
Proceedings of the 5th International Conf. Information Fusion
Annapolis, MD, USA, July 2002, pp. 26–33

Model-Set Design for Multiple-Model Method—Part I

X. Rong Li�

Department of Electrical Engineering
University of New Orleans

New Orleans, LA 70148, USA
Phone: 504-280-7416, Fax: 504-280-3950, xli@uno.edu

Abstract – The most important problem in the application
of the multiple-model approach to estimation is the design
of the model set. This paper deals with this challenging
topic in a general setting. Modeling of models as well as
true mode as random variables is proposed. Several gen-
eral methods for design of model sets, along with the ini-
tial model probabilities, are presented. They include distri-
bution approximation, minimizing mismatch between mode
and models, and moment matching. Examples that demon-
strate how the general results presented here can be applied
are presented in Part II.
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1 Introduction
Model-set design is the most important issue in the ap-

plication of MM estimation. The performance of an MM
algorithm for a given problem depends largely on the set of
models used and the primary difficulty in the application of
the MM method is the design of the model set. Numerous
publications have appeared in which ad hoc designs were
presented. Unfortunately, very limited theoretical results
on this important issue are available. It was shown theoret-
ically in [5] that the use of too many models is as bad as
the use of too few models. A circular criterion for model-
set choice was presented in [5]. When the mode space is a
continuous region, a necessary and sufficient condition was
presented in [6] for a convex combination of estimators to
be superior to each individual estimators, based on respec-
tive model sets. In order to apply the MM method to prob-
lems with uncertain parameters, two important questions
are: (a) which quantity is best selected as the estimatee (i.e.,
the quantity to be estimated) and (b) how to quantize the pa-
rameter space optimally. [2] provides theoretical results on
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the optimal selection of the estimatee. A procedure to de-
termine the choice of the quantization points was presented
in [8] given the number of quantization points. A necessary
condition for the effective performance of MM estimation
was presented in [1] for a jump linear time-invariant system
in terms of its dc gain.

This paper presents theoretical results on the model-set
design in a general setting. General results for probability-
distribution based, minimum-distance based, and moment-
matching design are presented. These results provide con-
crete designs as well as guidelines and insights that are
helpful for model-set design.

2 Probabilistic Modeling of Models
and Modes

In this paper, a mode refers to the physical behavior pat-
tern or structure of a system/process (or its precise math-
ematical model), and a model refers to the (possibly sim-
plified) mathematical representation or description of the
system or process on which an estimator is based (see [3]
for a more detailed explanation). Such a distinction is nec-
essary where mismatch between the model and mode is of
concern.

Denote by S the mode space, that is, the set of possible
modes under consideration. In general, mode space S may
be either a discrete (finite or countable) set or a continuous
region. In the latter case it is assumed that a system mode
may only jump from a point in S to another one, rather than
vary continuously.

A contribution of this paper is the recognition of the need
for and introduction of probabilistic modeling of models as
well as the true mode.

The need to have a proper description of the true mode
is evident: Without such a description, model-set design
and performance evaluation of MM algorithms are essen-
tially groundless — we can always find a scenario under
which any given realizable “optimal” model set is worse



than some other model set. Deterministic descriptions of
the true mode in the form of “typical” or “representative”
scenarios are prevailing in the literature of MM estimation,
particularly for performance evaluation. Such determinis-
tic descriptions have certain drawbacks. For example, the
choice of particular scenarios is fairly arbitrary, and thus
the corresponding performance evaluation results are less
objective or convincing since the performance of MM algo-
rithms is highly dependent on test scenarios. (The scenario
dependence of the performance of a hybrid estimation algo-
rithm is elaborated in [4].) It is impossible to develop gen-
eral, systematic methods for model-set design on the basis
of such “arbitrary” descriptions of the true mode.

We propose to model the true mode as a random vari-
able s : 
 ! S, where S is the mode space and 
 is the
sample space. The random variable s may be continuous,
discrete, singular, or hybrid. Let Fs(x) and fs(x) be its cu-
mulative distribution function (cdf) and probability density
function (pdf) if exists, respectively. In practice, they can
be obtained by past data using statistical techniques or sim-
ply from experience. For example, a transposed (i.e., sym-
metrical) three-phase overhead transmission line in a power
system has three simple modes (i.e., normal, single-phase to
ground fault, and phase-to-phase fault) and several compos-
ite modes (e.g., two-phase to ground fault and three-phase
to gound fault). Data of the past operation records (e.g.,
fault rate and percentage of fault type) provide the required
probability distribution of the mode. For a particular ap-
plication of MM estimation, if Fs(x) is not available at this
stage, the benefit of having such a cdf — as presented in this
and future papers — suggests that it may be worthwhile to
obtain such a cdf. This is a manifestation of guidance of
theory to practice. Without such guidance, most practical
probabilistic models (e.g., Gaussian models, Poisson mod-
els) would not have been developed and probability theory
would have very limited practical value.

Similarly, we also propose that the problem of design-
ing a model set M (and the corresponding initial model
probabilities) be formulated as that of designing a random
model m with range M ; that is, design a random vari-
able m : 
 ! M , where 
 is the sample space. As
such, the following needs to be determined: (a) cardinal-
ity jM j (i.e., number of models); (b) all elements m i of
M = fm1;m2; : : : ;mjMjg (i.e., model locations/values);
(c) prior (or initial) model probabilities Pfm = xg. Note
that cdf Fm(x) of m, or equivalently, probability mass
function (pmf) pm(x) = Pfm = xg summarizes all infor-
mation needed. While this concept of random model may
appear alien to a practitioner, we need only to recall that
a random variable is (corresponds to) in fact nothing but
a properly defined set of deterministic numbers. It is ex-
actly in this way that a set of deterministic models used in
the MM method, along with the above constraints (a)–(c),
defines a random model.

More generally, the second and third generations of MM
algorithms require design of (Markovian) laws governing
model transitions based on transitions of the true mode.
Even more generally, the true mode is better modeled as
a random process s(t) : (
;F ; P )�T ! S; that is, s(t) is
a family of random variables, indexed by t 2 T and defined
on a common probability space (
;F ; P ). Similarly, the
problem of model-set design is better formulated as the de-
termination of a random process m(t) : (
;F ; P ) � T !
M, where M is the total model set. These more general
formulations are useful for model-set adaptation and design
of model transitions. For offline model-set design (the topic
of this paper), however, it usually suffices to consider s and
m as random variables, completely described by their cu-
mulative distribution functions.

For simplicity, we assume that the true mode is continu-
ous in this paper. The same approach works for other cases,
although modification is sometimes needed. We always as-
sume that the model is discrete (in fact, finite).

For many applications, the true mode s has a real phys-
ical meaning directly (see Part II [7] for examples) and
the above probabilistic modeling is clearly reasonable. For
many other applications, however, s is an index of underly-
ing structures (or behavior patterns) and it is difficult, if not
impossible, to define a proper distance metric directly for S
convincingly with a clear interpretation. In such cases, cdf
of s may possibly be defined over an abstract space where
the elements of s are arranged such that the neighboring ele-
ments correspond to the neighboring structures in the phys-
ical world. Then a question is how to define the neighbor
concept for structures in the physical world? This question
can be answered by using, e.g., Kullback-Leibler distance
between the distribution or likelihood functions of any two
structures si and sj .

3 Formulation of Model-Set Design
Following the previous section, the true mode (at any

time) can be reasonably modeled as a continuous random
variable in many cases, while it is better modeled as a dis-
crete (or hybrid) random variable in many other cases. In
any case, its sample space S is usually much larger than the
model set M affordable in practice.

From the probabilistic modeling of the true mode and
models, it is clear that the model-set design is essentially a
problem of finding a discrete random variable m to approx-
imate a given random variable s, which can be continuous,
discrete, singular, or hybrid, depending on the application. 1

Unfortunately, to our knowledge, there is no generally ac-
ceptable solution to this problem in the literature.

1This probabilistic view also makes it quite intuitive the fundamen-
tal finding of [5] that the optimal model set M for the MM approach is
M = S—the performance of MM estimators deteriorates if either extra
models are used (M � S) or some models are missing (M � S)—and
the deterioration worsens asM and S become more mismatched.



We propose three classes of systematic solutions below.

4 Distribution-Based Design
The first solution is based on the idea of finding the cdf

Fm(x) of a discrete random variable (model)m to approxi-
mate the cdf Fs(x) of any given random variable (mode) s.
We describe this solution in the scalar case (i.e., for scalar
s and m) here and extend it to the vector case in Part II.

Assume that the cdf Fs(x) of true mode s is known.
Given a tolerance �, we want to construct the cdf Fm(x)
of a discrete random variable (i.e., model set) such that
jFs(x) � Fm(x)j � � for all x.

It can be shown that for any given cdf F1(x) we can find
the cdf F2(x) of some discrete random variable that is ar-
bitrarily close to F1(x) in terms of the following distance
metric

d(F1; F2) = max
x2R

jF1(x) � F2(x)j (1)

where R = [�1;1]. In other words, the problem under
consideration always has a solution. What is the minimum
number of models needed? The following lemma answers
this question.

Lemma 4.1. Given a tolerance � in the above distance
metric, the minimum number of models needed is given by

jM j = d1=2�e = smallest integer not smaller than 1=2�

A proper tolerance � is not always easy to come by. In
some cases, the number of models jM j is predetermined
directly from, say, resource for processing or computation.

Theorem 4.1 (Minimum-set design). Given jM j, the
model set M �, along with the pmf p�, (i.e., the random
model) that minimizes the distance metric defined by (1),
that is,

fM�; p�g = arg inf
fM;pg given jMj

sup
x2S

jFs(x)�Fm(x)j; m 2M

is given by

mi = arg
x2S

�
Fs(x) =

i� 1=2

jM j
�
; i = 1; : : : ; jM j (2)

M� = fm1;m2; : : : ;mjMjg

along with the following evenly distributed pmf (i.e., initial
model probabilities): for i = 1; : : : ; jM j,

pm(x)jx=mi
= Pfm = mijm 2M�g = 1

jM j (3)

This design is depicted in Fig. 1. Note that mi is chosen
to satisfy (2) only from the elements of S, and thus M � S.

This approach to model-set design is intuitively appeal-
ing. In essence, it partitions the mode space into equally
probable regions and places a model at the “center” (in fact,
median) of each region. As such, all models are equally

-
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Fig. 1: Approximating a cdf by a stair-case type cdf with given
tolerance.

loaded in that they are equally likely to take effect and cover
an region of equal probability. It uses the minimum num-
ber of models. It is also perfectly consistent with the com-
mon practice of assigning equal initial probability to every
model.

5 Minimum–Distance Design
In the previous section, we design a model m to approx-

imate the true mode s by constructing a cdf Fm(x) that is
close to the cdf Fs(x) — the design is actually done in the
space of the distribution functions. Alternatively, the design
can also be done in the vector space of random variables;
that is, find an m that is close to s in their vector space di-
rectly. In order to do this, a metric of the closeness between
model and mode is needed.

Closeness metric between model and mode. The dis-
tance metric in the vector space of random variables is
most often defined as the square root of the mean-square
value �d(s;m) = (E[d(s;m)])1=2, where d(s;m) = (s �
m)0(s �m). Of course, other metrics can also be defined,
such as �d(s;m) = (E[d(s;m)])1=p, where d(s;m) =
[(s �m)0(s�m)]p=2. When s and m are vectors, d(s;m)
is actually a scalar metric of the families of vectors, since
a random vector actually corresponds to a family of vectors
in a linear space. We will consider the more general metric
with an arbitrary p but we are more interested in the case
p = 1; 2.

For s 2 S and m 2M , we have

E[d(s;m)] = E[E[d(s;m)js]]
=

Z
S

X
mi2M

d(s;mi)Pfm = mijsgdF (s) (4)

It is thus seen that the closeness of m and s depends on
wi(s) = Pfm = mijsg, the model probability conditioned
on the true mode s. A study of the conditional probability
Pfm = mijsg will be reported later.

In this paper, for simplicity, we assume

Pfm = mijsg = 1(s;Si) =

�
1 s 2 Si
0 s =2 Si

(5)



This is equivalent to assuming that

ffm = m1g; : : : ; fm = mNgg = ffs 2 S1g; : : : ; fs 2 SNgg
is a partition of the mode space S; that is, each model cov-
ers a subset (region) of the mode space exclusively, which
is often perceived in practice. With this assumption, (4) be-
comes

E[d(s;m)] =
X
i

Z
Si

d(s;mi)dF (s) (6)

We now present several general results under this as-
sumption.

Theorem 5.1 (Optimality conditions of model set). As-
sume that S = fS1; : : : ; SNg is a partition of the mode
space S, where Si is covered by model mi exclusively in
the sense fs 2 Sig = fm = mig. Then, the following con-
ditions hold for the optimality in the sense of minimizing
distance metric �d(s;m) defined above.

A. Given any partition S = fS1; : : : ; SNg of mode space
S, a model set M = fm1; : : : ;mNg is optimal if
each model mi is a (generalized) centroid of the cor-
responding partition member Si:

mi = s�i
�
= argmin

m
E[d(s;m)js 2 Si] (7)

B. Given any model set M , a partition is optimal if and
only if points in any partition member S i are closer to
mi than to any other mj 2M (almost surely):

Si = fs : d(s;mi) < d(s;mj);8mj 6= mi;mi;mj 2Mg
that is, a point s must be assigned to its nearest neigh-
bor mi among all m 2 M ; the set of equal-distance
points

Sij = fs : d(s;mi) = d(s;mj) � d(s;mk);8mk 2Mg
may be assigned to either Si or Sj .

Remarks. (a) This theorem basically states that under
the stated assumption, if exists, the optimal model set is
within the class in which models are located at the (general-
ized) centroids of members of a nearest-neighbor partition
of the mode space. (b) The generalized centroid reduces
to the conditional mean (i.e., the centroid (mean) of S i)
s�i = E[sjs 2 Si] if d(s;m) = (s�m)0(s�m) or the con-
ditional median (i.e., the median ofS i) if d(s;m) = js�mj.
(c) Both conditions are quite intuitive. (d) This theorem
does not address the issue whether an optimal model set
that minimizes the above metric is existent or unique, or
whether a solution that meets conditions A and B is existent
or unique. (e) The optimality conditions of this theorem ac-
tually hold for closeness metrics more general than defined
above.

Most importantly, this theorem provides a theoretical ba-
sis for iteration procedures to find an optimal model set
under the stated assumption. For example, we may start
with an initial partition of mode space; find a candidate of
the model set as the (generalized) centroid of each parti-
tion member; use the nearest-neighbor rule to obtain the
corresponding (updated) partition; and repeat this process
until convergence. Alternatively, we may start with an ini-
tial model set; use the nearest-neighbor rule to obtain the
corresponding partition; obtain an update of the model set
as the (generalized) centroid of each partition member; and
repeat this process until convergence.

The above centroid model set has several nice and intu-
itive properties, as presented in the next theorem.

Theorem 5.2 (Properties of optimal model set). Any
model set that covers each Si by its centroid mi = E[sjs 2
Si] exclusively (i.e., fs 2 Sig = fm = mig) has the fol-
lowing properties:

(a) The (random) model and mode have the same mean:
E[m] = E[s].

(b) The modeling error is orthogonal to model: E[m(s �
m)0] = 0.

(c) E[ms0] = E[sm0] = E[mm0] and thus E[m0s] =
E[s0m] = E[m0m], meaning that cross power of the
mode and model is equal to the power of the model.

(d) E[(s � m)(s � m)0] = E[ss0] � E[mm0] and thus
E[(s � m)0(s � m)] = E[s0s] � E[m0m], meaning
that minimum MSE is the power of the mode minus
the power of the (optimal) model.

(e) E[s(s�m)0] = E[(s�m)(s�m)0] and thus E[s0(s�
m)] = E[(s�m)0(s�m)] .

Remarks. It follows from Theorem 5.1 that given a par-
tition of the mode space, a model set that covers S i by
mi = E[sjs 2 Si] exclusively is optimal in the sense of
minimizing MSE matrix E[(s�m)(s�m)0] and thus min-
imizing MSE scalar E[(s�m)0(s�m)].

6 Moment-Matching Design
In some practical situations, some moments, but not the

complete distribution, of the true mode s are known. In
some other situations, we do not have a good knowledge of
a proper tolerance jFs(x) � Fm(x)j � �, but only want to
match the moments of m to the known moments of s.

Given up to the qth moments of s, we want to find a dis-
crete random variable m (i.e., the number and locations of
points mi with the associate probability mass pi) such that

E[mn] = E[sn]; n = 1; : : : ; q

Several questions arise immediately. For example, what
is the minimum number of models such that up to the qth



moments of s and m are matched? How to design the cor-
responding pmf (locations mi and probability masses pi) of
m? Given the number of models jM j, how to design pmf of
m that matches as many as possible the lowest moments of
s? For simplicity, we will consider only matching mean and
covariance in this section since it is the common practice.

Let the pmf of m be

pi = fm = mijm 2Mg > 0; 8i 2 J = f1; : : : ; jM jg

where M = fm1; : : : ;mjMjg. Then, the mean and covari-
ance of m are

�m =
X
i2J

mipi; Cm =
X
i2J

(mi � �m)(mi � �m)0pi

6.1 Minimum Model-Set Design
The following theorem answers the first question above

for q = 2.
Theorem 6.1 (Minimum models). The minimum num-

ber of models needed for m to match the mean �s and co-
variance Cs of the true mode s is rank of Cs plus one:

minimum number of models = rank(Cs) + 1

Now consider the problem of design fm�
i ; pi; i 2 Jg

such that
X
i2J

pi = 1;
X
i2J

m�
i pi = �s;

X
i2J

(m�
i ��s)(m�

i ��s)0pi = Cs

(8)
In fact, we only need to design fmi; pi; i 2 Jg such that

X
i2J

pi = 1;
X
i2J

mipi = 0;
X
i2J

mim
0
ipi = In�n (9)

where n = rank(Cs). All designs presented below are for
this standard problem. Given a problem with known mean
�s and covariance Cs, the design fmi; pi; i 2 Jg can be
converted to design fm�

i ; pi; i 2 Jg bym�
i = A[m0

i;0]
0+�s,

which satisfies (8), where Cs = Adiag(In�n;0)A0.
Theorem 6.2 (Minimal-set design). The design

fmi; pign+1i=0 with

0 � p0 < 1; p10 = p0; p11 = p12 = (1� p0)=2

m1
0 = 0; m1

1 = (1� p0)
�1=2; m1

2 = �(1� p0)
�1=2

...

pj0 = p0; pji = pj�1i =2; i = 1; : : : ; j

pjj+1 = (1� p0)=2; mj
j+1 =

h
0;�(1� p0)

�1=2
i0

mj
0 = 0; mj

i =
h
(mj�1

i )0; (1� p0)
�1=2

i0
; i = 1; : : : ; j

satisfies (9), where mi = mn
i ; pi = pni ; i = 0; 1; : : : ; n+1,

and the superscript denotes dimension of a vector.

Fig. 2 illustrates this design with a minimal model set
for n = 2; 3, respectively. For n = 3, m0 is at the center
of the cube, while all other models are on the surface of the
cube; m4 is at the center of the bottom square. Note that the
coordinates of every model are either 0 or �(1 � p0)

�1=2.
The mean and covariance are matched by the probability
mass:

Pj
i=1 p

j
i = pjj+1.

�

-

p1p2

p3

p0

m1
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m3

m2

x1

x2

-
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Fig. 2: Illustration of a minimal-set design.

In this design, 0 � p0 < 1 is a free parameter for us to
choose. If we choose p0 = 0 (i.e., delete m0), we actually
have n + 1 models, which by Theorem 6.1 is the smallest
possible number of models to match mean and covariance.

Remarks. (a) Although the model m0 is not needed to
match mean and covariance, in practice, such a model lo-
cated at the expected true mode is usually very beneficial
for MM estimation. (b) The value of p0 affects higher order
moments — a greater p0 implies that the distribution of m
is more concentrated around the mean. (c) This minimal-
set design depends very much on not only the choice of
the coordinate system but also the artificial labeling of each
coordinate (e.g., the locations and the probability masses
of the models would vary if x1 and x3 of Fig. 2(b) were
interchanged). The latter dependence is entirely artificial
and is better eliminated, while the former dependence is
inevitable because the coordinate directions (after transfor-
mation from m� to m) are actually eigenvector directions.

Minimal-set designs are not unique. Fig. 3 illustrates
another simple minimal-set design in the 3D case. Its
extension to a higher dimension is straightforward. In
this design, a model with probability mass p is placed on
each positive semi-axis of equal distance � from the origin
(i.e., mi = �ei, 8i, where ei = [01�(i�1); 1;01�(n�i)]

0

is the ith coordinate vector); the last model is mn+1 =
�[�1;�1; : : : ;�1]0 with probability mass q. It is clear that
the mean and covariance are �m = 0 and Cm = In�n if
q = p and � = � = 1=

p
p. As for the design of Fig. 2, if

desirable, an additional model may be placed at the origin
with probability p0 without affecting mean and covariance.
Then p = (1� p0)=(n+ 1). In Sec. 6.3, q 6= p and � 6= �
are chosen to obtain a minimal set with an equal distance
between models.
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The minimal-set design of Fig. 2 has attractive fea-
tures that the model locations and probability mass are de-
termined recursively as dimension increases and that all
self skewnesses are equal to zero in the design of Fig. 2:
Ef[m(j)� �s(j)]3g = 0;8j � n.

6.2 Symmetric Model-Set Design
All the above minimal-set designs clearly have an asym-

metrical distribution spatially and possibly probabilisti-
cally. For many applications in practice, it is appealing that
the models are symmetrically distributed and invariant to
the artificial labeling of coordinates. For this reason, we
present the following theorem.

Theorem 6.3 (Minimal symmetric-set design). The de-
sign fmi; pig2ni=0 with the following symmetric distribution
satisfies (9)

0 � p0 < 1; pi = (1� p0)=(2n); i = 1; : : : ; 2n

m0 = 0; mi = �mn+i = ei

r
n

1� p0
; i = 1; : : : ; n

As for the design of Theorem 6.1, 0 � p0 < 1 is a free
parameter for us to choose whose value affects higher-order
moments. If we choose p0 = 0 (i.e., deletem0), we actually
have 2n models. In practice, however, the use of model m 0

is usually very beneficial for MM estimation.
Fig. 4(a) illustrates this symmetric-set design for n = 3,

wherem0 is at the center of the cube, while all other models
are at the center of a boundary square of the cube. Note
that if m0 is not used, all models are located symmetrically
on an axis (representing an eigenvector direction) with an
equal distance from the origin; thus, the mean is matched
provided an equal probability mass is assigned to all models
and the covariance is matched by such a special assignment
that all models on each axis have a total contribution of 1 to
the covariance.

In this design, there are only two models along each axis
direction, excluding m0. In many applications, more mod-
els are needed for an MM estimator to perform well. There-
fore, we present the following extension of Theorem 6.3.

Theorem 6.4 (Symmetric-set design). The design

-
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Fig. 4: Illustration of a symmetric-set design.

fmi; pig2kni=0 with the following symmetric distribution

0 � p0 < 1;m0 = 0

p2(j�1)n+i = p(2j�1)n+i =
1� p0
2�j�jn

m2(j�1)n+i = �m(2j�1)n+i = ei

r
�jn

1� p0

i = 1; : : : ; n; j = 1; : : : ; k

satisfies (9), where �k � �k�1 � � � � � �1 > 0 and
�j > 0 satisfy

kX
j=1

1

�j
= 1;

kX
j=1

1

�j�j
= 1

A simple and meaningful choice for �j and �j is

�j = j�1; �j = k; j = 1; : : : ; k

which yields �1 = 3=4, �2 = 3=2 for k = 2, and �1 =
11=18, �2 = 22=18, �3 = 33=18 for k = 3. Fig. 4(b)
illustrates this symmetric-set design for n = 2 and k = 2.

Fig. 5: Illustration of a more evenly distributed model-set design.

A possible drawback of this symmetric design is that the
models are distributed highly unevenly in space, albeit sym-
metrically. We now present a design that is much more
evenly distributed. This can be accomplished by rotating
models m2(j�1)n+i and m(2j�1)n+i for j � 2 such that
they are more evenly distributed. We only consider n = 2
and k = 4 with �4 = �3, as shown in Fig. 5. It can be
extended to the general case.



Let

e1i = ei; e2i = (e1i + e1i+1)=
p
2; e3i = (e1i + e2i )=

p
2;

e4i = (e1i+1 + e2i )=
p
2; ej2+i = �eji

for i = 1; 2 and j = 1; 2; 3; 4. Note first that a key to the
design of Theorem 6.4 is

cov(m) =

nX
i=1

diag

0
@0(i�1)�(i�1);

kX
j=1

1

�j
;0(n�i)�(n�i)

1
A

= I

kX
j=1

1

�j
=

kX
j=1

1

�j
[e1; : : : ; en]

=

2
4 kX
j=1

1

�j
e1; : : : ;

kX
j=1

1

�j
en

3
5

Similarly, we may use

cov(m) =

2
4 kX
j=1

1

�j
ej1; : : : ;

kX
j=1

1

�j
ejn

3
5

In our simple case with n = 2 and k = 4, it becomes

cov(m) =

�
e11
�1

+
e21
�2

+
e31
�3

+
e41
�4

;
e12
�1

+
e22
�2

+
e32
�3

+
e42
�4

�

We may choose

�1 = 13=18; �2 = 2�1; �4 = �3 = 3�1; �j = 4

0 � p0 < 1; p4(j�1)+i = p2(2j�1)+i = (1� p0)=(16�j)

i = 1; 2; j = 1; : : : ; 4

Note, however, that while this design has zero mean, its
covariance is no longer equal to the identity matrix.

6.3 Equal-Distance Model-Set Design
The above symmetric-set designs do not have an even

model distribution in space. In practice, it is sometimes de-
sirable to have a set of models that are evenly distributed.
For instance, this may be the case when each model is con-
sidered to be able to cover a region of the same size.

Fig. 6: Illustration of a diamond model-set design.

Diamond set. For this purpose, consider the diamond-
set design illustrated in Fig. 6 for the 2D case. Note that
the set of models on the whole diamond consists of hexag-
onal layers of models: 1 at the center (0th layer), 6 on the

first layer (i.e., those on the unit circle), 12 on the second
layer (6 of them are on the circle of radius 2), 18 on the
third layer (6 of them are on the circle of radius 3), and so
on. Alternatively, the model set may also be viewed as con-
sisting of even finer (circle) layers of models: Models on
each layer have equal distance from the origin (i.e., are on a
circle of radius 0; 1;

p
3; 2;

p
7; 3; 2

p
3;
p
13; 4, and so on,

respectively). In general (the square of) the radii of these
circles are given by

r2ij =

�
(i
p
3=2)2 + ((2j � 1)=2)2; i odd; 1 � j � i+1

2

(i
p
3=2)2 + (j � 1)2; i even; 1 � j � i=2 + 1

where the double subscript ij stands for the jth circle that
passes through the models on the ith hexagonal layer, for
example:

r211 = (1
p
3=2)2 + (1=2)2 = 1

r221 = (2
p
3=2)2 + 02 = 3; r222 = (2

p
3=2)2 + 12 = 22

r231 = (3
p
3=2)2 + (1=2)2 = 7;

r232 = (3
p
3=2)2 + (3=2)2 = 32

r241 = (4
p
3=2)2 + 02 = 12; r242 = (4

p
3=2)2 + 12 = 13

r243 = (4
p
3=2)2 + 22 = 42

Clearly, this diamond set is symmetric and has equal dis-
tance between any two adjacent models. Furthermore, the
following theorem states that this diamond-set design can
also be used to match arbitrarily given mean and covari-
ance of the mode by simply assigning each model on the
same (hexagonal or circle) layer equal probability.

Theorem 6.5 (Diamond-set design). Consider a
diamond-set design as illustrated in Fig. 6. Assign each
model on the lth (hexagonal or circle) layer an equal prob-
ability pl such that all probability masses sum up to unity.
Let the total contribution to the covariance from the models
on the lth layer be Cl. Then this diamond-set design satis-
fies (9) if

Pk
l=1 Cl = I , where k is the number of layers.

Remark. In particular, pl and Cl can be chosen so that
Cl = Cr = I=k and every model has the same probability
or the total probability mass of models on different layers
are equal.

The simplest possible diamond-set design (with one at
the center and six on the first layer) was implemented in [6]
for an example of maneuvering target tracking using MM
algorithms.

There are many equal-distance sets. In 3D for example,
the well-known regular tetrahedron, cube, regular octahe-
dron, regular dodecahedron, and regular icosahedron each
leads to an equal-distance set design by placing a model at
every vertex. However, the above diamond-set design is, on
top of its regularity, attractive for several other nice proper-
ties, such as the ease for design (as stated in Theorem 6.5)
and its economy in the sense of using a small number of
models to cover a large region.



In reality, each model is effective only over a finite re-
gion. Call this region the effective coverage region of the
model. Two natural questions are: Given the mode space
S and the effective coverage region Rm of each model,
what is the minimum number of models needed and where
should the models be placed? Clearly, a lower bound on
the number of models needed is jM j � VS=Vm, where VS
and Vm are the volumes of S and Rm, respectively. As-
sume that S and Rm are (n-dimensional) balls of radii rS
and rm, respectively. Consider a diamond set in which for
every diamond cell, each cell vertex to the cell center is rm.
Then every point in the inscribed ball B of the union of all
models’ Rm is covered by at least one Rm. It appears that
this diamond set covers B using model coverage regions
with the smallest number of models in general.

More generally, the diamond set has a small Hausdorff
distance to the mode space relative to other (equal-distance)
sets of the same number of models (vertices). For two (fi-
nite) sets A and B with a distance metric d(x; y), x 2 A
and y 2 B, the Hausdorff distance between A and B
is defined as d(A;B) = maxf�(A;B); �(B;A)g, where
�(A;B) = supx2A infy2B d(x; y). Note that the use of
Hausdorff distance here — which corresponds to the worst
case in distance between model and mode — is more rea-
sonable than the more popular distance between two sets:
d(A;B) = infx2A;y2B d(x; y) (which corresponds to the
best case and is often zero for model-set design).

Equal-distance minimal-set design. The diamond set
has many nice features, but it is not a minimal set. A min-
imal set with equal distance between models can be ob-
tained by the minimal-set design of Fig. 3 with a special
choice of fp; q; �; �g such that all models are separated by
an equal distance. Clearly, m1; : : : ;mn have an equal dis-
tance of

p
2�. So, we need only to place mn+1 in a place

such that its distance to every model in fm1; : : : ;mng isp
2�. Specifically, choose the set fp; q; �; �g of nonnega-

tive numbers to satisfy

np+ q + p0 = 1 (unity probability)

�p� �q = 0 (zero mean)

�2p+ �2q = 1 (identity covariance)

(�+ �)2 + �2(n� 1) = 2�2 (equal distance)

(the last equation above follows from setting km i �
mn+1k2 = kmi �mjk2;8i; j � n), which yields

q =
1� p0p
n+ 1

; p =
q + p0 � 1

n
; � =

1p
p(1 + p=q)

; � =
p

q
�

Then, the design of Fig. 3 has a minimal set that satisfies
(9) and has equal distance between models. As such, this
design places a model at each vertex of a convex (n + 1)-
hedron with equal edge length

p
2� (e.g., an equilateral tri-

angle in 2D and a regular tetrahedron in 3D). Note, how-
ever, that mn+1 is closer to the origin than mi (i � n)

(i.e., the polyhedron is not centered at the origin) because
kmn+1 � 0k2 = n�2 < �2 = kmi � 0k2.

7 Conclusions
Model-set design has been considered in a general set-

ting. We have not only argued for the need for and the
benefit of probabilistic modeling of the models to be de-
signed as well as the true mode, but also proposed that they
be modeled as random variables for offline model-set de-
sign. Based on such probabilistic models, we have pre-
sented (a) distribution-based, (b) minimum-distance based,
and (c) moment-matching general and systematic design
methods. Many theoretical results have been presented.

Several examples that demonstrate how these theoretical
results can be used as well as their effectiveness are given
in Part II [7].

Many of the general results presented in this paper are
also useful for performance evaluation of MM algorithms.
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