraph with the exact transitions that
corresponds to � [18]), that is

��� � �� ���

��
��� �����

and ����� ����� � ������� ��� ������ � ��� �����	. Such
a definition was used in [18] to obtain a circular criterion
for comparison of two model-sets: Set ' is better than set
� if and only if ��� falls into a circle determined by ��� and
���, �, and '. An example of model-set choice using this
criterion is given later.



Definitions based on other estimation criteria (e.g.,
maximum likelihood, maximum a posteriori or some other
Bayesian costs) are also possible, but the above definition
of � � �� should be replaced by an appropriate one.

The above definitions are reasonable if the main pur-
pose of the application is to obtain a base-state estimator
that is as accurate as possible, which is often the case. It is,
however, not convenient for some other purposes, such as
mode identification, modal-state estimation and for model-
set choice by hypothesis testing. For this reason, the follow-
ing definitions are introduced, which are not entirely equiv-
alent to the above.

9.2 For Mode Estimation
A model �� is said to be closest to a mode � if their

distance squared ������� is the shortest among the set of
models under consideration.

Given a collection of model sets not necessarily dis-
joint, the one with a model that is closest to a given mode
could be deemed the best model set for that mode. With
this definition, however,

� It is quite likely that two (or more) model sets have
the best model for the mode and thus are both deemed
the best. If this is indeed the case, the set with a
higher correct-model probability (defined later) may
be deemed better. This is still not good enough for
many applications since the individual effects of the
other models in the set are not accounted for, which
may be important, especially when the correct-model
probabilities for both sets are low.

� It is impossible that �� is better than �� if �� is
a subset of ��. This is not good since it does not
encourage the use of a smaller but good model set,
which is important in practice.

The following definition does not suffer from these two
drawbacks: In a family of model sets �, the set � � with
the smallest average modal distance squared between its
models and the true mode is deemed the best, that is,

�������������� � ���
��	

������������� (22)

The mean modal distance squared of a model set � to a
(random) mode � is defined by (4) as (dropping condition-
ing on � � � and � � � )

������ � �������������	 (23)

� �����������������		

� �

� �
����

������
���������� � �����

�
(24)

Sec. 6 presents a method for model-set design that is partic-
ularly suitable for this measure. An example of model-set

design by minimizing this average modal distance squared
is given later.

For performance evaluation, it is more convenient to use
the following equivalent formula

������ � ����������������*��		

� �

�� �
����

������
���������� � ���*���*���*

�

where * is measurement and the expectation is over �,
and thus depends on the probability distribution of �. Its
finite-sample approximation, called average modal dis-
tance squared, can be computed via Monte Carlo simula-
tion over + samples of true mode �� � �, � � 
� � � � � +,
each with � samples of measurement *�� ,  � 
� � � � � � :

������

� 


�+

��
���

��
���

�
����

��� ����
���� ������� � ���*���

(25)

where ��� � ���*�� �� � �� is the posterior model
probability, as obtained in an MM algorithm.

Alternatively, a model set � � is said to induce the op-
timal mode estimator in a family of model sets � if its
optimal estimator provides the most accurate mode estima-
tion in the sense of having the smallest mean-square error:

��� ������ � ���
��	

��� ����� (26)

The mode estimate using model-set � is defined by

��� � ����� � �� *	

�
�
����

����� � ���� � �� *� (27)

where * depends on the true mode � to be estimated and
the posterior model probability ��� � ���� � �� *� is
available from an MM estimator using model set � . Here
�� � ����� � ���� � ��� ���� � ��� ��� � �	, where the
expectation is over both � and *. A finite-sample approx-
imation, called average mode estimation error squared,
is the following based on Monte Carlo simulation over +
samples of true mode �� � �, � � 
� � � � � +, each with �
samples of measurement *�� ,  � 
� � � � � � :

��� ���� � 


�+

��
���

��
���

��� � �����
���� � ����� (28)

where ���� is the mode estimate (27) of �� from the MM
estimator using measurement *�� .

Note that the replacement of the distance squared in
(22) with the distance may lead to a different conclusion,



but the conclusion based on (26) is invariant with respect to
such a replacement.

It may be inconvenient, difficult, or impossible to de-
fine �� � ����, modal distance, or mode estimation error
reasonably for some practical problems if different models
are characterized by different quantities, rather than differ-
ent values of the same quantity. Mapping of � and � onto
the same space will work only if the mappings are distance
preservative.

Note that the best possible mode estimate ��� � ����� �
�� *	 �

�
�
�� ���� � �� *� is usually infeasible because �

is usually either too large or unknown; otherwise we may
choose � � �.

(25) and (28) have been used in a number of publica-
tions [22, 21, 20] for performance evaluation with deter-
ministic scenarios (with � � 
) and random scenarios
(with + � 
).

Definitions based on other estimation criteria (e.g., ML
or MAP) are also possible, which are, however, usually less
convenient.

9.3 For Mode Identification
In the sequel, whenever a set � is given, it is implic-

itly assumed that its model probabilities ��� � ���� �
������ � � , are also given by the optimal estimator
based on set � .

A model �� is said to be a most probable one in the
set � if its probability is the largest in the set:

��� � ���� � �� � ���
����

��� � ���� � ��
(29)

Note that it is possible that more than one model may be
most probable or closest to the mode since � � � is as-
sumed for a finite � . Given a model set � , the probability
��� � ���� � �� may be called the correct-model
probability of the set, where �� is the model (in the set)
closest to the mode � (defined in Sec. 9.2 or Sec. 9.6). Sim-
ilarly, 
� ��� � ���� � �� may be referred to as the
incorrect-model probability.

A comparison of two MM estimators using the same
model set can also be made based on the probabilities of
correct, incorrect, and no mode identification. These mode
identification events are defined as follows:

� Correct mode identification (CID): The model
closest to the true mode has the highest probability
and the ratios of its probability to the other model
probabilities all exceed a threshold for mode identifi-
cation.

� Incorrect mode identification (IID) : A model not
closest to the true mode has the highest probability
and the ratios of its probability to the other model
probabilities all exceed the threshold.

� No mode identification (NID): The ratio of the high-
est model probability to the second highest model
probability does not exceed the threshold.

A simplified version is the following.

� Correct mode identification (CID): The model clos-
est to the true mode has the highest probability that
exceeds a threshold (say 0.5).

� Incorrect mode identification (IID): The model with
the highest probability that exceeds the threshold is
not the one closest to the true mode.

� No mode identification (NID): No model has a prob-
ability above the threshold.

For MM estimators, the one with the highest ratio of
CID/IID, under the (approximately) same level of NID,
may be deemed the best, where the same NID may be
achieved by adjusting the identification threshold of each
estimator. It should be emphasized that such a comparison
is meaningful only for MM estimators using the same (to-
tal) model set because the relation of the model set to the
mode space is not accounted for. For example, it is almost
always the case that a 2-model MM estimator has better
CID, IID, and NID than a 100-model MM estimator for the
same problem because these percentages do not consider
how fine the mode space is quantized by the model set.

All the criteria and measures defined in Secs. 9.2 and
9.3, including their extensions and variants for problems
in a particular application area, have been adopted in the
evaluation of variable-structure MM algorithms in [22, 21,
32] for a comparison with the fixed-structure algorithms.

9.4 For Hybrid State Estimation
A model set � is said to be better than set ' for a given

mode if

�- � �-��� � �- � �-��� (30)

or (not equivalently)

��-� � �-��� � ��-� � �-��� (31)

where - � ��� �� is the hybrid state of the hybrid system;
�-� , �-�, and �-� are the (optimal) estimators based on the
optimal set � � �, set �, and set ', respectively. This
definition appears to be good theoretically. It has, however,
a major difficulty: It is not easy to define the measure � � ��
reasonably for the hybrid state in many situations.

It is also possible to define a Bayesian risk (cost) func-
tion and then the model (or model set) based on which the
optimal estimator minimizes the function may be deemed
the optimal.



9.5 Probabilistic Measures for Model-Set
Comparison and Choice

A definition based on a pure probabilistic metric is the
following: Set �� is more probable than set �� if

��� � ���� � �� � ��� � ���� � ��

where �� and �� are subsets of � . It, however, also
suffers from the second drawback mentioned in Sec. 9.2.
Most probability-based definitions have a common short-
coming: The probability depends significantly on the event
�� � ��, namely, the choice (assumption) of the to-
tal model set � if � �� �. One may consider replac-
ing � with the mode space �. However, it may be dif-
ficult or infeasible to calculate the associated probability
��� � ���� � �� for most practical problems, while the
probabilities ��� � ���� � �� are available from an
MM algorithm using model set � .

It has been shown [18] that the optimal model set � for
the MM approach is � � � and the deterioration worsens
as � and � become more mismatched. Given the same
degree of mismatch, however, the case of missing models
is (somewhat) worse than the case of extra models. With
these effects, given a collection of not necessarily disjoint
model sets ��� � � � ��� , the best model set may be defined
as the one with the smallest number of models among the
model sets with the largest probability of including the true
mode �; that is, the best of ��� � � � ��� is the set �� with
the cardinality ��� � � ������ ����, where

��� � ���� � �� � ���
�����������

��� � ���� � ���
�� � .  �
� � � � � ��

9.6 Information Measures

We now present several information measures for
modes, models, and model sets. They are probably most
thorough, fundamental, and general of all measures pro-
posed in this paper.

Kullback-Leibler information number between
mode and model. Compared with measures proposed
above, a more thorough but more abstract measure of the
closeness (or discrepancy) between a model and a mode is
based on some information metrics. The Kullback-Leibler
information number, also known as relative entropy, is
probably the most suitable, which has been applied to such
closely related areas as system identification, model valida-
tion, and performance evaluation [6, 5, 31, 11]. It measures
how close a model is to a mode in terms of information
contained. We provide the following definitions.

Let ����� and ����� be the pdfs of a random mode
� and random model �, respectively. Then the Kullback-

Leibler information number is defined by

����� ��� � ���� ����� � �� �����	

� ����������������		

�

�
��

�
�����

�����

�
������

Given a value of a pair of mode � and model �, the corre-
sponding Kullback-Leibler information number can be de-
fined by

� ����*�� ���*�	 � ��������*�����*�		

�

�
��

�
���*�

���*�

�
���*�*

through the likelihood functions of the given, deterministic
mode � and model �, that is, ���*� and ���*�, respectively.
More generally, the Kullback-Leibler information num-
ber between a random mode � and a random model � in
terms of data * can be defined by

������� ����� � ����������*� ��������*� ��		

�

�
��

�
�����*� ��

�����*� ��

�
�����*� ��*�

where �����*� �� is the joint pdf of the data and mode �, and
�����*� �� is the joint pdf of the data * and model �.

While these Kullback-Leibler information numbers are
positive definite, none of them are true metrics (distance
functions) as defined by positive definiteness, symmetry,
and triangle inequality.

With these definitions, we say mode �� is the best
model in the set � if

������� � ���
���

������

where ������ � ������� �����, � ����*�� ���*�	, or
����� ���, defined above, depending on the case.

For discrete � and �, the above definitions are valid
after replacing the pdfs with the corresponding probability
mass functions.

Information number between models. Similarly, we
define (Jeffreys) information number between two mod-
els �� and �� to measure how close they are in terms of
information contained as

�������� � �������� � ���� ����

where �������� � ������������ and ���� ���� �
������������ . This information number is positive defi-
nite and symmetric, but still not a true metric.

Information distances between models (model sets)
relative to mode distribution. Similarly, we can define
information distances for two models (or model sets)
to measure how close they are, given mode distribution.



Specifically, we define the information distance between
two deterministic models �� and �� given mode distribu-
tion as

������� �

����� �
��

�
����*�

��� �*�

������
�

����� ��

�
����*�

��� �*�

�
��*� ��*�

����
where ����*� is the likelihood function of model � � and
the expectation is over both observation * and mode �. It is
the expected value (over all �) of their information distance
for a given value of �, given by
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�
��*���*

����
We define the information distance between two random
models �� and �� (or essentially equivalently, between
two model sets �� and �� , see Sec. 3) as
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����
For models as discrete random variables, replace the den-
sity parts with the corresponding probability mass func-
tions.

It can be easily shown that the information distances so
defined between two models (model sets) are indeed dis-
tance metrics.

Mutual information between mode and model.
Closely related with relative entropy is mutual information.
The mutual information between a random mode and a ran-
dom model is the relative entropy between their joint distri-
bution and their distribution product:
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It measures the dependence between � and �; in other
words, it quantifies information contained in � for predict-
ing � (or the other way round). Similarly, we define the
mutual information between two random models through
their probability mass functions 	�������� 	����� 	����
as
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It measures the dependence between �� and �� .

10 Model-Set Choice by Hypothesis
Testing

10.1 Formulation of Model-Set Choice as
Hypothesis Testing Problems

Model-set choice particularly suitable for model-set
adaptation has been studied extensively in a general set-
ting based on hypothesis testing in [15] and thus will not be
repeated here.

In this section, we consider only offline model-set
choice problems that are general in nature. A major dif-
ference between the (online) model-set adaptation and the
(offline) model-set design is that a special model set (i.e.,
the current set) is present in the former, but usually not in
the latter.

The following general and representative problems are
considered:
Problem 1: “Which model is the best in a given set?” or
“Select the best model in the set � � ������� � � � ����.”
Problem 2: “Which of the two model sets �� and �� is
better?” or “Choose one of the two model sets �� and ��.”
Problem 3: “Which of the model sets ��� � � � ��� is the
best?” or “Choose one of the model sets ��� � � � ��� .”
Problem 4: “Is any of the model sets ��� � � � ��� better
than the set �?” or “Determine if any of the model sets
��� � � � ��� is better than a given set � .”

Clearly, Problems 1 and 2 are special cases of Problem
3.

Solutions of these problems presented below are
adapted from those presented in [15]. Denoting by � the
true mode, Problem 1 can clearly be formulated as the fol-
lowing hypothesis testing problem

)� � � � �� vs. )� � � � �� � � � vs. )� � � � ��

This is in general a multihypothesis testing problem. For
� � �, it reduces to a binary hypothesis problem, which
can be solved by, e.g., the sequential probability ratio test
(SPRT), the (non-sequential) Neyman-Pearson test, or a
Bayes test. For multihypothesis problems, however, there
is in general no optimal Neyman-Pearson or SPRT-type test
without additional constraints. Several tests proposed in
[15] can be applied to solve this problem, of which the se-
quential ranking test appears most attractive.

Problem 2 can be formulated as the following hypothe-
sis testing problem

)� � � � �� vs. )� � � � ��

Both hypotheses are in general composite, for which there
is in general no optimal test without additional constraints.
What is even worse is that the model sets are quite often
non-disjoint. What if the true mode lies in the common part
of the two model sets? Such problems are almost never
dealt with in statistics. Nevertheless, the sequential model-
set likelihood (or probability) ratio test proposed in [15]



can be modified to solve this problem fairly satisfactorily,
which is optimal in some meaningful sense.

Problem 3 can be formulated as the following hypothe-
sis testing problem

)� � � � �� vs. )� � � � �� � � � vs. )� � � � ��

It is a generalization of both Problems 1 and 2. It differs
from Problem 1 in that each hypothesis is in general com-
posite rather than simple. Naturally, all difficulties asso-
ciated with either multiple, composite, or non-disjoint hy-
pothesis testing problems are present here. Nevertheless,
several tests proposed in [15] can be modified to solve this
problem, of which the most attractive is the sequential rank-
ing test.

Problem 4 can be formulated as the following hypothe-
sis testing problem

) � � � � vs. )� � � � �� � � � vs. )� � � � ��

It differs from Problem 3 in that model set � is special.
It also differs from model-set adaptation problems in the
implication of an indecision as well as each hypothesis. A
modified version of the multiple model-set SPRT proposed
in [15] is particularly suitable for this problem.

10.2 Model-Set Probability and Likelihood
Since hypothesis testing is driven by data, offline mode-

set choice by hypothesis testing also requires the use of
data. This can be done using past data or via simulation.
Let * be the observation at time $ and * � �*���
 be the
observation sequence through time $. Let  * � *� �*���
be the observation residual at time $; that is, the part of *
that is unpredictable from the past. It is available from an
MM estimator. Let  * � � *���
 be the sequence of the
observation residuals through time $.

Since the task is to decide on a model set, the probabil-
ities and likelihoods of a model set are naturally of major
interest.

The marginal likelihood of a model-set �� at time $ is
the sum of the predicted probabilities ��� � ���� �
�� � *

��� times the marginal likelihoods 	� *�� �
��� *

��	, both for all the models in �� :

+
��


�
�� *�� � �� � *

��	

�
�
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	� *�� � ��� *
��	��� � ���� � �� � *

���

The joint likelihood of the model-set �� is defined as
+��

� 	� *�� � �� 	. Note that a subscript $ and a super-
script $ are used for quantities at $ and through $, respec-
tively. The joint likelihood ratio ! � +��

�+��
of model-

set �� to �� can often4 be (approximately) computed as

4For example, this is exact if ������� sequence is a random walk.

the product of model-set marginal likelihood ratios:

! �
�

�
�


+��
�

+��
�

(32)

which simplifies computation greatly, where $� is the test
starting time. This is important: The observation sequence
itself is usually not independent; however, the sequence of
marginal likelihood ratios is usually approximately inde-
pendent since the observation residual sequence is at most
weakly correlated and the likelihood ratio is approximately
Gaussian distributed under some mild conditions [26].

The (posterior) probability that the true mode is in a
model-set �� at time $ is defined as

/
��

 � ��� � �� �� � M� *
�

�
�
�����

��� � ���� � M� *
� (33)

which is the sum of the probabilities of all models in �� ,
where M  is the total model-set in effect at time $, which
includes �� as a subset and is problem dependent. The
model probability ��� � ���� � M� *

� for each
model �� is available from an MM estimator.

10.3 Solutions of Hypothesis Testing Prob-
lems for Model-Set Choice

There are two types of hypothesis test: sequential and
non-sequential. Sequential tests are more attractive for
model-set choice than nonsequential tests primarily for the
following reasons: For any given decision error rates, se-
quential tests make decisions only if the evidence is suf-
ficient; they are more efficient — need a smaller sample
size, which does not need to be determined in advance; and
(approximate) thresholds of sequential tests are easy to de-
termine.

Our proposed hypothesis tests for model-set choice are
based on the following tests, developed in [15] for model-
set adaptation (where ��  � , ��  � ) and modified
here for offline model-set choice (where there is no � ).

Theorem 10.1 (MS-SLRT): Mode-set sequential like-
lihood ratio test. For Problem 2 with the following speci-
fications for the expected (weighted sum of) decision error
probabilities

��)��� � ���
�

�
�����

��)��� � ������ � ���� � ��� 	 !

(34)

��)��� � ���
�

�
�����

��)��� � ������ � ���� � ��� 	 #

(35)

the following SPRT-based test is uniformly most efficient:



� Choose �� if ! � '

� Choose �� if ! 	 �

� Use �� ��� and continue to test with more obser-
vations if � � ! � '

where ! is the joint likelihood ratio, and � and ' are
two constants to be determined.

Proof. It follows similarly as that of Theorem 1 in [15].
Remarks.

� Since 	� *�� � ��	 and 	� *��� � ��� *
���	 are

nothing but the joint and marginal likelihoods of the
model set ��, the test is actually the SPRT using the
model-set joint likelihood ratio. ��� � ���� �
��� *

���� is the predicted probability of mode � �

in model set ��. The model probabilities and likeli-
hoods are given by an MM estimator.

� In practice, the following constants � and ' can be
used

� �
#


� !
� ' �


� #

!
(36)

which are exact if + can only be either in ���'� or
on the boundary � or ' (i.e., there is no overshoot
— excess over the boundaries) and are accurate if the
amount of overshoot is small. In the case there is
overshoot, the test based on the above values of �
and ' is (slightly) more conservative than the opti-
mal one: It is (slightly) less efficient than the optimal
one but the error probability specifications are still
satisfied.

� The composite hypothesis testing problem is effec-
tively converted into a simple one with a clear phys-
ical justification [i.e., the error probabilities (34)–
(35)] by the technique of the weight function ��� �
���� � ���.

� SPRT is usually very efficient in the case where the
type I error probability ! is not very small even if the
truth is in between the two hypotheses.

� A regularity condition for the optimality of this test
is that the sequence of model-set log-likelihood ratios
���!� is a random walk.

Theorem 10.2 (MS-SPRT):Mode-set sequential prob-
ability ratio test. With the following specifications for the
expected decision error probabilities�

�����

��)��� � ������ � ��� 	 !� (37)

�
�����

��)��� � ������ � ��� 	 #� (38)

the above model-set sequential likelihood ratio test (The-
orem 1) is uniformly most efficient for Problem 2 if the
joint likelihood ratio ! is replaced by the probability ratio

�  � ����������
���������� .

Proof. It follows similarly as that of Theorem 2 in [15].
Remarks.

� The test statistic in Theorem 10.1 is the product of ra-
tios of model-set marginal likelihoods (for the current
and past times), while in Theorem 10.2 it is the ratio
of posterior mode-set probabilities at the current time
only. This makes sense since a marginal likelihood
does not carry historical information, while the pos-
terior probability depends on past as well as current
information.

� The weight functions ��� � ���� � ��� used in
Theorem 10.1 satisfy the normalization requirements
(i.e., sum up to one), but those in Theorem 10.2 do
not. (34)–(35) and (37)–(38) are different. The latter
uses the same weight for the two error probabilities
under the same true mode, which seems more rea-
sonable than using different weights as in the former.
This is achieved at the price of losing the normal-
ization property. Their error probabilities are distinct
and thus the corresponding optimal tests are differ-
ent.

� The model-set probability ratio and likelihood ratio
are related via the ratio of prior probabilities:

�  �
��� � ���*�
��� � ���*�

�
	� *�� � ��� *

��	
	� *�� � ��� *��	

��� � ���*���
��� � ���*���

� !
��� � ���
��� � ���

This relationship can be used to simplify the calcula-
tion of �  from !.

In summary, the use of the weight functions ��� �
���� � ��� or ��� � ��� converts the composite hy-
pothesis testing problem into a simple one, and thus the
model-set likelihood or probability acts exactly the same
as the likelihood for a simple hypothesis testing problem.
Probably more importantly, overlap between model sets � �

and �� poses no problem after this conversion. This is the
key to Theorems 10.1 and 10.2.

Problem 3 may be solved by the following sequen-
tial ranking test : At each time $, rank all � of the
model sets ��� � � � ��� that have not yet been rejected
as ����� � � � ������ such that their model-set probabilities
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 � ��� � �����*�� � M� are in a decreasing
order:
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 � /
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�����





where M  is the union of all models not yet rejected. Then,

� Accept ���� if �
����
�

�
����
�

� '

� Reject ����� � � � ������ if �
����
�

�
����
�

	 �

Continue to test until one model set has been ac-
cepted or not rejected, and thus are chosen. Here �
and ' are design parameters, which control the error
probabilities.

The model-set probabilities can be replaced by the
model-set joint likelihoods in the above test.

Problem 4 may be solved by the following multiple
model-set sequential likelihood ratio test(MMS-SLRT ):

S1. Perform � one-sided MS-SLRTs simultaneously for
� pairs of hypotheses �) � � � � vs. )� � � �
���� � � � � �) � � � � vs. )� � � � ���. These
tests are one-sided in the sense that ) is never re-
jected, which is implemented by using thresholds ' �
and � � �
. This step ends when only one of the
hypotheses )�� � � � � )� is not rejected yet:

– Reject all �� for which !� � +��+��
� '�;

– Continue to test for the remaining pairs until
only one of the hypotheses )�� � � � � )� is not
rejected.

Specifically, let 0 be the smallest sample size (time)
by which some ���
� of the � alternative hypothe-
ses are rejected by the one-sided MS-SLRTs

$� � ���
�
$ � !� � '�� � � 
� � � � � �� � ��  

�
0 � ��� �$ � $ � $�� � � 
� � � � � �� � ��  �

Then, the test accepts )� if ! � � '� , where
'�� � � � � '� � 
 are chosen such that the type I and
type II error probabilities for all binary problems are
! and #, respectively. If more than one hypothesis
is rejected at last simultaneously, the one with the
largest model-set likelihood is accepted.

S2. Perform a (two-sided) MS-SLRT to test ) � � � �
vs. )� � � � �� , where )� is the winning hypothe-
sis in Step 1.

Remarks.

� The union of all remaining model sets is used until
the final decision in Step 2 is made.

� If MS-SLRTs with '� of (36) are used for all binary
tests in Step 1, then the thresholds are all equal: '� �
'� �

!
��" . Alternatively, the threshold suggested in

[23] may be used.

� Since the expected sample size is asymptotically
minimized in all the one-sided MS-SPRTs of Step 1
[23] and the MS-SPRT of Step 2 when ) � � � �
is true, it seems reasonable to expect that the above
MMS-SLRT has a minimum expected sample size
asymptotically.

� The model-set joint likelihood ratio may be re-
placed by the model-set probability ratio � � �
���������
������ ���� , leading to multiple model-set sequen-
tial probability ratio test (MMS-SPRT).

Another solution of Problem 4 is the following
multiple-level test (MLT ):

S1 Test all pairs of hypotheses separately:

) � � � � vs. )� � � � ��

using, e.g., MS-SLRT or MS-SPRT. Complete all
these tests. Let � be the set of accepted hypothe-
ses from all these tests. Delete ) from � unless �
contains no other hypothesis or ) is deemed much
more important than the other model sets.

S2 Let ) be the best hypothesis in �5. Go to Step 1 to
test ) against all the other hypotheses in� pairwise.

Repeat this process until only one hypothesis remains
and the corresponding model set is then chosen. Before the
final decision is made, the union of all remaining model sets
is used.

Remarks. (a) The error probability pair ! � and #� used
in the binary tests of Step 1 is better chosen in such a way
that these tests have about the same expected sample size
since the sample size of Step 1 is equal to the largest sam-
ple size of the component problems. (b) Clearly, Step 1
here is more efficient than the corresponding MMS-SLRT
or MMS-SPRT given the same error probabilities. The
weakness of this test is the possibility of multiple iterations,
which depends on how good the set � is. In model-set
choice, there is no need to consider a mode jump. If the
model sets do not have large overlap, a good model set �
may be inferior to at most a few other model sets. Thus, sta-
tistically speaking, quite often only one, occasionally two,
and unlikely more iterations are needed in the MLT.

We emphasize that all these tests are computationally
extremely efficient and easy to implement — little extra
computation is required other than what is already available
in an MM estimator.

5The best hypothesis is one that is not rejected in any other binary tests,
and the first hypothesis accepted (if the same error probabilities are used
for all binary tests) or the one accepted with the smallest error probabil-
ity (if the same expected sample size is used). Model-set likelihoods or
probabilities are used to break ties if any.



As a degenerated case, it is clear that the above tests
using model sets are applicable to Problem 1 for test-
ing among models in a single set by simply replacing the
model-set likelihood and probability with model likelihood
and probability.

Examples of the sequential tests presented here can be
found in [15, 14].

11 Examples for Model-Set Design
11.1 The Design Problem

Most examples presented in this paper deal with the fol-
lowing simple system with position-only measurements

��� � ����� * �

�

 � � �
� � 
 �

�
��1 (39)

where � � ���� "��� ��� "��	
�, and process and measurement

noises have constant means �� � �, �1 � � and covariances
. � ��
�� , � � %� , respectively, with % � 
��� unless
stated otherwise. Assume that the linear-Gaussian assump-
tion of the Kalman filter is valid. Two generic types of
model are considered: nearly constant-velocity (CV) model
and coordinated-turn (CT) (with a known turn rate) model,
given by [16]
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�    � (41)

where � � $s is sampling period. Denote by CT(�Æ/s) a CT
model with turn rate 2 � �Æ/s. Note that CV � CT(�Æ/s).

All numerical examples presented in this paper are
based on the use of the above CT and CV models in one or
more sets. These models come primarily from the consider-
ation in maneuvering target tracking for Air Traffic Control
(ATC) surveillance [4, 3].

Consider a problem of surveillance for an ATC system.
Suppose we decide to use an MM algorithm with a set � of
three CT models: �� � 2�, �� � 2�, �� � 2�. Clearly,
to design this set � optimally in some sense, a probability
density function (pdf) ���� of the true turn rate � is needed.
We propose the following Gaussian-mixture model:

� ��� � 3��� ����3�� ����3��� ��� � 3���3 � 
 (42)

where

�� ��� �

�
�45�

"
� ��

���� � ��� ��� �

�
�45

"�
������

�

���

and 2� is a known standard turn rate. This model can be
well justified if most flights will either approach/departure

the runway directly without a turn, or with a turn of an ex-
tremely slow rate or a rate close to the standard one (�2 �).
Note that � ��� may or may not have three peaks, depending
on the parameters 2�, 3�, 3, 5�, and 5.

Consider a specific example with

3� � 3 � 
��� 5� � 5 � 
Æ�s� 2� � �Æ�s (43)

Its pdf is plotted in Fig. 11.
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Fig. 11: The probability density function of the true turn rate �.
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Fig. 12: Model-set design via cdf of turn rate �.

11.2 Design by Minimizing Distribution Mis-
match

Clearly, the distribution-based approach of Part I can be
applied to solve this problem for the specific example with
(43). Assume that we want to use only three models. First,
plot the cdf ����� of the true mode (its pdf is plotted
in Fig. 11) as in Fig. 12. Then, since �����Æ�s� �

��, ����� � ���, and ����

Æ�s� � $��, the sim-
ple distribution-based design yields the model set � �
�2�� 2�� 2�� � �����Æ�s�, with the corresponding initial
model probabilities �
��� 
��� 
���. Note that it turns out
that we have a model at each peak of the pdf �����. This
would not be the case if the three peaks are closer or 5 is
larger. Clearly, this approach is more beneficial when we
want to have more models.



11.3 Design by Minimizing Modal Distance

We now demonstrate how to design � by minimizing
an optimality criterion for mode estimation. Consider min-
imizing the average modal distance squared (24), dropping
� � � for simplicity,

��������� � ����� 2�
� �� � � 	

� ������� 2�� ���� � � 	�� � � 	

�

� �

��

�
�

��� 2��
�
� �� � 2��� � �� �� �����

In fact, it turns out that for this example mode estimation
error squared �� � ���� is equal to average modal distance
squared.

By symmetry of ����, 2� � �, 2� � 2, 2� � �2 and
we need only to determine the optimal 2. Thus, we need
only to solve the following optimization problem

���
#

� �

�
������ � ����� ��� 2����� � 2���

���� 2����� � �2���	�����

We emphasize that conditional model probabilities
����� � � �� � 2��� � �� �� given true mode in the
above is not to be confused with the unconditional model
probabilities � �� � 2��� � ��. For example, compare
(44) with (46). The significance of this probability and how
to determine it were discussed in great detail in Sec. 8. As
explained there, ����� can be interpreted as a window func-
tion. Thus, the problem becomes

���
#

� �

�
������������2�����������2�������	�����

For simplicity, however, we use the rectangular window
(see Sec. 8.4), which leads to the following pmf:

����� � ��� � 2����

�

���

��� ��2��� 2���	� � � 


��� �2���
�	� � � �

��� ��
��2���	� � � �

(44)

(44) indicates that models �� � �, �� � 2, or �� � �2
is in effect if and only if the true turn rate falls inside the
intervals ��2��� 2���, �2���
�, or ��
��2���, respec-
tively. In other words, these intervals are the effective cov-
erage of the three models. This use of the rectangular win-
dow is well justified by Theorem 6.1 of Part I since it satis-
fies the nearest-neighbor condition (Condition B).

With (44), the cost function is

� �

� ��
���
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�#	�

��������

� �

#	�

��� 2�������

�

� �#	�

��
��� 2�������

�

� �

��
�������� �2�

� �

#	�

������ �2
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� 3�5
�
� � �3�5� � 2��� � �2��� � �2�	 (45)

where �� �
��
#	�

�����, given by
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(46)

and �	 can be obtained by direct integration and using the
error function erf��� � ��
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For the specific example with (43), the above optimiza-

tion problem can be solved by plotting the above integrals
� vs. 2 (Fig. 13) and identifying the minimum within the
interval of interest, which is around ���$. Fig. 13(b) plots
the derivative ��2 obtained from Mathematica, which
verifies the minimum. Therefore, the corresponding best
model set is approximately � � �����Æ�s� and the (ini-
tial) model probabilities are �� � 
��� �� � �� � 
��

A design based on modal distance is particularly suit-
able for such applications as fault detection and isolation
where the primary objective of hybrid estimation is mode
estimation.

Note that the above procedures are still applicable even
if a more sophisticated probabilistic model than (42) is
used. However, if more than one parameter is to be deter-
mined, then the resulting optimization problem is in general
multi-dimensional.
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Fig. 13: The average modal distance squared (and its derivative)
versus the turn rate �.

11.4 Effectiveness of Designs
Monte-Carlo simulations were conducted to verify the

above model-set designs. In the simulation, $�� true
modes were generated randomly with the distribution given
by (42). They were unknown to the estimators and not
allowed to jump. The initial state of the system was
�� � �
���� 
��� ���� 
��	� and for simplicity each es-
timator used �� as the initial state estimate. For each
true mode generated, 
�� samples of base state trajecto-
ries and the corresponding measurement sequences were
generated. These measurements were used by an au-
tonomous MM (AMM, also known as static MM) esti-
mator based on a model set — assuming that the true
mode belongs to the model set with the corresponding
pmf — to estimate the base state and the true mode.
Three AMM estimators ��� , ���� , and ���� were ob-
tained, over the time steps $ � 
� �� � � � � 
�, based on
the model sets � � �����Æ�s�, �� � �����Æ�s�,
and �� � �����Æ�s�, with the initial model prob-
abilities �
��� 
��� 
���, �������� ������� �������, and
������� ������ ������, respectively, calculated by (46).

Fig. 14 shows the RMS errors, average modal distances,

and mode estimation errors, as defined by (25) and (28),
with + � $�� and � � 
��. These results support the
above designs.

11.5 Design by Hypothesis Testing Given
Scenarios

The hypothesis-testing based approach to model-set
choice of Sec. 10 can also be used for model-set design.
We now give one such example.

An important question for model-set design is the fol-
lowing: Given a number of interested (or representative)
scenarios, how to design a model set with fewer models
than the number of scenarios?

Suppose for simplicity that the scenarios of interest are:
true turn rates are �Æ/s, 
Æ/s, �Æ/s, �Æ/s and �Æ/s, respec-
tively, and the model set to be designed is ����2�. In other
words, the task is to determine 2 such that the model set can
cover the five possible true turn rates effectively. Varying
2, Fig. 15 shows (over 100 Monte-Carlo runs) the percent
of correct decision of model selection for the five true turn
rates of interest using MMS-SPRT with CV model as the
special model. It seems reasonable from Fig. 15 to choose
2 � �Æ/s so that the correct decision is still above 80% even
in the worst case where the true turn rate is 
Æ/s or �Æ/s.

12 Examples of Model Efficacy
For the above ATC example, plots of the efficacies

��� ��� and ��� ��� of each of the three models in � �
�����Æ�s� are given in Fig. 16 and Fig. 17, generated by
(16) and (15), respectively. The variance of the measure-
ment noise used is % � 
�� and ! � # � ��
 were used
in the test to obtain ��� ���. Two separate SPRTs were
used to test two pairs of hypotheses ()� � 2 � � vs.
)� � 2 � �Æ�s) and ()� � 2 � � vs. )� � 2 � ��Æ�s).
The final winner is clear from the winners of these two
pairs.

A comparison of Fig. 16 and Fig. 10, where the ini-
tial model probabilities are ���� ��� ��	 � �
��� 
��� 
��	
and ����� ��
$� ��
$	, respectively, verifies that probability-
based model efficacy is insensitive to the initial model prob-
abilities used. Also, it is clear that the probability-based and
test-based model efficacies are close.

We now demonstrate another way of using hypothesis
tests to determine model efficacy.

Consider model set � � �����Æ�s�. Varying the turn
rate of the true mode from 0 to $Æ/s, the application of the
MMS-SPRT of Sec. 10 (with CV model chosen as the spe-
cial model) to the degenerated case of models (rather than
model sets) yielded the results (over 100 Monte-Carlo runs)
shown in Fig. 18 with �% of no decision. All plots are
averaged over the thresholds corresponding to the type I
and type II error probabilities ! � # � ����
� ��
�. Note
that when the true turn rate is smaller than 
�$Æ/s or so,
the correct decision is to choose the CV model, while it



1 2 3 4 5 6 7 8 9
0.5

1

1.5

2

2.5

3

3.5

4

 k

ω=3
ω=2
ω=4

(a) Modal distances

1 2 3 4 5 6 7 8 9
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
Mode Estimation Error

 k

ω=3
ω=2
ω=4

(b) Mode estimation errors

1 2 3 4 5 6 7 8 9
100

150

200

250

300

350

400

450

 k

ω=3
ω=2
ω=4

(c) RMS position errors

1 2 3 4 5 6 7 8 9
25

30

35

40

45

50

55

60

65

70

 k

ω=3
ω=2
ω=4

(d) RMS velocity errors

Fig. 14: RMS errors, modal distances, and mode estimation errors
of four MM estimators.
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is a correct decision to choose the CT(�Æ/s) model when
the true turn rate is above 
�$Æ/s or so. It can be reason-
ably concluded from Fig. 18 that the effective coverage
regions of the three models in the set are approximately
��
Æ��� 
Æ�s�, ��Æ�s� $Æ�s�, ��$Æ�s���Æ�s�, respectively.
If the true turn rate (say, 
��Æ/s) is not in any of the three in-
tervals, it is covered by the two neighboring models jointly,
which can be verified by a test between the two model sets
�� � ��� �Æ�s� and �� � ���Æ�s�.

It should be emphasized that the efficacy of a model
depends also on the other models in the set.

Fig. 19 shows (over 100 Monte-Carlo runs) that the use
of two model sets �� � ��� �Æ�s� and �� � �����Æ�s�
is not effective: It has a large ambiguous (i.e., no decision)
region, which is roughly ��
��Æ�s� 
��Æ�s�. Nevertheless,
the test performed quite well — the percent of incorrect de-
cision was very small (below ��$Æ�s) for a true turn rate
lower than 
��Æ�s and zero for a higher rate. In the fig-
ures, the results from MMS-SPRT and MMS-SLRT are la-
beled as “probability” and “likelihood,” respectively. Note
the similarity between Fig. 19 and the left part of Fig. 18.
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This similarity makes good sense: The ambiguous region
��
��Æ�s� 
��Æ�s� is roughly the effective region of the CV
model, which belongs to both �� and ��.

13 Model-Set Choice for Base-State
Estimation

It was shown in [18] that for two arbitrary model sets �
and ' with �  ', ���� � ���� 	 ���� � ���� holds if and
only if

% 	 %' �

�
7� #��� 8 � 
� 7� � 7 #�� 8


� 7
(47)

where

% �
���� � ��(�
���� � ���� � #�� 8 �

���� � ����
� ���� � ��(�

���� � ���� ���� � ��(�
and ��( is the estimator based on model-set difference � �
' ��, that is, those models in ' but not in �.

The geometric interpretation of this criterion is simple
and interesting: Refer to Fig. 20. Model set ' is better than
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set � if and only if the estimators based on those models
in ' but not in � falls inside the corresponding circle (a
ball if dimension is higher than two) determined by 7 �
�����������
����������� for some �� � �; that is, 7 is the ratio of
model probability in set ' to the model probability in set �
for any identical model.

Note that this result requires the knowledge of the opti-
mal estimator ��� using the optimal model set. We demon-
strate below how this seemingly unrealistic theoretical re-
sult can be used for model-set choice and comparison.

Suppose that the true turn rate � at a given time
is a discrete random variable with sample (mode) space
� � ����
Æ�s���Æ�s���Æ�s���Æ�s� $Æ�s���Æ�s� and
its pmf is the following discrete version of (42): � is gener-
ated by (42) using the rectangular window and rounded to
the nearest one of the above 13 possible turn rates. In other
words,

� true
� � ��� � 2��� � ��

�

! ��
���

����� 2� � ��Æ�s� #�����
#����� ����� 2� �� ��Æ�s

(48)

Note that at the given time the system is a coordinated-turn
system governed by (39) with ���2�� given by (41).



Consider two MM estimators ��� and ��� based on two
model sets � � �����Æ�s� and ' � ����
Æ�s���Æ�s,
��Æ�s�, respectively. Consider the following model-set
choice problem: decide whether model set � is better than
set ' using criterion ���� � ���� 	 ���� � ���� or equiva-
lently (47), for the set of scenarios of interest given above
in the form of a pmf (48).

To use criterion (47), we need the estimators ��( based
on model set � � ' � � � ��
Æ�s���Æ�s� and the op-
timal MM estimator ��� , where its models have the same
probability mass as the true modes, given by (48); that is,

���
�
� ��� � 2��� � �� � � true

� ���. The model proba-
bilities for the other estimators are defined similarly:

���
�
� ��� � 2��� � '�

�

���������
�
� ���
� ������ 2� � �� �

��� ������ 2� � �
Æ�s� �
�
������ 2� � ��Æ�s��

�
������ 2� � ��Æ�s

��� and �(� are induced by � �� in that they are obtained
from ��� by deleting the probabilities of the models in '
but not in �, �, respectively, and scaling up the remain-
ing model probabilities such that they sum up to one. For
example,

���
�
� ��� � 2��� � ��

�

!
�
�

� ���
� ����� 2� � �

�
�

� �
�
����� 2� � ��Æ�s

where 3 � �
�� ���
�

������
� �
�
�����

�
.

Note that each MM estimator ���, ��� , or ��( would be
optimal should its model set match exactly the mode space
in the sense that there is no approximation in the estimation
algorithm used — suboptimality arises only from the fact
that none of �, ', and � are equal to �.

For an estimator using model set � , where � could be
�, �, ', or �, the average value of the estimate at time �
is given by

��� � ����� �� � � 	

� ������*�� � ���� � � 	 � ����� � � 	

�
�
����

����� � ��	��� � ���� � ��

�
�
#���

����2����� � ���	�
�
�

where * is the measurement, � � ��� � � follows from
(39), and ��� is the prior state of the system, assumed be
identical for all models. Consider a specific example with
(43) and �� � �
���� 
��� ���� 
��	�� ��� � �� � � $. Then

we have
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and thus

%� �
���� � ��(�

����� � ��(�

���� � ��������� � ����
� 
�������

7 �
��� � ��� � '�
��� � ��� � ��

�
��� � �Æ�s�� � '�
��� � �Æ�s�� � �� � ���&�$

#�� 8 �
���� � ����

����� � ��(�

���� � ���� ���� � ��(� � ���&&&&

It follows that


������ � % � %' � $�$��


and thus ���� � ���� � ���� � ����. Consequently, we
conclude that model set � is better than set ' for this prob-
lem. Note that it is hard to say based on our intuition or
experience which model set is better. Fig. 20 illustrates the
corresponding circular criterion, except that ��( should be
added at approximately �
������ 
��Æ�.

Fig. 21 shows the RMS position errors of ��� , ���, ���
averaged over $�� runs for the time steps $ � 
� �� � � � � 
�,
which correspond to sampling time � � $� 
�� � � � � $�, re-
spectively. The above numbers correspond to the points of
the curves at � � $s. The corresponding curves for the rel-
ative merit factor % � %' of model sets � and ' are plotted
in Fig. 22 for � � $� 
�� � � � � $�. It is clear that the two
figures agree almost perfectly.

In the simulation, the true modes were generated ran-
domly with a distribution given by (48). They were not
known to the estimators, not allowed to jump (for simplic-
ity), and correspondingly AMM estimators were used based
on the model sets ����', respectively, assuming that the
true mode has a distribution given by their corresponding
pmfs ��� , �� � � , where � � �� �, or '. The ini-
tial state of the system was �� � �
���� 
��� ���� 
��	� and
each estimator used �� as the initial state estimate.

Clearly, the above procedure still works even if the op-
timal model set � is large. In many practical problems,
the optimal model set for a given set of scenarios of in-
terest is (approximately) known but may be too large to
be used in an MM estimator. This example demonstrates
how to choose between two model sets given this optimal
model set, without using actual measurements or simula-
tion. Clearly, the introduction of an proper probabilistic



model of the scenarios, such as the Gaussian mixture model
(42), is a key here. We point out that the circular criterion
is also applicable for the cases where measurements are in-
volved.
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Fig. 21: Difference in prediction of MM estimators: ���� � ����

and ���� � ��	�.

14 Selection of Estimatee
Consider for simplicity a parameter estimation problem

by minimizing �	� �	��, where 	 is an unknown parameter.
As an example, suppose we would like to use an MM

estimator to determine sampling interval � [28] using the
following empirical relation [30, 7]

� � ����)

�
5�
�

9

5

���	
1��	�


 � ��$1��
(49)

where everything except 5 is known. Is it good, as proposed
in [28], to estimate

$5� � ��
���

5����5 � 5��*� (50)

first and then put
�$5� into the above formula? The an-

swer is no! As pointed out in [13] this estimator is not even
unbiased.
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sampling interval � (� is inferior to � if and only if � 
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In fact, if the ultimate goal is to estimate the sampling
interval, then it is best to use

� � ����) �	
%
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�

9
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 � ��$1��

where

�	 �

��
���
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This is because if

	 � ��:�� �	 � ��	�*	� �: � ��:�*	

then

�	 �
��
���

	���	 � 	��*�

� �

'
��
���

:���: � :��*�
(

� ���:�

if and only if � is a linear function.
There are many other advantages of using �	 than using

���:�. In general, we should design the model set in the
space of 	 rather than of :. For more details, the reader is
referred to [13].

15 Conclusions
Model-set design, choice, and comparison have been

considered in a general setting. We have not only argued
for the need for and the benefit of probabilistic modeling of
the models to be designed as well as the true mode, but also
proposed that they be modeled as random variables for of-
fline model-set design, choice, and comparison. Based on
such probabilistic models, we have presented the following
general results: (a) three general, systematic approaches to



model-set design based on minimizing mismatch in distri-
bution, minimizing modal distance, and moment matching;
(b) a variety of optimality criteria and measures for base-
state estimation, mode estimation, mode identification, and
hybrid-state estimation; (c) several (optimal or data effi-
cient) computationally efficient hypothesis tests for solving
representative model-set choice problems; and (d) the con-
cept and two quantification functions of relative efficacy of
each model in a set that describes how effectively it cov-
ers regions of the mode space. Several simple examples
that illustrate how these theoretical results can be used for
model-set design, choice and comparison have been given.

Many of the general results presented in this paper are
also useful for performance evaluation of MM algorithms.

A Appendix
A.1 Metric Space of Distributions

Let � be the set of cdfs. By the Lebesgue decompo-
sition, it consists of absolute continuous, piecewise con-
stant, and continuous but not absolute continuous cdfs —
which correspond to continuous, discrete, and singular ran-
dom variables, respectively — and their convex linear com-
binations. Define the distance between any two cdfs �����
and ����� (i.e., elements of �) by

���� ��� � ���
���

������ � ������

This distance definition is legitimate, as seen below.
Clearly, it satisfies positive definiteness and symmetry. To
see it satisfies triangle inequality, let �� be such that

�������� ������� � ���
���

������� ������

Thus the triangle inequality follows: For any ��� ��� �� �
� , we have

���� ��� � �������� �������
	 �������� �������� �������� �������
	 ���
���

������ � ������ ����
���

������� ������
� ���� ��� � ���� ���

As a result, �� � � is a metric space. Furthermore, we have
the following proposition.

Proposition. Let� be the set of cdfs of discrete random
variables. Then, it is dense in �� � �.

For model-set design, we are interested mainly in the
following constructive proof of this proposition, rather than
the proposition per se.

Proof. Given any cdf � � � and scalar � � �, there
exists a positive integer � � �
���� � smallest integer not
smaller than 
���, such that ����� 	 �, that is,

���
���

�� ��������� 	 �

where � � � is the cdf of a discrete random variable, de-
fined by the pmf 	���� � �

� � � � 
� � � � � � , with

�� � ��
���

�
� ��� �

�� 
��

�

�
�

if � ��� �
�� 
��

�
has a solution

�� � ��
���

�
� ���� �

�� 
��

�
� � ����

�
�

if � ��� �
�� 
��

�
has no solution

Note that in the case where � ��� � ���	�
� has no solution,

�� may be a repeated point in the sense that

�� 
� 
��

�
� � ���� �

�� 
��

�
� � � �

�
��  � 
��

�
� � ���� �

��  � 
� 
��

�

(e.g., when � ���� has a jump of magnitude greater than �).
In this case, we use �� � � � � � ���� and thus 	���� �
� � � � 	������ �

���
� . This completes the proof.

Fig. 1 also serves to illustrate this proof.
An important by-product of this proof is that it pro-

vides a systematic procedure of finding the cdf of a discrete
random variable that has a minimum number � of jumps
among all such cdfs that are within a given distance � to
any given cdf. This optimality is clear: Corresponding to
any other cdf �� � � with a number � � � � of jumps,
there is always a cdf � ��� that would make the requirement
������ �� ���������� 	 � violated.

Although� is dense in �� � �, the latter is not separable
with respect to � because � is not a denumerable set. It
seems that �� � � is not separable.

A.2 Mathematical Details of Minimum–
Distance Design

Proof of Theorem 6.1. (a) Given any partition � �
���� � � � � ��� of mode space �, we have, for any model set
� with � elements,

�������	 �
�
�

�
��

������� ���

�
�
�

��� � ������������� � ��	

�
�
�

��� � ������
�

��������� � ��	

By definition, the (generalized) centroid � � � ��� mini-
mizes ��������� � ��	. The optimality condition A thus
follows.



(b) Note that the nearest-neighbor partition
���� � � � � � ���� of mode space � has the smallest ex-
pected metric given any model set � � ���� � � � ����:

�������	 �
�
�

�
��

������� ���

�
�
�

�
���

������� ���

�

�
�

���
���

������ ���

because

������ � ���
���

������ �� � ���

On the other hand, any partition with nonzero probability
of the set of points such that ����� � ������ �����
would clearly have

�������	 �
�
�

�
��

������� ���

�

�
�

���
���

������ ���

where ���� � � � � ��� is an arbitrary partition of the mode
space �. For a given pair ������� of distinct models, since

��� � ��� � ���
���

��������� � ��� 	

���� � ��� � ���
���

��������� � ��� 	

���� � ���� ���
���

��������� � ��� 	

� ��� � ��� � ���
���

��������� � ��� 	

���� � ���� � ����� ���
���

��������� � ���� � ����	

� ��� � ���� � ����� ���
���

��������� � ���� � ����	

���� � ��� � ���
���

��������� � ��� 	

grouping points in ��� with ��� or with ��� leads to the same
�������	. Thus, points in ��� may be assigned to either
�� or �� . Note, however, that this results in different (gener-
alized) centroid pairs ���� � ����, either or both of which may
differ from the given model pair �� �����. The optimality
condition B thus follows.

Proof of Theorem 6.2.(a) By the total expectation the-
orem, we have

���	 �
�
�

����� � ��	��� � ���

�
�
�

����� � ��� �
�
�

����� � ��� � ���	

where ��� � ��� � ��� � ��� because �� is covered
by �� exclusively.

(b) Note first that the random model (with � � covered
by �� exclusively) can clearly be written as a linear com-
bination of the observables 
������ (i.e., � � ��, which is
random before � is known)

� �
�
�

��Æ���� �
�
�

��
������

As such, model set design (with �� covered by �� exclu-
sively) can be viewed a problem of estimating � using ob-
servables 
������; this estimator is always linear whether it
is optimal or not. On the other hand, it is well known that a
conditional-mean (i.e., centroid) estimator is optimal in the
sense of minimizing the MSE �������������	. Such an
(optimal linear) estimator satisfies the orthogonality princi-
ple: ��
������������	 � ����. Therefore,

���������	 � �

�'�
�

��
������

(
������

�
�

�
�

��� �
������������	 � �

(c) It follows directly from (b) that

�����	 � ������ �����	�	 � �����	

� ����� �����	��	 � �����	

Taking trace yields �����	 � �����	 � �����	.
(d) By (b), we have

�������������	 � ���������	

� �����	������	 � �����	������	

Taking trace yields �������������	 � �����	������	.
(e) It follows from (b) directly.

A.3 Mathematical Details of Moment-
Matching Design

Proof of Theorem 7.1. Since �� is a positively
weighted sum of dyads of  ��� � � � , where  �� � �� �
��, its rank is equal to the dimension of the linear space
spanned by  ��, that is, the number of linearly independent
vectors in the set �  ��� � � ��. It thus follows from the fact�
���  ��	� � � that rank���� 	 ������ ��
� '������;

that is,

��� �� � � rank���� � 


For � to match �� and ��, we set �� � ��� �� � �� and
thus ��� �� � � rank�����
. The equality holds when we
choose a minimal set ���� � � �
� � � � �rank�����
��with
as many as rank���� linearly independent vectors, which
can be done, as the corollary of Theorem 7.2 states. This
completes the proof.



Proof of Theorem 7.2. Use induction. For � � 
, it
clearly satisfies (9). Assume that it satisfies (9) for � �
 � 
; that is,
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Then, for � �  , we have
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That is, it satisfies (9) for � �  . This completes the proof.
Note also that all self skewnesses are clearly equal to zero:
���� ��	 � ��� 	 �, where �� � is the  th element of
� because

���� ��	 �
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���
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��	� 	
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Proof of Theorem 7.3.Clearly, the probability masses
sum up to unity and the mean is zero. The covariance is
given by
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�
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���

diag
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This completes the proof.

Proof of Theorem 7.4.Clearly, the probability masses
sum up to unity and the mean is zero. The covariance is
given by
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���

diag
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!�#��
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This completes the proof.

Proof of Theorem 7.5.Clearly, the probability masses
sum up to unity and the mean is zero by symmetry. Without
loss of generality, assume the distance between any two ad-
jacent models is 
. Assume a general diamond of $ layers.
Let each model on the circle of radius %�� have probability
	�� . By symmetry, �� is diagonal. Thus it suffices to show
that �� is proportional to identity matrix � (i.e., � � � !�),
that is ���
� 
� � ����� �� for the 2D case, where ����� ��
is the �th diagonal entry of ��. Now consider models on the
circle of radius %�� . Denote their total contribution to co-
variance by ��� . For odd � with 
 	  	 ��� 
���, the  th
model on the �th hexagonal layer is the �th model counting
back from the hexagonal vertex, where � � ��� 
����  ,



and thus we have
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For even � with � 	  	 ��� � 
, the  th model on the �th
hexagonal layer is the �th model counting back from the
hexagonal vertex, where � � ����
�  � and thus we have
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For even � with  � 
, we have
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�
����� � ���

�
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It can be easily verified that in all cases,

����
� 
� � ������ ��

The case with a higher dimension follows from symmetry.
This completes the proof.
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