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Abstract – This paper presents several examples that il-
lustrate how the theoretical results presented in Part I [9]
and several other places can be applied, along with a
demonstration of their effectiveness, in the context of MM
estimation for Air Traffic Control surveillance. Model-set
design and choice examples are presented. The importance
and usefulness of modeling true mode and models as ran-
dom variables are demonstrated. How such a probabilistic
model can be constructed is also demonstrated.
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1 Introduction
Model-set design is the most important issue in the ap-

plication of multiple-model algorithms. Many publica-
tions have appeared reporting various effective application-
specific designs. However, very little progress has been
made so far in the theory of model-set design (see, e.g.,
[4, 3, 13, 5, 11]). In particular, there is a lack of gener-
ally applicable and systematic methodologies for model-set
design. Part I [9] presents theoretical results for model-set
design in a general setting, including several general design
methods. The generality of these results makes them appli-
cable to many practical situations. As usual, however, this
generality is achieved at the price of being abstract. This
may hamper their application.

Model-set design is closely related with some other is-
sues (e.g., model-set choice, adaptation, and comparison)
for which some theoretical results are available, such as
those presented in [11, 8, 6, 7].

In this paper, we present several examples that demon-
strate how the theoretical results of Part I and previously
publication theoretical results can be used in model-set de-
sign and choice. A key that underlies these application ex-
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ample is the probabilistic modeling of the true mode and
models, as proposed and discussed in Part I.

Most examples presented here deal with the following
simple system with position-only measurements

xk+1 = Fxk + wk; zk =

�
1 0 0 0
0 0 1 0

�
xk + vk (1)

where x = [x1; _x1; x2; _x2]
0, and process and measure-

ment noises have constant means �w, �v and covariances Q,
R, respectively. Assume that the linear-Gaussian assump-
tion of the Kalman filter is valid. Two generic types of
model are considered: nearly constant-velocity (CV) model
and coordinated-turn (CT) (with a known turn rate) model,
given by [10]

FCV = diag[F2; F2]; F2 =

�
1 T
0 1

�
(2)

FCT(!) =
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0 sin!T 0 cos!T

3
77775 (3)

where T = 5s is sampling period. Denote by CT(3Æ/s) a CT
model with turn rate ! = 3Æ/s. Note that CV = CT(0Æ/s).

All numerical examples presented in this paper are based
on the use of the above CT and CV models in one or more
sets. These models come primarily from the considera-
tion in maneuvering target tracking for Air Traffic Control
(ATC) surveillance [2, 1].

2 Model-Set Design
2.1 The Design Problem

Consider a problem of surveillance for an ATC system.
Suppose we decide to use an MM algorithm with a setM of
three CT models: m1 = !1, m2 = !2, m3 = !3. Clearly,
to design this set M optimally in some sense, a probability



density function (pdf) f(s) of the true turn rate s is needed.
We propose the following Gaussian-mixture model:

f (s) = c0N0 (s)+ cN1 (s)+ cN�1 (s) ; c0+2c = 1 (4)

where

N0 (s) =
1p
2��0

e
� s2

2�20 ; N�1 (s) =
1p
2��

e�
(s�!s)

2

2�2

(5)
and !s is a known standard turn rate. This model can be
well justified if most flights will either approach/departure
the runway directly without a turn, or with a turn of an ex-
tremely slow rate or a rate close to the standard one (�! s).
Note that f (s) may or may not have three peaks, depending
on the parameters !s, c0, c, �0, and �.

Consider a specific example with

c0 = c = 1=3; �0 = � = 1Æ=s; !s = 3Æ=s (6)

Its pdf is plotted in Fig. 1.
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Fig. 1: The probability density function of the true turn rate !.

2.2 Design by Minimizing Distribution Mis-
match

Clearly, the distribution-based approach of Part I can
be applied to solve this problem for the specific example
with (6). Assume that we want to use only three models.
First, plot the cdf Fs(x) of the true mode (its pdf
is plotted in Fig. 1) as in Fig. 2. Then, since
Fs(�3Æ=s) � 1=6, Fs(0) = 3=6, and Fs(3

Æ=s) � 5=6,
the simple distribution-based design yields the model set
M = f!1; !2; !3g = f0;�3Æ=sg, with the corresponding
initial model probabilities f1=3; 1=3; 1=3g. Note that it
turns out that we have a model at each peak of the pdf
fs(x). This would not be the case if the three peaks
are closer or � is larger. Clearly, this approach is more
beneficial when we want to have more models.
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Fig. 2: Model-set design via cdf of turn rate !.

2.3 Design Procedure for Multivariate Case
The above example is simple because the true mode is

one-dimensional. We now describe a design procedure for
2D case, which uses a “minimal” number of models given
any tolerance on mismatch between the cdfs of the mode
and (random) model. It can be easily extended to higher
dimensions.

Consider the cdf of a 2D mode s: Fs(x; y) = F (x; y).
As explained in Part I, design of a model set along with the
initial model probabilities (i.e., model weights) amounts to
constructing a random variable m (i.e., a random model)
with a certain cdf Fm(x; y). Our goal is to determine loca-
tions of a “minimal” number of models along with proba-
bility weights such that the resultant cdf Fm(x; y) satisfies
the requirement maxx;y jFs(x; y)� Fm(x; y)j � �.

Let D(x; y) = Fs(x; y) � Fm(x; y) be the difference
in cdf. Assume for simplicity that F (x; y) is continu-
ous. In Fig. 1, the origin and the upper right corner
stand for (�1;�1) and (1;1), respectively, at which
F (�1;�1) = 0 and F (1;1) = 1. Note that F (x; y) is
monotonically increasing.

The procedure consists of three steps, as illustrated in
Fig. 3.

First, determine the equal-height lines l1��, l1�3�, : : :,
l1�(2N�1)�, l�, where N is an integer such that � < 1 �
(2N � 1)� � 3�. This means that F (xi; yi) = 1 � i� for
any point (xi; yi) on the line l1�i�.

Second, determine the pointsA1; A2; : : : ; AN . The loca-
tion ofA1 is (x1; y1). It minimizes jF (x1;1)�F (1; y1)j
among all points on l1��. The point A1 determines two ref-
erence lines for the next point A2. Its location is (x2; y2),
which minimizes jF (x2; y1)�F (x1; y2)j among all points
on l1�2�. Ai is determined likewise.

Third, determine the model locations m1;m2; : : : ;mm.
We place models on the horizontal and vertical lines de-
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Fig. 3: Illustration of model-set design by approximating cdf.

termined by points A1; A2; : : : ; AN . For the line x2-A2 it
uses the next line x1-A1 as a reference. Note that F (x1; y)
is monotonically increasing on the line x1-A1. If a point
(x1; y

k) is the lowest point such that D(x1; y
k) > � , then

choose (x2; y
k) as a model location. This process is done

from left to right (i.e., for xN ; : : : ; x1) and from bottom up
(i.e., for y1; y2; : : :).

The weight of each model is determined at the same time
the model location is determined. The weight is “how high”
a jump is needed at each model location. The upper bound
on the height of a jump of a model at (x i; yk) is determined
by the difference D(x; y) along the line xi�1-Ai�1 at or
above yk.

The model locations and weights on the horizontal line
yi-Ai are determined in exactly the same way.

Fig. 4 shows an example of the true pdf and the model
locations designed, depicted by the sharp peaks. In the de-
sign, the tolerance � = 0:1 was chosen. The resultant model
locations concentrate around the major peaks of the true
density. Fig. 5 shows the error D(x; y). It is bounded by
� = 0:1, as required.

2.4 Design by Minimizing Modal Distance
We now demonstrate how to design M by minimizing

an optimality criterion for mode estimation. Consider mini-
mizing the average modal distance squared, dropping s 2 S
for simplicity,

ks�mk2m2M = E[(s� !)2 jm 2M ]

= E[E[(s� !)
2 js;m 2M ]jm 2M ]

=

Z 1

�1

X
i

(s� !i)
2
P fm = !ijm 2M; sg f(s)ds

By symmetry of f(s), !1 = 0, !2 = !, !3 = �! and
we need only to determine the optimal !. Thus, we need

Fig. 4: The true pdf and designed model locations.

Fig. 5: D(x; y)—the difference in cdf.

only to solve the following optimization problem

min
!

J =

Z
[s2Pfm = 0jsg+ (s� !)2Pfm = !jsg

+(s+ !)2Pfm = �!jsg]f(s)ds (7)

We emphasize that conditional model probabilities
wi(s) = P fm = !ijm 2M; sg given true mode in the
above is not to be confused with the unconditional model
probabilities P fm = !ijm 2Mg. For example, compare
(9) with (12). Thus, the problem becomes

min
!

J =

Z
[s2w1(s)+(s�!)2w2(s)+(s+!)2w3(s)]f(s)ds

(8)
For simplicity, however, we use the rectangular window,



which leads to the following pmf:

wi(s) = Pfm = !ijsg =
8<
:

1[s; (�!=2; !=2)] i = 1
1[s; (!=2;1)] i = 2
1[s; (�1;�!=2)] i = 3

(9)
where 1[x;R] is the indicator function, defined by

1[x;R] =

�
1 x 2 R
0 x =2 R

(10)

(9) indicates that models m1 = 0, m2 = !, or m3 = �!
is in effect if and only if the true turn rate falls inside the
intervals (�!=2; !=2), (!=2;1), or (�1;�!=2), respec-
tively. In other words, these intervals are the effective cov-
erage of the three models. This use of the rectangular win-
dow is well justified by Theorem 5.1 of Part I since it satis-
fies the nearest-neighbor condition (Condition B).

With (9), the cost function is

J =

Z 3X
i=1

(s� !i)
2P fm = !ijm 2M; sg f(s)ds

=

Z !=2

�!=2
s2f(s)ds+

Z 1

!=2

(s� !)2f(s)ds

+

Z �!=2

�1
(s+ !)2f(s)ds

=

Z 1

�1
s2f(s)ds+ 2!2

Z 1

!=2

f(s)ds� 4!

Z 1

!=2

sf(s)ds

= c0�
2
0 + 2c(�2 + !2s) + 2!2P2 � 4!J4 (11)

where P2 =
R1
!=2 f(s)ds, given by

Pi = Pfm = !ijm 2Mg =
(
2
R !=2
0 f(s)ds; i = 1R1

!=2 f(s)ds; i = 2; 3

=

8>><
>>:
c0 erf

�
!=2p
2�0

�
+ c erf

�
!=2�3p

2�

�
+c erf

�
!=2+3p

2�

�
; i = 1

1
2 (1� P

(2)
1 ); i = 2; 3

(12)

and J4 can be obtained by direct integration and using the
error function erf(x) = 2p

�

R x
0
e�u

2

du as:

J4 =

Z 1

!=2

sf(s)ds (13)

=
c0�0p
2�

e
� !2

8�20 +
c�p
2�

�
e�

(!=2+!s)
2

2�2 + e�
(!=2�!s)

2

2�2

�

+
c!s
2

�
erf

�
!=2 + !sp

2�

�
� erf

�
!=2� !sp

2�

��
(14)

For the specific example with (6), the above optimiza-
tion problem can be solved by plotting the above integrals
J vs. ! (Fig. 6) and identifying the minimum within the

interval of interest, which is around 3:05. Fig. 6(b) plots
the derivative dJ=d! obtained from Mathematica, which
verifies the minimum. Therefore, the corresponding best
model set is approximately M = f0;�3Æ=sg and the (ini-
tial) model probabilities are

P1 = Pfm = !1jm 2Mg = 1=3; P3 = P2 = 1=3
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Fig. 6: The average modal distance squared (and its derivative)
versus the turn rate !.

A design based on modal distance is particularly suitable
for such applications as fault detection and isolation where
the primary objective of hybrid estimation is mode estima-
tion.

Note that the above procedures are still applicable even
if a more sophisticated probabilistic model than (4) is used.
However, if more than one parameter is to be determined,
then the resulting optimization problem is in general multi-
dimensional.

2.5 Effectiveness of Designs
Monte-Carlo simulations were conducted to verify the

above model-set designs. In the simulation, 500 true
modes were generated randomly with the distribution given
by (4). They were unknown to the estimators and not



allowed to jump. The initial state of the system was
x0 = [1000; 100; 200; 120]0 and for simplicity each es-
timator used x0 as the initial state estimate. For each
true mode generated, 100 samples of base state trajecto-
ries and the corresponding measurement sequences were
generated. These measurements were used by an au-
tonomous MM (AMM, also known as static MM) es-
timator based on a model set—assuming that the true
mode belongs to the model set with the correspond-
ing pmf—to estimate the base state and the true mode.
Three AMM estimators x̂M , x̂M1 , and x̂M2 were ob-
tained, over the time steps k = 1; 2; : : : ; 10, based on
the model sets M = f0;�3Æ=sg, M1 = f0;�2Æ=sg,
and M2 = f0;�4Æ=sg, with the initial model prob-
abilities f1=3; 1=3; 1=3g, f0:3786; 0:2427; 0:3786g, and
f0:288; 0:424; 0:288g, respectively, calculated by (12).

Fig. 7 shows the RMS errors, average modal distances,
and mode estimation errors, as defined in [12]. These re-
sults support the above designs.

3 Model-Set Design Given Scenarios
Apart from the methods described in Part I and demon-

strated above, the hypothesis-testing based approach origi-
nally developed for model-set adaptation [8, 7] can also be
used for model-set design in a different manner. We now
give one such example.

An important question for model-set design is the fol-
lowing: Given a number of interested (or representative)
scenarios, how to design a model set with fewer models
than the number of scenarios?

Suppose for simplicity that the scenarios of interest are:
true turn rates are 0Æ/s, 1Æ/s, 2Æ/s, 3Æ/s and 4Æ/s, respec-
tively, and the model set to be designed is f0;�!g. In other
words, the task is to determine! such that the model set can
cover the five possible true turn rates effectively. Varying
!, Fig. 8 shows (over 100 Monte-Carlo runs) the percent
of correct decision of model selection for the five true turn
rates of interest using multiple model-set sequential proba-
bility ratio test (MMS-SPRT) of [8] with CV model as the
special model. It seems reasonable from Fig. 8 to choose
! = 3Æ/s so that the correct decision is still above 80%
even in the worst case where the true turn rate is 1Æ/s or
2Æ/s.

4 Model-Set Choice
It was shown in [11] that for two arbitrary model sets A

and B with A � B, kx̂S � x̂Bk � kx̂S � x̂Ak holds if and
only if

r � rt =

p
b2 cos2 � + 1� b2 � b cos �

1� b
(15)
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Fig. 7: RMS errors, modal distances, and mode estimation errors
of three MM estimators.
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where

r =
kx̂S � x̂Ck
kx̂S � x̂Ak

cos � =
(x̂S � x̂A)

0 (x̂S � x̂C)

kx̂S � x̂Ak kx̂S � x̂Ck
and x̂C is the estimator based on model-set difference C =
B �A, that is, those models in B but not in A.

.......
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Fig. 9: Illustration of circular criterion for model-set choice.

The geometric interpretation of this criterion is simple
and interesting: Refer to Fig. 9. Model set B is better than
set A if and only if the estimators based on those models
in B but not in A falls inside the corresponding circle (a
ball if dimension is higher than two) determined by b =
Pfs=mijs2Bg
Pfs=mijs2Ag for some mi 2 A; that is, b is the ratio of
model probability in set B to the model probability in set A
for any identical model.

Note that this result requires the knowledge of the opti-
mal estimator x̂S using the optimal model set. We demon-
strate below how this seemingly unrealistic theoretical re-
sult can be used for model-set choice and comparison.

Suppose that the true turn rate s at a given time is
a discrete random variable with sample (mode) space
S = f0;�1Æ=s;�2Æ=s;�3Æ=s;�4Æ=s; 5Æ=s;�6Æ=sg and

its pmf is the following discrete version of (4): s is gen-
erated by (4) using the rectangular window and rounded to
the nearest one of the above 13 possible turn rates. In other
words,

P true
i = Pfs = !ijs 2 Sg

=

( R1
5:5 f(s)ds !i = �6Æ=sR !i+0:5
!i�0:5 f(s)ds !i 6= �6Æ=s

(16)

Note that at the given time the system is a coordinated-turn
system governed by (1) with FCT(!i) given by (3).

Consider two MM estimators x̂A and x̂B based on two
model sets A = f0;�3Æ=sg and B = f0;�1Æ=s;�3Æ=s,
�7Æ=sg, respectively. Consider the following model-set
choice problem: decide whether model set A is better than
set B using criterion kx̂S � x̂Bk � kx̂S � x̂Ak or equiva-
lently (15), for the set of scenarios of interest given above
in the form of a pmf (16).

To use criterion (15), we need the estimators x̂C based
on model set C = B � A = f�1Æ=s;�7Æ=sg and the op-
timal MM estimator x̂S , where its models have the same
probability mass as the true modes, given by (16); that is,

PS
i

�
= Pfm = !ijm 2 Sg = P true

i ;8i. The model proba-
bilities for the other estimators are defined similarly:

PB
i

�
= Pfm = !ijm 2 Bg =

8>>><
>>>:

2
R 0:5
0 f(s)ds; !i = 0R 2

0:5 f(s)ds; !i = �1Æ=sR 5
2
f(s)ds; !i = �3Æ=sR1

5 f(s)ds; !i = �7Æ=s

PA
i and PC

i are induced by P B
i in that they are obtained

from PB
i by deleting the probabilities of the models in B

but not in A, C, respectively, and scaling up the remain-
ing model probabilities such that they sum up to one. For
example,

PA
i

�
= Pfm = !ijm 2 Ag

=

(
2
c

R 0:5
0

f(s)ds !i = 0
1
c

R 5
2 f(s)ds !i = �3Æ=s

(17)

where c = 2
hR 0:5
0

f(s)ds+
R 5
2
f(s)ds

i
.

Note that each MM estimator x̂A, x̂B , or x̂C would be
optimal should its model set match exactly the mode space
in the sense that there is no approximation in the estima-
tion algorithm used—suboptimality arises only from the
fact that none of A, B, and C are equal to S.

For an estimator using model set M , where M could be
S, A, B, or C, the average value of the estimate at time T



is given by

�xM = E[x̂M jm 2M ] = E[E(xjz;m 2M)jm 2M ]

= E[xjm 2M ]

=
X

mi2M
E[xjm = mi]Pfm = mijm 2Mg

=
X
!i2M

[FCT(!i)�x0 + �wi]P
M
i (18)

where z is the measurement, x = Fx0+w follows from (1),
and �x0 is the prior state of the system, assumed be identical
for all models. Consider a specific example with (6) and

�x = [1000; 100; 200; 120]0; �wi = 0; T = 5;

Then we have

PS
i = f:1316; :1009; :1009; :1008; :1008; :1296;

:1296; :0807; :0807; :0202; :0202; :0021; :0021g
PA
i = f0:1901; 0:4050; 0:4050g

PB
i = f0:1316; 0:1462; 0:1462; 0:2804;

0:2804; 0:0076; 0:0076g
PC
i = f0:4753; 0:4753; 0:0247; 0:0247g

and thus

r2 =
(�xS � �xC)

0(�xS � �xC)

(�xS � �xA)0(�xS � �xA)
= 16:78802

b =
Pfm = 0jm 2 Bg
Pfm = 0jm 2 Ag =

Pfm = 3Æ=sjm 2 Bg
Pfm = 3Æ=sjm 2 Ag

= 0:6925

cos � =
(�xS � �xA)

0(�xS � �xC)

k�xS � �xAk k�xS � �xCk = �0:9999

It follows that

16:7880 = r > rt = 5:5041

and thus kx̂S � �xBk > kx̂S � �xAk. Consequently, we
conclude that model set A is better than set B for this prob-
lem. Note that it is hard to say based on our intuition or
experience which model set is better. Fig. 9 illustrates the
corresponding circular criterion, except that �xC should be
added at approximately (16:788; 180Æ).

Fig. 10 shows the RMS position errors of x̂S , x̂A, x̂B
averaged over 500 runs for the time steps k = 1; 2; : : : ; 10,
which correspond to sampling time T = 5; 10; : : : ; 50, re-
spectively. The above numbers correspond to the points of
the curves at T = 5s. The corresponding curves for the rel-
ative merit factor r � rt of model sets A and B are plotted
in Fig. 11 for T = 5; 10; : : : ; 50. It is clear that the two
figures agree almost perfectly.

In the simulation, the true modes were generated ran-
domly with a distribution given by (16). They were not
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Fig. 10: Difference in prediction of MM estimators: k�xS � �xAk

and k�xS � �xBk.
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known to the estimators, not allowed to jump (for simplic-
ity), and correspondingly AMM estimators were used based
on the model sets S;A;B, respectively, assuming that the
true mode has a distribution given by their corresponding
pmfs PM

i , 8i 2 M , where M = S; A, or B. The ini-
tial state of the system was x0 = [1000; 100; 200; 120]0 and
each estimator used x0 as the initial state estimate.

Clearly, the above procedure still works even if the op-
timal model set S is large. In many practical problems,
the optimal model set for a given set of scenarios of in-
terest is (approximately) known but may be too large to
be used in an MM estimator. This example demonstrates
how to choose between two model sets given this optimal
model set, without using actual measurements or simula-
tion. Clearly, the introduction of an proper probabilistic
model of the scenarios, such as the Gaussian mixture model
(4), is a key here. The circular criterion is also applicable
for the cases where measurements are involved.

5 Conclusions
The design and choice of a model set is the most impor-

tant issue in the application of the multiple-model approach.
As demonstrated in this paper, the theoretical results ob-
tained in Part I and several other publications are useful for
model-set design and choice.
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