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Abstract – This paper proposes and investigates an
enhancement of the IMM estimation (referred to as
smoothing-enhanced IMM or SE-IMM) at the expense of
a reasonable increase in computation. It is based on im-
proved reinitialization of the IMM filter by IMM smooth-
ing. An approximate IMM smoothing (IMMS) algorithm
is provided. To maintain a minimum overall computa-
tional load, the SE-IMM scheme is applied only in the
transitional regimes of the IMM filter when the dominant
model changes. A cumulative sums (CUSUM)-type sta-
tistical test is formulated and employed for the problem
of model change detection/estimation. An investigation of
the efficiency of the proposed smoothing-enhanced IMM
estimation is performed by simulation of a maneuvering
target tracking scenario.

Keywords: Multiple Model, IMM, Smoothing, Target
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1 Introduction
While being one of the most cost-effective algorithms for

tracking maneuvering targets, the IMM filter [3, 15, 1] may
still have quite large peek errors during transition between
dominant models. Thus in cases of tracking intensively
maneuvering targets the overall estimation error may be
considerable.

This study proposes and investigates an enhancement of
the IMM estimation (referred to as smoothing-enhanced
IMM or SE-IMM), especially during transitional regimes,
at the expense of a reasonable increase in computation. It
is based on the idea that the IMM recursive cycle can be
improved by N-step-back MM smoothing. For this pur-
pose an approximate multiple-step-back IMM smoothing
(IMMS) algorithm is provided. Generally, the SE-IMM
operates as follows: at each time step after the IMM cycle
is completed, an N-step-back MM smoother (e.g., IMMS)
is used to obtain the smoothed model-conditional estimates
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at some previous time step. Then the IMM filter is reini-
tialized with these smoothed estimates starting from that
reference moment. The underlying support for this idea
stems from the fact that the IMM is highly nonlinear and
re-estimating the initial condition of the filter based on the
current data is effective in terms of accuracy. Simply put,
a good re-initialization of the IMM plays a key role for a
more accurate calculation of model likelihoods and proba-
bilities, which enables a faster response to model changes
and thus reduces peak errors. Furthermore, to maintain a
minimum overall computational load, the SE-IMM scheme
is applied only during the most critical regimes in which
the dominant model changes. This requires incorporation
of a suitable model change detection mechanism into the
overall decision-estimation scheme. A cumulative sums
(CUSUM)-type statistical test is formulated and employed
for the problem of model change detection/estimation.

In the history of maneuvering target tracking, hard deci-
sion based came to existence first; MM algorithms, which
amount to soft decision, took over and have become the
vogue of the day, mostly due to the success of IMM algo-
rithm. We believe this paper makes a small step toward
explicitly combining the two classes to take advantage of
the strength of each class.

The rest of the paper is organized as follows. Section
2 reviews the MM smoothing problem and provides an
approximate multiple-step-back IMM smoother. Section
3 outlines the SE-IMM scheme. A CUSUM-type model
change detection is formulated in Section 4. Section 5
presents performance evaluation results from the simula-
tion of a maneuvering target tracking scenario. Conclu-
sions are given in Section 6.

2 MM Smoothing
Consider the familiar model of hybrid (continuous-

discrete) system in discrete time k = 0, 1, 2, . . .

xk+1 = Φk+1,k (mk+1) xk + wk,k+1 (mk+1) (1)

zk = Hk (mk)xk + vk (mk) (2)



where x is the continuous (base) state with state transition
matrix Φ, w is the random input, z is the measurement,
with measurement matrix H, and v is the random mea-
surement error. The discrete (modal) state mk ∈ M ,©
m1,m2, . . . , mr

ª
is a Markov chain with initial prob-

abilities and transition probability matrix Π = (πij)
r
i,j=1

respectively

P
©
mj
0

ª
= µj0 (3)

P
©
mj
k+1|mi

k

ª
= πij i, j = 1, . . . , r. (4)

where mi
k ,

©
mk = m

i
ª

. The system ini-
tial state x0 ∼ N [x̄0, P0], and the white
process and measurement noise sequences
{wk,k+1 (mk+1) ∼ N [w̄k,k+1, Qk,k+1 (mk+1)]}k=0,1, ...
and {vk (mk) ∼ N [0, Rk (mk)]}k=0,1, ... respectively,
are assumed uncorrelated.

It is well known [1] that x̂l|k = E
£
xl|zk

¤
provides

the MMSE-optimal estimate of the state xl given mea-
surements zk , {z0, z1, . . . , zk}. Classically, x̂l|k is
referred to as predicted, filtered and smoothed estimate iff
l > k, l = k, l < k respectively. Theoretically, a formal
solution for the smoothing (filtering), (i.e., for l ≤ k) is
given by

x̂l|k =
X
{Mk}

x̂l|k(Mk)P{Mk|zk} (5)

where Mk , {m0, m1, . . . , mk} denotes a modal his-
tory and x̂l|k

¡
Mk

¢
, E

£
xl|Mk, zk

¤
. For any given

modal historyMk the optimal smoothed (filtered) estimate
x̂l|k

¡
Mk

¢
can be obtained by numerous available opti-

mal linear smoothers [17, 16]. P
©
Mk|Zkª can also be

obtained by means of the Bayes rule, which constitutes for-
mally the optimal solution [10, 1]. However, this optimal
solution has exponentially increasing computation/memory
requirements and is thus practically infeasible.

Therefore a number of suboptimal approximations for
the MM smoothing problem with polynomial or even lin-
ear computational complexity have been proposed [14, 4,
7, 8, 5]. The smoother of [14] is based on pruning more
unlikely Markov chain histories — a technique recog-
nized at present as less efficient in comparison with the
pseudo-Baysian approximation technique by merging of
chain histories. [4] proposed an IMM smoothing by sys-
tem’s time reversion. In [8] two pseudo-Bayesian MM
algorithms were developed, which are attractive from com-
putational viewpoint, however they are limited to one-step
back smoothing. In [5] a d-step back algorithm was pro-
posed, which straightforwardly implements the IMM filter-
ing for an augmented system imbedding the last d system
states. This approach is rather involved computationally.
In our investigation we established that, for the scenario we
simulated, the one-step IMM smoother of [8] and the aug-
mented smoother of [5] provide almost equal accuracy with
the former being less computationally demanding than the

latter. By this motivation we propose next an extension of
the one-step IMM smoother of [8] (referred to as IMMS1)
to the case of multiple-step fixed point smoothing, referred
to as IMM smoother (IMMS). This implementation is fur-
ther used, as well as the augmented MM smoother of [5],
for the purposes of smoothing-enhanced MM filtering.

The justification of the IMMS is as follows. For the MM
smoothing problem at time l given measurement data up to
time k the conditional smoothed estimates/covariances and
model probabilities are defined with respect to the latest
received measurement at time k, i.e.,

x̂j
l|k , E[xl|mj

k, z
k] P j

l|k , MSE(x̂l|mj
k, z

k) (6)

µjl|k , P{mj
l |zk} j = 1, . . . , r (7)

Assume now that for a given k0 and κ > k0
the smoothed (or filtered if κ = k0 + 1) estimates©
x̂j
k0|κ−1, P

j
k0|κ−1, µ

j
k0|κ−1

ªr
j=1

are available. Then for
the time instant κ the dynamic system (1) is resumed (re-
set) at k0 as

xκ = Φκ,k0 (mκ)xk0 + wk0,κ (mκ
) (8)

with the re-initialization

p
¡
xk0 |zκ−1

¢ ∼ rX
j=1

µjk0|κ−1N
£
x̂jk0|κ−1, P

j
k0|κ−1

¤
(9)

Note that in (8) the state transition matrix Φκ,k0 (mκ)
and the process noise wk0,κ (mκ

) describe the state evo-
lution for the time period starting at k0 and ending at κ
directly (without considering the intermediate states). In
other words, it is assumed that there are no model jumps
over the interval (k0, k] (see Section 4).

The Markov transition model becomes

P
©
mj

k0
|zκ−1ª = µjk0|κ−1 (10)

P
©
mj

κ|mi
k0

ª
= π

(κ−k0)
ij i, j = 1, . . . , r. (11)

where π
(κ−k0)
ij =

£
Πκ−k0¤

ij
are the (κ − k0)−step a

priori transition probabilities. They can be easily cal-
culated based on the Chapman-Kolmogorov equation via
Π(κ−k0) = Πκ−k0 .

On receipt of a new measurement zκ updating of the MM
estimates (6)–(7) can be done by the one-step smoother
IMMS1 for the reset system (8)–(11) and measurement
equation (2) for k = κ. Thus, an overall IMMS algo-
rithm for calculating at time k > k0 the smoothed esti-
mates {x̂jk0|k, P

j
k0|k, µ

j
k0|k}rj=1 and {x̂k0|k, Pk0|k} can be

obtained, which is given below.

IMMS Algorithm

For κ = k0 + 1, . . . , k

Step 1. Model-conditional reinitialization



x̂0jk0|κ−1 =
rX
i=1

µ
i|j
κ|k0 x̂

i
k0|κ−1 (12)

P 0jk0|κ−1 =
rX
i=1

µ
i|j
κ|k0

£
P ik0|κ−1 + (13)

¡
x̂ik0|κ−1 − x̂k0|κ−1
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x̂ik0|κ−1 − x̂k0|κ−1

¢T¤
µ
i|j
κ|k0 =

1

µjκ|k0
π
(κ−k0)
ij µik0|κ−1 (14)

µjκ|k0 =
rX
i=1

π
(κ−k0)
ij µik0|κ−1 (15)

Step 2. Model-conditional one-step smoothing

x̂jk0|κ = x̂
0j
k0|κ−1 +K

j
k0,κ

z̃jκ|k0 (16)

P jk0|κ = P
0j
k0|κ−1 −K

j
k0,κ

Sjκ|k0K
jT
k0,κ

(17)

Kj
k0,κ

= P 0jk0|κ−1Φ
jT
κ,k0

HjT
κ

¡
Sjκ|k0

¢−1
with

z̃j
κ|k0 = zκ −Hj

κΦ
j
κ,k0

x̂0j
k0|κ−1

Sjκ|k0 = H
j
κP

0j
k0|κ−1H

jT
κ +Rκ

Step 3. Smoothed model probabilities

µj
k0|κ =

1

µk0|κ
µj
k0|κ−1Λ

j
k0|κ (18)

Λj
k0|κ =

rX
i=1

π
(κ−k0)
ji Λiκ|κ−1 (19)

µk0|κ =
rX
j=1

µjk0|κ−1Λ
j
k0|κ (20)

where Λiκ|κ−1 is the likelihood associated with z̃jκ|κ−1 (e.g.,
given by the direct forward IMM[κ− 1,κ]).

Step 4. Smoothed state estimate (output)

x̂k0|κ =
rX
j=1

µjκ|κx̂
j
k0|κ

Pk0|κ =
rX
j=1

µjκ|κ
£
P jk0|κ +¡

x̂jk0|κ − x̂k0|κ
¢¡
x̂jk0|κ − x̂k0|κ

¢0¤
where µjκ|κ is the posterior model probability associ-

ated with z̃jκ|κ−1 (e.g., given by the direct forward
IMM[κ− 1,κ])

Clearly, for k0 = k − 1 the above IMMS algorithm re-
duces to the IMMS1 algorithm of [8]. More details of the
above IMMS algorithm will be given in a forthcoming pa-
per. Here we employ IMMS in the further implementation
of smoothing-enhanced IMM filtering discussed next.

3 Smoothing-Enhanced MM Filter-
ing

A major disadvantage of the smoothing algorithms is
the time delay associated with obtaining the smoothed es-
timates. In most applications however such a delay can not
be tolerated and using “future measurements” contradicts
with the necessity of “real-time” processing. Naturally in
such circumstances arises the idea to use the data gathered
up to the current time instant to smooth the estimate for
some previous time instant, and then to re-run the esti-
mator from that previous moment with the more accurate
smoothed estimate. Clearly, for the optimal linear estima-
tors (e.g., Kalman filter) such an idea is completely sense-
less, because the current optimal estimate is based on all
data and cannot be improved in terms of the same optimal-
ity criterion. For the approximate, suboptimal, and highly
nonlinear estimators (such as GPB and IMM) this approach
however makes good common sense. For example, in a
similar manner the smoothing-enhanced re-filtering idea is
well used in the so-called iterative EKFs. Different MM
estimators differ mainly in the re-initialization of the model
conditional filters, which to a large extent determines their
performance. For instance, the smarter re-initialization of
the IMM scheme leads to a better performance as compared
to the GPB1 scheme. In the same spirit, re-initializing an
MM estimator with the smoothed estimate from a given
previous moment would expectedly provide superior accu-
racy of the estimate at the current time. In contrast to the
pure smoothing, the SE-IMM-estimate is readily available
at the current time with additional computation as com-
pared to the filtering.

In this paper we implement and investigate a smoothing-
enhanced IMM (SE-IMM) scheme, based on an IMM
smoother (e.g., the one presented in the previous section,
or the IMMS-d algorithm of [5]. More specifically the
SE-IMM algorithm at time k ≥ L on the receipt of the
measurement zk operates as follows.

• Run IMMS[k, k0] to obtain

{x̂j
k0|k, P

j
k0|k, µ

j
k0|k}rj=1

where k0 = k − L
• For l = 1, 2, . . . , L

Run IMM [k0 + l − 1, k0 + l] to obtain

{x̂j
k|k, P

j
k|k, µ

j
k|k}rj=1

Experience with the above SE-IMM scheme (see Section 6)
indicated that it does considerably reduce the peak errors
of the IMM filter during the transitional (model-change)
regimes. As a side effect, however, an accuracy degrada-
tion during the system steady states (e.g., nonmaneuvering
motion) was observed. A possible reason for this could be
a larger impact of the erroneous (non-dominant) models to



the overall estimate due to smoothing. The most natural
solution to this issue is to use the above SE-IMM only dur-
ing the filter transitional regimes. Not only would this pro-
vide the best estimates available for both steady state and
transitional periods but it also would dramatically decrease
the overall computation for the entire estimation interval.
Note that as a result of this, we have a combination of soft
decision and hard decision. In order to make use of this
idea an appropriate model change detection mechanism is
indispensable. Estimation of the model change instant is
also necessary. This is addressed next.

4 Model Change Detection
Information about mode changes is contained in the cur-

rent model likelihood functions Λjk = p(zk|zk−1, xk, mj
k)

and the posterior model probabilities µj
k|k = P{mj

k|zk},
both provided by the MM filter. In general, the likelihood,
while being more sensitive to model changes, is more prone
to random fluctuations and false alarms as compared to the
model probabilities. The latter are more conservative and
more inert in this regard. Experience about the function-
ing of MM estimators (e.g., IMM) indicates that during
a steady mode of the system (i.e., no jumps occur) typi-
cally1 one of the MM filter’s models is dominant, i.e., it
has a probability much larger than the other models. When
a jump-wise mode change occurs a jump-wise fall in the
likelihood and subsequently in the model probability of the
dominant model is observed. If the models are well sepa-
rated such an MM filter’s response can be very informative
and very fast at the same time.

One of the simplest possibilities to test for a model
change based on the above heuristic considerations is to
check for a change in the posterior probability of the dom-
inant mode:

max
mj∈M

µj
k|k < td (21)

where td is a dominance threshold (e.g., 0.8), depending
on the MM design for the problem under consideration.
Once a model change is declared by (21) the reverse test

max
mj∈M

µjk|k ≥ td (22)

can be used for establishing a steady mode of the filter.
In the context of smoothing-enhanced MM filtering, the

tests (21) and (22) could be used to turn the smoothing
reinitialization on and off, respectively. Increased robust-
ness and decreased false alarm rate may be achieved by a
run test, which requires that (21) (resp. (22)) be satisfied
for several (possibly subsequent) times. A better way is
to use the ratio of the two highest model probabilities as a
test statistic for model dominance [11].

Albeit extremely simple and supported by the common
sense, the above test has two major shortcomings. First, it

1Provided the MM filter is not poorly designed.

largely ignores the statistical properties of the time series
µ1|1, µ2|2, . . . , µk|k, . . . Second, it does not give any
estimation of the time the change occurred.

Next we formulate a cumulative sum (CUSUM)-
type statistical test [9, 2, 6] for model change de-
tection, based on the model probability’s time series
µ1|1, µ2|2, . . . , µk|k, . . . .

The test is run after a dominant model mjs(steady state
of the MM filter) is roughly established by (22) at some
time ks. It considers the hypotheses

H0 = {Model mjs is in effect for all ks, ks + 1, . . . , k }
H1 = {Model mjs is not in effect for all k0, k0 + 1, . . . , k }
where k0 ∈ (ks, k] is an unknown instant of change, to be
estimated.

Note that there are no jumps over (k0, k], where k0 is
the latest moment of model jump. This is consistent with
the approximation made in (8) for this application.

Starting from ks the following cumulative sum statistics
are computed for k ≥ ks

Sks = 0 (23)

Sk = Sk−1 + (µjsk|k − µ̄js + λσjs) (24)

where µ̄js and σjs are the mean and standard deviation
of µjs

k|k if mjs is the dominant mode and λ is a design
parameter. The decision rule for testing H0 vs. H1 is

Reject H0 if Sk − max
ks≤κ<k

Sκ < −tjs (25)

k = k + 1 otherwise (26)

where tjs > 0 is a decision threshold. When a model
change is detected by (25) the instant of change k0 is es-
timated as

k0 = min{κ : Sκ = max
ks<l≤k

Sl} (27)

Key design parameters of the above model change de-
tection are the mean µ̄j and deviation σj of a model mj

when it is dominant. In practice they can be evaluated by
simulation of steady state (no change) scenarios with true
system mode equal to or close to mj . The choice of λ and
the threshold t is discussed in [9].

5 Simulation: Target Tracking
5.1 Tracking Problem

We simulated the following well-known example, given
in complete details in [13]. The target-measurement model
is

xk+1 = Fxk +G [ak + wk]

zk+1 = Hxk+1 + vk+1, k = 0, 1, 2, . . .

where x , (x, ẋ, y, ẏ)0 denotes the target state, a , (ẍ, ÿ)0
is the acceleration, w ∼ N [0, Q] is the acceleration process



k 1 31 46 56 81 99 120 140 151

ẍk 0 18 2 0 25 −2 0 38 0
ÿk 0 22 37 0 2 19 −1 −1 0

Table 1: Target Acceleration Scenario

noise, z = (zx, zy)
0 is the measurement, v ∼ N [0, R] is

the random measurement error, and

F ,


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 G ,


T 2/2 0
T 0
0 T 2/2
0 T


H ,

·
1 0 0 0
0 0 1 0

¸
The unknown true acceleration ak = (ẍk, ÿk)0 is assumed
piecewise constant with a maximum value of 4g in any
direction, i.e.,

{(ẍ, ÿ) : |ẍ|+ |ÿ| ≤ 40}
The MM model, used by the estimators, approximates the
evolution of the true acceleration via a Markov chain model
over a finite set of acceleration values {a1, a2, . . . , ar}
within the assumed range, that is, P

©
a0 = a

i
ª
= Pi and

P
©
ak = a

j |ak−1 = ai
ª
= πij for i, j = 1, 2, . . . , r. In

our implementations we used the 13-model set design given
by

a1 = ρ[0, 0]0 a2 = ρ[1, 0]0 a3 = ρ[0, 1]0

a4 = ρ[−1, 0]0 a5 = ρ[0,−1]0 a6 = ρ[1, 1]0

a7 = ρ[−1, 1]0 a8 = ρ[−1,−1]0 a9 = ρ[1,−1]0
a10 = ρ[2, 0]0 a11 = ρ[0, 2]0 a12 = ρ[−2, 0]0
a13 = ρ[0,−2]0


with ρ = 20 ≈ 2g, and the same transition probability
matrix Π = [πij ] as given by (7) of [13]. The other
model parameters are T = 1s, Q = O, R = 1250I, x0 =
[8000, 25, 8000, 200]0.

The performances of several tracking MM tracking and
smoothing algorithms, described further, were investigated
over a large number of deterministic maneuver scenarios
with fixed acceleration sequences. Deterministic scenar-
ios serve to evaluate algorithms’ peak errors, steady-state
errors and response times. We present a typical scenario
with acceleration values given in Table 1.

5.2 Simulation Results
All simulation results were obtained based on 500 Monte

Carlo runs.

Figures 1 through 4 display comparative results of four
different smoothers: H1 – one-step back of [8], C1 – one-
step back of [5], C2 – two-step back of [5], N2 – the
new two-step back, proposed in Section 2. It is seen first
that the performances of H1 and C1 are practically in-
distinguishable for this scenario, although these methods
are in general based on different underlying approxima-
tions. Second, a substantial improvement is seen from the
one-step algorithms to the two-step algorithms. This im-
provement is particularly remarkable regarding the peak
errors during model changes, which is of major concern
for the MM filters, and empirically supports the idea of
smoothing-enhanced MM filtering, investigated in this pa-
per. Third, the performance of the new proposed 2-step
back smoothing scheme is almost identical to that of the
augmented smoother C2 [5]. The former however is far
less computationally demanding than the latter. From this
point of view N2 seems to be a better choice than C2.

Figures 5 and 6 present a comparison between the regu-
lar IMM and the one-step back smoothing-enhanced IMM
(SE-IMM1). Analogous results for the IMM and the
two-step back SE-IMM2 are given in Figures 7 and 8.
Doubtlessly the SE-IMM gives a superior prediction to the
regular IMM during the peak-error periods. This is par-
ticularly substantial in the position RMSE plots (Figures
5 and 7). On the other hand, as a side effect of the ad-
ditional smoothing the error during the steady state (espe-
cially non-maneuvering) motion slightly increased in this
scenario. Computational considerations and the observa-
tion of this phenomenon supported the natural idea to use
smoothing-enhanced IMM filtering only during the transi-
tional (model change) regimes of operation. Such process-
ing not only guarantees the best estimates (available from
both IMM and SE-IMM) but also dramatically reduces the
overall computational load of the algorithm during the en-
tire tracking period. A more or less successful implemen-
tation of this idea is demonstrated in Figures 9 and 10. The
IMM is compared with an SE-IMM with model-change de-
tection (maneuver on/off logic), which launches SE-IMM
only during model changing periods. As seen from the
plots the steady state error increasing effect can be mit-
igated together with a huge computational saving at the
same time.

Another observation made from comparing Figures 5
and 6 with Figures 7 and 8, is the small difference between
SE-IMM1 and SE-IMM2. It seems that for the tracking
scenario considered one-step back smoothing is practically
sufficient for the observed peak error reduction.

6 Conclusion
An enhanced scheme for IMM estimation by smoothed

re-initialization, referred to as smoothing-enhanced IMM
(SE-IMM), has been proposed this paper. To facilitate its
implementation an approximate IMM smoothing algorithm
and an CUSUM-type statistical test for model change de-
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Fig. 1: Smoothing: Position RMSE
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Fig. 2: Smoothing: Position SD
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Fig. 3: Smoothing: Velocity RMSE
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Fig. 4: Smoothing: Velocity SD
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Fig. 5: IMM vs. SE-IMM (1-step back): Position RMSE&SD
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Fig. 6: IMM vs. SE-IMM (1-step back): Velocity RMSE&SD
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Fig. 7: IMM vs. SE-IMM (2-steps back): Position RMSE&SD

0 20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

70

time (s)

e
rr

o
r

o
r

s
.d

.
(m

/s
)

IMM-RMSE
IMM-SD
SI MM 2-RMSE
SI MM 2-SD

Fig. 8: IMM vs. SE-IMM (2-steps back): Velocity RMSE&SD
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Fig. 9: IMM vs. SE-IMM with CD: Position RMSE&SD
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Fig. 10: IMM vs. SE-IMM with CD: Velocity RMSE&SD

tection have been also provided.
Investigation of the SE-IMM efficiency by simulation

has been performed. The simulation results has con-
firmed that the SE-IMM estimation can be considerably
more accurate in comparison with the IMM filter, in tran-
sitional (mode-changing) regimes of the dynamic system.
At the same time smoothed re-initialization has been ob-
served to yield sometimes accuracy degradation in steady
state regimes. Thus, implementation of the SE-IMM with
model-change detection, as proposed in the paper, appears
a promising solution. An SE-IMM with model-change
detection provides the best estimates available from both
IMM and SE-IMM which is achieved by a slight increase
in computation over the entire estimation period as com-
pared to the standard IMM. In this way, this paper makes
the first small step toward combining the soft-decision
(MM) and hard-decision based algorithms to take advan-
tage of the strength of each class, as opposed to previously
available pure soft-decision (MM) or hard-decision based
algorithms [12].
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