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Abstract — Themost important problemin the application
of the multiple-model approach to estimation is the design
of the model set. This paper deals with this challenging
topic in a general setting. Modeling of models as well as
true mode as random variables is proposed. Several gen-
eral methods for design of model sets, along with the ini-
tial model probabilities, are presented. They include distri-
bution approximation, minimizing mismatch between mode
and models, and moment matching. Examples that demon-
strate how the general results presented here can be applied
are presented in Part 1.

Keywords: Multiple models, model-set design, variable
structure, adaptive estimation, target tracking

1 Introduction

Model-set design is the most important issue in the ap-
plication of MM estimation. The performance of an MM
algorithm for a given problem depends largely on the set of
models used and the primary difficulty in the application of
the MM method is the design of the model set. Numerous
publications have appeared in which ad hoc designs were
presented. Unfortunately, very limited theoretical results
on thisimportant issue are available. It was shown theoret-
icaly in [5] that the use of too many models is as bad as
the use of too few models. A circular criterion for model-
set choice was presented in [5]. When the mode spaceis a
continuous region, a necessary and sufficient condition was
presented in [6] for a convex combination of estimators to
be superior to each individual estimators, based on respec-
tive model sets. In order to apply the MM method to prob-
lems with uncertain parameters, two important questions
are: (a) which quantity is best selected asthe estimatee (i.e.,
the quantity to be estimated) and (b) how to quantizethe pa-
rameter space optimally. [2] provides theoretical results on
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the optimal selection of the estimatee. A procedure to de-
termine the choice of the quantization points was presented
in[8] given the number of quantization points. A necessary
condition for the effective performance of MM estimation
was presented in [1] for ajump linear time-invariant system
intermsof itsdc gain.

This paper presents theoretical results on the model-set
designin agenera setting. General results for probability-
distribution based, minimum-distance based, and moment-
matching design are presented. These results provide con-
crete designs as well as guidelines and insights that are
helpful for model-set design.

2 Probabilistic Modeling of Models

and Modes

In this paper, amode refers to the physical behavior pat-
tern or structure of a system/process (or its precise math-
ematical model), and a model refers to the (possibly sim-
plified) mathematical representation or description of the
system or process on which an estimator is based (see [3]
for amore detailed explanation). Such adistinction is nec-
essary where mismatch between the model and mode is of
concern.

Denote by S the mode space, that is, the set of possible
modes under consideration. In general, mode space S may
be either a discrete (finite or countable) set or a continuous
region. In the latter case it is assumed that a system mode
may only jump from apoint in S to another one, rather than
vary continuously.

A contribution of this paper isthe recognition of the need
for and introduction of probabilistic modeling of models as
well as the true mode.

The need to have a proper description of the true mode
is evident: Without such a description, model-set design
and performance evaluation of MM algorithms are essen-
tially groundless — we can always find a scenario under
which any given realizable “optimal” model set is worse



than some other model set. Deterministic descriptions of
the true mode in the form of “typical” or “representative”
scenarios are prevailing in the literature of MM estimation,
particularly for performance evaluation. Such determinis-
tic descriptions have certain drawbacks. For example, the
choice of particular scenarios is fairly arbitrary, and thus
the corresponding performance evaluation results are less
objective or convincing since the performance of MM algo-
rithms is highly dependent on test scenarios. (The scenario
dependence of the performance of ahybrid estimation algo-
rithmis elaborated in [4].) It isimpossible to develop gen-
eral, systematic methods for model-set design on the basis
of such “arbitrary” descriptions of the true mode.

We propose to model the true mode as a random vari-
ables : 2 — S, where S is the mode space and (2 is the
sample space. The random variable s may be continuous,
discrete, singular, or hybrid. Let F;(x) and fs(z) beits cu-
mulative distribution function (cdf) and probability density
function (pdf) if exists, respectively. In practice, they can
be obtained by past data using statistical techniques or sm-
ply from experience. For example, atransposed (i.e., sym-
metrical) three-phase overhead transmission linein a power
system hasthree simple modes (i.e., normal, single-phaseto
ground fault, and phase-to-phasefault) and several compos-
ite modes (e.g., two-phase to ground fault and three-phase
to gound fault). Data of the past operation records (e.g.,
fault rate and percentage of fault type) provide the required
probability distribution of the mode. For a particular ap-
plication of MM estimation, if F;(x) isnot available at this
stage, the benefit of having such a cdf — as presented in this
and future papers — suggests that it may be worthwhile to
obtain such a cdf. Thisis a manifestation of guidance of
theory to practice. Without such guidance, most practical
probabilistic models (e.g., Gaussian models, Poisson mod-
els) would not have been developed and probability theory
would have very limited practical value.

Similarly, we also propose that the problem of design-
ing a modedl set M (and the corresponding initial model
probabilities) be formulated as that of designing a random
model m with range M; that is, design a random vari-
ablem : Q — M, where Q is the sample space. As
such, the following needs to be determined: (@) cardinal-
ity |M| (i.e., number of models); (b) all elements m; of
M = {my,my,...,my} (i.e, model locations/values);
() prior (or initial) model probabilities P{m = z}. Note
that cdf F,,(x) of m, or equivalently, probability mass
function (pmf) py, (z) = P{m = z} summarizesall infor-
mation needed. While this concept of random model may
appear alien to a practitioner, we need only to recall that
a random variable is (corresponds to) in fact nothing but
a properly defined set of deterministic numbers. It is ex-
actly in this way that a set of deterministic models used in
the MM method, along with the above constraints (a)—(c),
defines arandom model.

More generally, the second and third generations of MM
algorithms require design of (Markovian) laws governing
model transitions based on transitions of the true mode.
Even more generaly, the true mode is better modeled as
arandom process s(t) : (2, F, P) x T' — S; thatis, s(t) is
afamily of random variables, indexed by ¢t € T' and defined
on a common probability space (2, 7, P). Similarly, the
problem of model-set design is better formulated as the de-
termination of arandom process m(t) : (0, F,P) x T —
M, where M is the total model set. These more general
formulations are useful for model-set adaptation and design
of model transitions. For offline model-set design (the topic
of this paper), however, it usually sufficesto consider s and
m as random variables, completely described by their cu-
mulative distribution functions.

For simplicity, we assume that the true mode is continu-
ousin this paper. The same approach works for other cases,
although modification is sometimes needed. We always as-
sume that the model is discrete (in fact, finite).

For many applications, the true mode s has a real phys-
ical meaning directly (see Part Il [7] for examples) and
the above probabilistic modeling is clearly reasonable. For
many other applications, however, s isan index of underly-
ing structures (or behavior patterns) and it is difficult, if not
impossible, to define a proper distance metric directly for S
convincingly with a clear interpretation. In such cases, cdf
of s may possibly be defined over an abstract space where
the elementsof s are arranged such that the neighboring ele-
ments correspond to the neighboring structuresin the phys-
ical world. Then a question is how to define the neighbor
concept for structuresin the physical world? This question
can be answered by using, e.g., Kullback-Leibler distance
between the distribution or likelihood functions of any two
structures s; and s;;.

3 Formulation of M odel-Set Design

Following the previous section, the true mode (at any
time) can be reasonably modeled as a continuous random
variable in many cases, while it is better modeled as a dis-
crete (or hybrid) random variable in many other cases. In
any case, its sample space S is usually much larger than the
model set M affordablein practice.

From the probabilistic modeling of the true mode and
models, it is clear that the model-set design is essentially a
problem of finding a discrete randomvariable m to approx-
imate a given random variable s, which can be continuous,
discrete, singular, or hybrid, depending on the application.
Unfortunately, to our knowledge, there is no generaly ac-
ceptable solution to this problem in the literature.

1This probabilistic view also makes it quite intuitive the fundamen-
tal finding of [5] that the optima model set M for the MM approach is
M = S—the performance of MM estimators deteriorates if either extra
models are used (M D S) or some models are missing (M C S)—and
the deterioration worsens as M and S become more mismatched.



We propose three classes of systematic solutions below.

4 Distribution-Based Design

The first solution is based on the idea of finding the cdf
F,,,(z) of adiscrete random variable (model) m to approxi-
mate the cdf F;(z) of any given random variable (mode) s.
We describe this solution in the scalar case (i.e., for scalar
s and m) here and extend it to the vector casein Part 11.

Assume that the cdf F(x) of true mode s is known.
Given a tolerance ¢, we want to construct the cdf F,,,(x)
of a discrete random variable (i.e., model set) such that
|Fs(z) — Fi(x)] < eforal z.

It can be shown that for any given cdf F'; (z) we can find
the cdf F»(x) of some discrete random variable that is ar-
bitrarily close to F; () in terms of the following distance
metric

d(Fi, Fy) = max | (2) - Fy(a)| ©)
where R = [—o0, 00]. In other words, the problem under

consideration always has a solution. What is the minimum
number of models needed? The following lemma answers
this question.

Lemma 4.1. Given a tolerance ¢ in the above distance
metric, the minimum number of models needed is given by

|M| = [1/2€] = smallest integer not smaller than 1/2¢

A proper tolerance € is not aways easy to come by. In
some cases, the number of models || is predetermined
directly from, say, resource for processing or computation.

Theorem 4.1 (Minimum-set design). Given |M|, the
model set M*, dong with the pmf p*, (i.e., the random
model) that minimizes the distance metric defined by (1),
that is,

M*,p*} =ar inf
{ J g{Mm} given | M| zes

isgiven by
i—l/ﬂ .
m; = arg |Fs(x) = ,i=1,...,|M| (2
arg | Fu(o) = ]
M* = {mi,ma,...,mp}

along with the following evenly distributed pmf (i.e., initial
model probabilities): for i = 1,...,|M]|,

Pm(T)|g=m; = P{m =m;lm € M*} = W 3

Thisdesignisdepictedin Fig. 1. Note that m; ischosen
to satisfy (2) only fromthe elementsof S, andthus M C S.
This approach to model-set design is intuitively appeal-
ing. In essence, it partitions the mode space into equally
probabl e regions and placesamodel at the “center” (in fact,
median) of each region. As such, all models are equally
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Fig. 1: Approximating a cdf by a stair-case type cdf with given

tolerance.

loaded in that they are equally likely to take effect and cover
an region of equal probability. It uses the minimum num-
ber of models. It is also perfectly consistent with the com-
mon practice of assigning equal initial probability to every
model.

5 Minimum-Distance Design

In the previous section, we design a model m to approx-
imate the true mode s by constructing a cdf F,,,(z) that is
close to the cdf F(xz) — the design is actually donein the
space of thedistribution functions. Alternatively, the design
can aso be done in the vector space of random variables;
that is, find an m that is close to s in their vector space di-
rectly. In order to do this, ametric of the closeness between
model and mode is needed.

Closeness metric between model and mode. The dis-
tance metric in the vector space of random variables is
most often defined as the square root of the mean-square
value d(s,m) = (E[d(s,m)])"/?, where d(s,m) = (s —
m)’ (s — m). Of course, other metrics can also be defined,
such as d(s,m) = (E[d(s,m)])"/?, where d(s,m) =

sup | Fs (@)= Fp(2)|, m € M[(s —m)'(s —m)]P/?. When s and m are vectors, d(s, m)

is actually a scalar metric of the families of vectors, since
arandom vector actually correspondsto afamily of vectors
in alinear space. We will consider the more general metric
with an arbitrary p but we are more interested in the case
p=1,2.

Fors € Sandm € M, wehave

Eld(s,m)] = E[E[d(s,m)]s]]
= /s Z d(s,m;)P{m = m|s}dF(s) (4)

m; EM

It is thus seen that the closeness of m and s depends on
w;(s) = P{m = m;|s}, the model probability conditioned
on the true mode s. A study of the conditional probability
P{m = m;|s} will bereported |ater.

In this paper, for simplicity, we assume

P{m =m;|s} = 1(s;S;) = { é z ; g: (5)



Thisis equivalent to assuming that

Most importantly, this theorem provides atheoretical ba-
sis for iteration procedures to find an optimal model set

{{m=mi},... {m=mn}} = {{s € S1},...,{s € Sn}lunder the stated assumption. For example, we may start

is a partition of the mode space S; that is, each model cov-
ers a subset (region) of the mode space exclusively, which
is often perceived in practice. With this assumption, (4) be-
comes

Bldis.m) =3 [ ds,mare) @

We now present several genera results under this as-
sumption.

Theorem 5.1 (Optimality conditions of model set). As-
sumetha S = {Si,...,Sn} is a partition of the mode
space S, where S; is covered by model m; exclusively in
thesense{s € S;} = {m = m;}. Then, thefollowing con-
ditions hold for the optimality in the sense of minimizing

distance metric d(s, m) defined above.

A. Given any partition S = {S, ..., Sn} of mode space
S, amodel set M = {my,...,mn} is optimal if
each model m; is a (generalized) centroid of the cor-
responding partition member S;:

m; = s} = argmin E[d(s,m)|s € S;]  (7)

B. Given any model set M, a partition is optimal if and
only if pointsin any partition member S; are closer to
m; than to any other m; € M (almost surely):

S; = {s:d(s,m;) < d(s,m;),Ym; #m;,m;,m; € M}

that is, apoint s must be assigned to its nearest neigh-
bor m; among al m € M; the set of equal-distance
points

with an initial partition of mode space; find a candidate of
the model set as the (generalized) centroid of each parti-
tion member; use the nearest-neighbor rule to obtain the
corresponding (updated) partition; and repeat this process
until convergence. Alternatively, we may start with an ini-
tial model set; use the nearest-neighbor rule to obtain the
corresponding partition; obtain an update of the model set
as the (generalized) centroid of each partition member; and
repeat this process until convergence.

The above centroid model set has several nice and intu-
itive properties, as presented in the next theorem.

Theorem 5.2 (Properties of optimal model set). Any
model set that coverseach S; by its centroidm; = E[s|s €
S;] exclusively (i.e, {s € S;} = {m = m;}) hasthefol-
lowing properties:

(a) The (random) model and mode have the same mean:
E[m] = E[s].

(b) The modeling error is orthogona to model: E[m(s —
m)'] = 0.
(¢) E[ms'] = E[sm'] = E[mm/] and thus E[m's] =

E[s'm] = E[m'm], meaning that cross power of the
mode and model is equal to the power of the model.

(d) E[(s — m)(s — m)'] = E[ss'] — E[mm/] and thus
E[(s — m)' (s — m)] = E[s's] — E[m'm], meaning
that minimum MSE is the power of the mode minus
the power of the (optimal) model.

(€ E[s(s—m)'] = E[(s—m)(s—m)'] andthus E[s' (s —
m)] = E[(s —m)'(s —m)] .

Remarks. It follows from Theorem 5.1 that given a par-

Si; = {s:d(s,ms) = d(s,m;) < d(s,mg),Vmy € M}tition of the mode space, a model set that covers S; by

may be assigned to either S; or S;.

Remarks. (@) This theorem basically states that under
the stated assumption, if exists, the optimal model set is
within the class in which modelsarelocated at the (general -
ized) centroids of members of a nearest-neighbor partition
of the mode space. (b) The generalized centroid reduces
to the conditional mean (i.e., the centroid (mean) of S;)
sf = Els|s € S;]ifd(s,m) = (s—m)'(s —m) or thecon-
ditional median (i.e., themedianof S;) if d(s,m) = |s—m)|.
(c) Both conditions are quite intuitive. (d) This theorem
does not address the issue whether an optimal model set
that minimizes the above metric is existent or unique, or
whether a solution that meets conditions A and B is existent
or unique. (€) The optimality conditions of this theorem ac-
tually hold for closeness metrics more general than defined
above.

m; = E[s|s € S;] exclusively is optimal in the sense of
minimizing M SE matrix E[(s —m)(s —m)'] and thus min-
imizing MSE scalar E[(s — m)'(s — m)].

6 Moment-Matching Design

In some practical situations, some moments, but not the
complete distribution, of the true mode s are known. In
some other situations, we do not have a good knowledge of
aproper tolerance | Fs(z) — F,,(z)| < ¢, but only want to
match the moments of m to the known moments of s.

Given up to the gth moments of s, we want to find adis-
crete random variable m (i.e., the number and locations of
points m; with the associate probability mass p;) such that

Em" =E[s"], n=1,...,q

Severa questions arise immediately. For example, what

is the minimum number of models such that up to the ¢th



moments of s and m are matched? How to design the cor-
responding pmf (locationsm ; and probability masses p;) of
m? Given the number of models |A/|, how to design pmf of
m that matches as many as possible the lowest moments of
s? For simplicity, wewill consider only matching mean and
covariancein this section since it is the common practice.
Let the pmf of m be
pi={m=myime M} >0, VieJ={1,...,|M|}

where M = {my,...,ma}. Then, the mean and covari-
ance of m are

m = mei, Cm = Z(mi —m)(m; —m)'p;

ieJ i€J

6.1 Minimum Model-Set Design

The following theorem answers the first question above
forq = 2.

Theorem 6.1 (Minimum models). The minimum num-
ber of models needed for m to match the mean 5 and co-
variance C of thetrue mode s isrank of C'; plusone:

minimum number of models = rank(C's) + 1

Now consider the problem of design {m},p;,i € J}
such that

Yopi=1, ) mip;=5 Y (m;—5)(m;-5)pi=C,

ieJ ieJ ieJ
)

In fact, we only need to design {m;, p;, ¢ € J} such that

Yopi=1 Y mipi=0, Y mimipi=ILixn (9)

ieJ ieJ ieJ

where n = rank(C). All designs presented below are for
this standard problem. Given a problem with known mean
5 and covariance C, the design {m;,p;,i € J} can be
convertedtodesign{m}, p;,i € J} bym} = Alm}, 0] +5,
which satisfies (8), where C's = Adiag(I,,xn,0)A".

Theorem 6.2 (Minimal-set design). The design
{m,-,p,- ?:01 with

po=po, P =p5=(1-po)/2
—1/2 _(1 _p0)71/2

OSp0<17

mé:O,m%:(l—po) ,m%:

dh=po. pi=plTl2 i=1.j

. . 517
Py = (=p0)/2, mlyy = [0,~(1—po) /2]

. . . !

mh =0, m] = [(mI™),(1=po) ] Ji=1,.

(3

satisfies (9), wherem; = m},p; =pl,i =0,1,...
and the superscript denotes dimension of a vector.

,n+1,

Fig. 2 illustrates this design with a minimal model set
for n = 2, 3, respectively. For n = 3, my is at the center
of the cube, while all other models are on the surface of the
cube; m 4 isat the center of the bottom square. Note that the
coordinates of every model are either 0 or £(1 — pg) /2.
The mean and covariance are matched by the probability

mass: Y37, pl =Pl

(a) 2D case

(b) 3D case

Fig. 2: lllustration of a minimal-set design.

Inthis design, 0 < py < 1 isafree parameter for usto
choose. If we choose py = 0 (i.e., delete my), we actually
have n + 1 models, which by Theorem 6.1 is the smallest
possible number of modelsto match mean and covariance.

Remarks. (&) Although the model m is not needed to
match mean and covariance, in practice, such a model lo-
cated at the expected true mode is usualy very beneficial
for MM estimation. (b) Thevalue of p, affects higher order
moments — a greater po implies that the distribution of m
is more concentrated around the mean. (c) This minimal-
set design depends very much on not only the choice of
the coordinate system but also the artificial labeling of each
coordinate (e.g., the locations and the probability masses
of the models would vary if z; and z3 of Fig. 2(b) were
interchanged). The latter dependence is entirely artificial
and is better eliminated, while the former dependence is
inevitable because the coordinate directions (after transfor-
mation from m* to m) are actually eigenvector directions.

Minimal-set designs are not unique. Fig. 3 illustrates
another simple minimal-set design in the 3D case. Its
extension to a higher dimension is straightforward. In
this design, a model with probability mass p is placed on
each positive semi-axis of equal distance « fromthe origin
(i.e., m; = «e;, Vi, wheree; = [01><(i—1): l,le(n,i)]’
is the ith coordinate vector); the last model is m 1 =
Bl-1,-1,...,—1]" with probability mass ¢. It is clear that
the mean and covarianceare m = 0 and C,,, = I, xn if
g=pada =g = 1/,/p. Asfor thedesign of Fig. 2, if
desirable, an additional model may be placed at the origin
with probability po without affecting mean and covariance.
Thenp = (1 —po)/(n+1).InSec. 6.3, ¢ #panda # S
are chosen to obtain a minimal set with an equal distance
between models.
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Fig. 3: Illustration of another minimal-set design.

The minimal-set design of Fig. 2 has attractive fea
tures that the model locations and probability mass are de-
termined recursively as dimension increases and that all
self skewnesses are egual to zero in the design of Fig. 2:

E{[m(j) - s()I’} =0,¥j < n.

6.2 Symmetric Model-Set Design

All the above minimal-set designs clearly have an asym-
metrical distribution spatially and possibly probabilisti-
cally. For many applicationsin practice, it is appealing that
the models are symmetrically distributed and invariant to
the artificial labeling of coordinates. For this reason, we
present the following theorem.

Theorem 6.3 (Minimal symmetric-set design). The de-
sign {m;, p; } 2", with the following symmetric distribution
satisfies (9)

0<py <1, pi=(1—pp)/(2n), i=1,...,2n

n .
mgo =0, M = —Mpyi = €; ﬁ,z:l,...,n
— Do

As for the design of Theorem 6.1, 0 < pg < 1isafree
parameter for usto choose whose val ue affects higher-order
moments. If we choosep, = 0 (i.e., deletemy), weactualy
have 2n models. In practice, however, the use of model m
isusually very beneficial for MM estimation.

Fig. 4(a) illustrates this symmetric-set design for n = 3,
wherem, is at the center of the cube, while all other models
are at the center of a boundary square of the cube. Note
that if myg is not used, all models are located symmetrically
on an axis (representing an eigenvector direction) with an
equal distance from the origin; thus, the mean is matched
provided an equal probability massisassignedto al models
and the covariance is matched by such a specia assignment
that all models on each axis have atotal contribution of 1 to
the covariance.

In this design, there are only two models along each axis
direction, excluding mg. In many applications, more mod-
elsare needed for an MM estimator to performwell. There-
fore, we present the following extension of Theorem 6.3.

Theorem 6.4 (Symmetric-set design). The design
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Fig. 4: Illustration of a symmetric-set design.
{mi, p; }2*7 with the following symmetric distribution

OSPO < 17m0:0
1—po

2a;8;n

P2j—1)yn+i = P2j—-1)n+i =

ajn
1-po

Ma(j—1)n+i —M2j-1)n+i = €

i=1,...,n,j

satisfies (9), where o, > «ap 1 > ---
B; > 0 satisfy

1

j=1 alﬂj

1

1,
161'

k k

[

A simple and meaningful choicefor a; and 3; is

Bj:ka

whichyields ay = 3/4, ay = 3/2fork = 2, and a; =
11/18, ax = 22/18, a3 = 33/18 for k = 3. Fig. 4(b)
illustrates this symmetric-set designforn = 2 and k& = 2.

aj:jala ]:1,,k

Fig. 5: Illustration of a more evenly distributed model-set design.

A possible drawback of this symmetric design isthat the
models are distributed highly unevenly in space, albeit sym-
metrically. We now present a design that is much more
evenly distributed. This can be accomplished by rotating
mModels my(j_1)p+i and mg;_1),4; for j > 2 such that
they are more evenly distributed. We only consider n = 2
and k = 4 with ey = a3, asshownin Fig. 5. It can be
extended to the general case.



Let
e =ei, € =(ej+ei1)/V2,
ef = (ejyq +e2)/V2, ey ;= —€

fori = 1,2andj = 1,2,3,4. Note first that a key to the
design of Theorem 6.4 is

k
1
ZC“@ (O(z 1)x(i—1 az ,0 (n—i)x(n— z))

D= (e eVE,

COV

.y en]

el e el el el et e e%]
cov Ll 222y
M= R R
We may choose

a1 =13/18, ay = 20y, ay = a3 = 3y, fB; = 4

0<po <1, pagj—1)+i = P22j—1)+i = (1 —po)/(16c;)
i=1,2, j=1,...,4

Note, however, that while this design has zero mean, its
covarianceis no longer equal to the identity matrix.

6.3 Equal-Distance Model-Set Design

The above symmetric-set designs do not have an even
model distribution in space. In practice, it is sometimes de-
sirable to have a set of models that are evenly distributed.
For instance, this may be the case when each model is con-
sidered to be able to cover aregion of the same size.

Fig. 6: Illustration of a diamond model-set design.

Diamond set. For this purpose, consider the diamond-
set design illustrated in Fig. 6 for the 2D case. Note that
the set of models on the whole diamond consists of hexag-
onal layers of models: 1 at the center (Oth layer), 6 on the

first layer (i.e., those on the unit circle), 12 on the second
layer (6 of them are on the circle of radius 2), 18 on the
third layer (6 of them are on the circle of radius 3), and so
on. Alternatively, the model set may also be viewed as con-
sisting of even finer (circle) layers of models. Models on
each layer have equal distancefromtheorigin(i.e., areona
circle of radius 0, 1, /3,2, 7, 3,2v/3, V13,4, and so on,
respectively). In general (the sguare of) the radii of these
circles are given by

2 _ { (iV3/2)2 + ((2j — 1)/2)%,i 0dd, 1 < j < 5L
TUT VB2 (G- 12 ieven, 1< j<i/241

where the double subscript ij stands for the jth circle that
passes through the models on the ith hexagonal layer, for
example:

ri = (1v3/2)° + (1/2)

i = (2V3/2)* + 07 = 3, Tzz = (2V3/2)° +1? = 2?
i = (3V3/2)* + (1/2)* =

riz = (3V3/2)? + (3/2)” = 32

3 = (4V3/2)? + 02 =12, r, = (4V3/2)* + 1> = 13
ri, = (4V3)2)? +22 =42

Clearly, this diamond set is symmetric and has equal dis-
tance between any two adjacent models. Furthermore, the
following theorem states that this diamond-set design can
also be used to match arbitrarily given mean and covari-
ance of the mode by simply assigning each model on the
same (hexagonal or circle) layer equal probability.

Theorem 6.5 (Diamond-set design). Consider a
diamond-set design as illustrated in Fig. 6. Assign each
model on the [th (hexagonal or circle) layer an equal prob-
ability p; such that all probability masses sum up to unity.
Let the total contribution to the covariance from the models
on the ith layer be C;. Then this diamond-set design satis-
fies(9) if ), C; = I, where k isthe number of layers.

Remark. In particular, p; and C; can be chosen so that
C, = C, = I/k and every model has the same probability
or the total probability mass of models on different layers
areequal.

The simplest possible diamond-set design (with one at
the center and six on thefirst layer) was implementedin [6]
for an example of maneuvering target tracking using MM
algorithms.

There are many equal-distance sets. In 3D for example,
the well-known regular tetrahedron, cube, regular octahe-
dron, regular dodecahedron, and regular icosahedron each
leads to an equal-distance set design by placing a model at
every vertex. However, the above diamond-set designiis, on
top of its regularity, attractive for several other nice proper-
ties, such as the ease for design (as stated in Theorem 6.5)
and its economy in the sense of using a small number of
models to cover alarge region.



In reality, each model is effective only over afinite re-
gion. Cdl this region the effective coverage region of the
model. Two natural questions are: Given the mode space
S and the effective coverage region R,, of each model,
what is the minimum number of models needed and where
should the models be placed? Clearly, a lower bound on
the number of models needed is | M| > Vs /V,,,, where Vg
and V,,, are the volumes of S and R,,, respectively. As
sume that S and R,,, are (n-dimensional) balls of radii rg
and r,,, respectively. Consider a diamond set in which for
every diamond cell, each cell vertex to the cell centerisr,,,.
Then every point in the inscribed ball B of the union of al
models' R,, is covered by at least one R,,,. It appears that
this diamond set covers B using model coverage regions
with the smallest number of modelsin general.

More generaly, the diamond set has a small Hausdorff
distance to the mode space rel ative to other (equal-distance)
sets of the same number of models (vertices). For two (fi-
nite) sets A and B with a distance metric d(z,y), z € A
and y € B, the Hausdorff distance between A and B
is defined as d(A, B) = max{p(A, B),p(B, A)}, where
p(A,B) = sup,c,infycpd(z,y). Note that the use of
Hausdorff distance here — which corresponds to the worst
case in distance between model and mode — is more rea-
sonable than the more popular distance between two sets:
d(A,B) = infyca yepd(z,y) (Which corresponds to the
best case and is often zero for model-set design).

Equal-distance minimal-set design. The diamond set
has many nice features, but it is not aminimal set. A min-
imal set with equal distance between models can be ob-
tained by the minimal-set design of Fig. 3 with a specid
choice of {p, q, @, 8} such that all models are separated by
an equal distance. Clearly, mq,...,m, have an equal dis-
tance of v/2a. So, we need only to place m.,,; in aplace
such that its distance to every model in {m1,...,m,} is
v2a. Specifically, choose the set {p, ¢, o, 3} of nonnega-
tive numbersto satisfy

np+qg+py = 1 (unity probability)
ap—fBq = 0 (zeromean)
o*p+pB%¢ = 1 (identity covariance)

(a+B)*+B%(n—1) 202 (equal distance)

(the last equation above follows from setting ||m; —
Mp1l|* = |lmi —my[]?, Vi, j < n), whichyields

Vi + 1’ no T Vel a

Then, the design of Fig. 3 has a minimal set that satisfies
(9) and has equal distance between models. As such, this
design places a model at each vertex of a convex (n + 1)-
hedron with equal edge length /2« (e.g., an equilateral tri-
angle in 2D and a regular tetrahedron in 3D). Note, how-
ever, that m,,,, is closer to the origin than m; (i < n)

(i.e., the ponhedron‘ is not centered at the origin) because
[mns1 = O)> = nf* < a® = |Im; — O],

7 Conclusions

Model-set design has been considered in a general set-
ting. We have not only argued for the need for and the
benefit of probabilistic modeling of the models to be de-
signed as well as the true mode, but also proposed that they
be modeled as random variables for offline model-set de-
sign. Based on such probabilistic models, we have pre-
sented (@) distribution-based, (b) minimum-distance based,
and (c) moment-matching general and systematic design
methods. Many theoretical results have been presented.

Several examplesthat demonstrate how these theoretical
results can be used as well as their effectiveness are given
inPart 11 [7].

Many of the genera results presented in this paper are
also useful for performance evaluation of MM algorithms.
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