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Abstract: This paper presents a new class of variable-structure algorithms, referred to as
expected-mode augmentation (EMA), for multiple-model estimation. In this approach, the
original model set is augmented by a variable set of models intended to match the expected
value of the unknown true mode. These models are generated adaptively in real time as
(globally or locally) probabilistically weighted sums of modal states over the model set. This
makes it possible to cover a large continuous mode space by a relatively small number of
models at a given accuracy level. Performance of the proposed EMA algorithms is evaluated
via a simulated example of a maneuvering target tracking problem.
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1. INTRODUCTION

In many applications of multiple-model (MM) esti-
mation, the set of possible values of uncertain system
parameters, known as mode space, is continuous. As
shown in (Li and Jilkov, 2001), optimal use of more
models in such cases does improve the performance
of MM estimation. In practice, however, only a lim-
ited number of models can be used. The common
practice in MM estimation is to design a finite set
of models to approximate this mode space. Loosely
speaking, the major objective here is to achieve best
modelling accuracy at a minimum number of models.
Here the variable-structure approach (see e.g., (Li and
Bar-Shalom, 1996; Li, 2000b; Li, 2000a)) to MM es-
timation has certain advantages. In a general setting,
the problem of efficient model set design for MM
estimation is still open, although significant progress
has been reported in (Li, 2002; Li et al., 2002).

It is known that the performance of a model set
depends highly on how close the models in the set is
to the true mode. The closer the better. Since the true
mode may be time varying over a large space, if a fixed
set of models is used, the required number of mod-
els to achieve a satisfactory accuracy may easily be
prohibitively large. However, nothing really prevents
us from using a variable set of models. To capture
various possible mode jumps and in the meantime
to have at least one model close to the true mode,
a natural idea is to augment the original model set
by one or more adaptive models that follow closely
the true mode. A good candidate for the augmenting
models is the expected value of the true mode since
it is statistically closest to the true mode. This ex-
pected mode can be approximated by a sum of modal
states weighted by the corresponding model proba-
bilities, readily available from the underlying MM
algorithm. This expected-mode augmentation (EMA)
approach, proposed in (Li and Jilkov, 2001), is sys-
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tematic and general for all problems with a continuous
mode space.

Several researchers have considered similar prob-
lems and proposed their solution techniques. The use
of an initial coarse grid and a subsequent fine grid
was proposed in (Gauvrit, 1984) for a static MM algo-
rithm. Also for a static MM algorithm, (Maybeck and
Hentz, 1987) presented a filter bank that moves over
a predefined fixed grid according to a decision logic.
It was proposed in (Munir and Atherton, 1995) to use
a moving set of acceleration models centered around
a model whose acceleration is determined by an ad-
ditional Kalman filter. In (Li and Bar-Shalom, 1996),
it was suggested to employ the expected mode as the
center of an adaptive grid for an example of non-
stationary noise identification. In (Layne, 1998), an
adaptive IMM algorithm for radar tracking of a ma-
neuvering target was proposed that uses an acceler-
ation model determined by a separate Kalman filter
on top of a fixed set of models. Compared with these
existing techniques, not only is the EMA approach
much more general and systematic, but it is also highly
cost-effective and easy to implement.

In this paper, we continue our investigation of the
EMA approach started in (Li and Jilkov, 2001). More
specifically, in (Li and Jilkov, 2001) we proposed the
EMA approach, presented its theoretical foundation,
and provided simulation results of a simplest possi-
ble practical implementation. In this paper, we out-
line the EMA approach in a general setting, propose
three practical EMA algorithms, and evaluate their
performance for a generic maneuvering target tracking
problem.

2. EXPECTED-MODE AUGMENTATION

2.1 Benefit of Model-Set Augmentation

Denote by s the true mode and by S the mode space
(i.e., the set of possible values of s). Consider the
problem of adding a model set C to the original model
set M (hence C \M = ?). Assume (M [ C) � S.
Let



x̂M =E[xjs 2M; z]; x̂C = E[xjs 2 C; z]

�M = Pfs 2M js 2 (M [ C); zg

�C = Pfs 2 Cjs 2 (M [ C); zg

where z stands for measurement. Then the estimator
of x based on the union of model sets M and C is

x̂ = E[xjs 2 (M [ C); z] = �M x̂M + �C x̂C

which is a convex combination of x̂M and x̂C . As
shown in (Li and Jilkov, 2001), if x̂M and x̂C are
unbiased (and have uncorrelated estimation errors),
which can be assumed in most cases, use of the union
of M and C is better than use of M alone if and only
if

�C <
2mse(x̂M )

mse(x̂M ) + mse(x̂C)

where mse(x̂M ) stands for the mean-square error of
x̂M . This inequality is always satisfied if x̂C is better
than x̂M . Even if x̂C is worse than x̂M , x̂ is still better
than x̂M provided �C satisfies the above inequality,
and in the case where E[~x0M ~xC ] 6= 0, x̂ is still better
than x̂M if and only if E[~x0M ~xC ] < E[~x0M ~xM ] =
mse(x̂M ), where ~x = x� x̂ is the estimation error.

Note that this result, which holds when M [ C �
S, does not contradicts the finding presented in (Li
and Bar-Shalom, 1996) that the optimal use of more
models is not necessarily better because the above
result would not necessarily be correct if C � S were
not true. Since in this paper we focus on problems
with a continuous mode space, M [ C � S holds
in general and thus x̂� = (1 � �)x̂M + �x̂C with
some � will be better than x̂M . As a consequence,
optimal use of more models for such problems does
improve performance because its estimate x̂ cannot be
worse than x̂�. Of course, this holds true only under
the simplifying assumption s 2 (M [C), which is not
necessarily true in general.

2.2 Expected-Mode Augmentation

The above results have many potential applications
in model-set design for fixed-structure MM estimation
as well as model-set adaptation for variable-structure
MM (VSMM) estimation. In general, given a model
set M , it is up to us to find another model set C
such that use of the augmented model set M [ C
enhances the performance. The key here for model-
set adaptation is to augment M by a set C of good
models for the current time in real time. If we use a
model set C based on which x̂C is better than x̂M ,
then such augmentation is guaranteed to improve the
performance. With this in mind, a natural idea is to
choose C to be a set of expected modes, which should
be close to the true mode and thus lead to good x̂C . In
this approach, called expected-mode augmentation
(EMA), at every time we augment model set M by
a set C of adaptive models representing the expected
mode. Clearly this approach has a variable structure
since the models in the set C are adaptive (and hence
variable) although the number of models in C may or
may not be fixed.

We formally define the expected-mode augmenta-
tion approach in a general setting.

Definition 1 (EMA set). The union of a model set
M and the set of models that match the true mode in
some statistical average (expectation) sense is called
the expected-mode augmented (EMA) set of M .

Definition 2 (EMA algorithm). An MM algorithm
using an EMA set is called an EMA algorithm.

Let M+(M1; : : : ;Mq) =M [E denote the model
set M augmented by a set of models E that match the
expected modes:

E = E(M ;M1; : : : ;Mq) = f �m1; �m2; : : : ; �mqg (1)

Here �mi is the expected mode as calculated based on
the model set Mi, given by (say, for time k)

�mi = �mMi

kjk = E[skjsk 2Mi;M
k�1; zk]

=
X

mj2Mi

mj�j(k)

or

�mi = �mMi

kjk�1 = E[skjsk 2Mi;M
k�1; zk�1]

=
X

mj2Mi

mj�j(kjk � 1)

where Mk and zk stand for the sequences of model
sets and measurements, respectively, �j(kjk � 1) =

Pfsk = mj jsk 2 Mk;M
k�1; zk�1g and �j(k) =

Pfsk = mj jsk 2 Mk;M
k�1; zkg denote the pre-

dicted and updated probabilities of model j being the
correct one, and mj is the parameter value that char-
acterizes model j.

This approach is general—it is valid for all prob-
lems where the above �mi is meaningful 2 —and is
simple to implement because �mi is readily available
from an MM estimator with little extra computation.

In general, the expected-mode set E is time-varying
and a generic cycle is Ek�1 ! Ek. In a purely
EMA algorithm (i.e., a VSMM estimator where the
model set is time-varying only due to expected-mode
augmentation), the evolution of the model set is

Mk = Ek [ (Mk�1 �Ek�1) (2)

Clearly, an EMA algorithm with a generic cycle
Ek�1 ! Ek can be integrated with other VSMM
estimators with a generic cycle M 0

k�1 ! M 0
k to yield

a generic cycle

Mk�1 = M 0
k�1 +Ek�1 �!Mk = M 0

k +Ek (3)

It is thus clear that the key step in an EMA algo-
rithm is the determination of M , and M1; : : : ;Mq.

3. PRACTICAL EMA ALGORITHMS

We now describe practical EMA algorithms pro-
posed in this paper. Assume for simplicity of presen-
tation that the IMM mechanism is used for model-
conditioned reinitialization (Li, 1996).

The proposed EMA algorithms involve the follow-
ing main functional modules

2 This is the case whenever the mode space is continuous, al-
though there are problems in which different mj represent different
physical quantities and thus their weighted sum is not necessarily
meaningful.



� EMAMk :=M+(M1; : : : ;Mq): expected mode
augmentation procedure;

� VSIMM[Mk;Mk�1]: recursion for variable struc-
ture IMM estimation that uses model sets Mk�1

and Mk at time k � 1 and k, respectively;
� EF[M 0

k;M
00
k ;Mk�1]: procedure for estimation

fusion of two estimates resulting from
VSIMM[M 0

k;Mk�1] and VSIMM[M 00
k ;Mk�1]

recursions, respectively.
The VSIMM and EF functions have been devel-

oped, utilized, and documented in several publica-
tions on VSMM estimation (Li et al., 1999a; Li et
al., 1999b; Li and Zhang, 2000; Li, 2000a). For the
EMA procedure, a general description has been given
above; a more detailed discussion is given next.

Table 1. One cycle of EMA — Algorithm A

S1. Obtain Ek = E(Mk�1;M1; : : : ;Mq) using the predicted
model probabilities f�i(kjk� 1)gmi2Mk�1

S2. For Mk = Ek [ (Mk�1 �Ek�1), run
VSIMM[Mk;Mk�1] to obtain the overall estimates, error
covariances, and model probabilities

fx̂i(kjk); Pi(kjk); �i(k)gmi2Mk

Table 2. One cycle of EMA — Algorithm B

S1. For Mf = Mk�1 � Ek�1, run VSIMM[Mf ;Mk�1] to
obtain fx̂i(kjk); Pi(kjk); �i(k)gmi2Mf

S2. Obtain Ek = E(Mf ;M1; : : : ;Mq) using the current up-
dated model probabilities f�i(k)gmi2Mf

S3. Run VSIMM[Ek;Mk�1] to obtain

fx̂i(kjk); Pi(kjk); �i(k)gmi2Ek

S4. Run EF[Mf ; Ek;Mk�1] to obtain overall estimates, error
covariances, and model probabilities in the set Mk =Mf [
Ek:

fx̂i(kjk); Pi(kjk); �i(k)gmi2Mk

Table 3. One cycle of EMA — Algorithm C

S1. Obtain E0
k
= E(Mk�1;M1; : : : ;Mq) using the predicted

model probabilities f�i(kjk� 1)gmi2Mk�1

S2. For M 0

k
= E0

k
[ (Mk�1 �Ek�1), run

VSIMM[M 0

k
;Mk�1]

S3. Obtain Ek = E(M 0

k
;M1; : : : ;Mq) using the current up-

dated model probabilities f�i(k)gmi2M
0

k

S4. Run VSIMM[Ek;Mk�1]
S5. For Mf = Mk�1 � Ek�1, run EF[Mf ; Ek;Mk�1]

to obtain overall estimates, error covariances, and model
probabilities in the set Mk =Mf [Ek:

fx̂i(kjk); Pi(kjk); �i(k)gmi2Mk

3.1 EMA Algorithms

We now outline three EMA algorithms.
Consider a generic cycle from time k � 1 to k.

Suppose that the model set Mk�1 used at k � 1 is
given. Three basic EMA algorithms are given in Ta-
bles 1, 2, and 3, respectively, using different schemes
for determination of the model set M needed to obtain
the expected-mode set Ek = E(M ;M1; : : : ;Mq) at
time k. Choices of M1; : : : ;Mq are discussed later.

The main difference among the three algorithms
lies in how the expected-mode set Ek is determined.
Algorithm A (Step 1) uses Mk�1 (including Ek�1)
but not the current measurement zk to determine Ek.
On the contrary, Algorithm B (Step 2) uses zk but not
Ek�1 to determineEk. Algorithm C (Step 3) uses both
zk and Ek�1 to determine Ek. In general, Algorithm
B should outperform Algorithm A at the time instant
of a system mode jump (e.g., with a faster response
and hence a smaller peak error) because of the timely
information included in zk, while Algorithm A should
have a better steady-state performance due to the
more direct utilization of the old expected modes.
Algorithm C provides a trade off between the steady-
state performance and the fast response.

Algorithm A is the simplest, while Algorithm C
is the most sophisticated. Thanks to the optimal esti-
mation fusion formulas described in (Li, 2000a), the
computational complexities of Algorithms B and C
increased by the use of the current measurement zk
to determine Ek is quite limited.

The above algorithms can be integrated to yield
more sophisticated algorithms with improved perfor-
mance. For example, we can use Ek = EA

k [ EB
k

as the set of expected modes, where EA
k and EB

k are
the sets of (predicted and updated) expected modes
obtained by Algorithms A (Step 1) and B (Step 2),
respectively; or more preferably, we may use Ek =
EA
k [E

C
k as the set of expected modes, where EA

k and
EC
k are the sets of (predicted and updated) expected

modes obtained by Algorithm A (or C) in Step 1 and
Algorithm C in Step 3, respectively, which is equiv-
alent to replacing Step 5 of Algorithm C by running
EF[M 0

k; Ek;Mk�1].
In Step 1 of Algorithm A, use of the predicted

model probabilities at the current time step f�i(kjk�
1)gmi2Mk�1

amounts to �mk = �mkjk�1 and should
be superior to use of the updated model probabilities
at the previous time step f�i(k � 1)gmi2Mk�1

, which
amounts to assuming �mk = �mk�1jk�1. The same is
true for Algorithm C. Both sets of model probabilities
are readily available from an MM estimator.

3.2 Choices of M1; : : : ;Mq

Assume that M for Ek = E(M ;M1; : : : ;Mq) at
time k is determined as above. We now discuss how
to choose M1; : : : ;Mq. Usually, a small number q of
expected modes are used; that is,Ek is a small set. (We
used only q = 1 and 2 in our simulations.) It is clear
from the above algorithms that M1; : : : ;Mq should
be subsets of M ; otherwise their model probabilities
needed to determine Ek are hard to come by.

Naturally, we should choose M1 := M in general
unless there is a strong reason not to do so. For
example, for Algorithm C (Step 3) with q = 1, we
have then

Ek = �m1 =
X

mj2M 0

k

mj�j(k) (4)

that is, �m1 is indeed the expected mode as computed
based on all models in the set M 0

k, including the
expected mode at k � 1.



There are many ways of choosing M2; : : : ;Mq.
An idea is the following. Note first that the expected
mode �m1 obtained above is actually a global average
because M1 is equal to the total set M . In this sense,
�mi will be a local average if Mi is a proper subset of
M . By the analysis in Sec. 2, it is reasonable to expect
that augmenting a model set M by �mi is beneficial if
Mi is a set of models in M that are quite likely to be
true (i.e., s 2 Mi) at the time. As such, Mi can be
chosen to be the set of those models in M with the
highest probabilities, or those models that are close
to �m1 since �m1 is probably the best single model.
As reported in the next section, we implemented the
above three EMA algorithms with q = 1 and 2 where
�m1 is as obtained above and M2 is the set of the three
most probable models in M .

4. EXAMPLE: MANEUVERING TARGET
TRACKING BY EMA

4.1 The Problem

The target-measurement model is

xk+1 = Fxk +G [a (k) + wk]

zk+1 =Hxk+1 + vk+1; k = 0; 1; 2; : : :

where x , (x; vx; y; vy)
0 denotes the target state,

a , (ax; ay)
0 is the acceleration,wk � N [0; Q] is the

acceleration process noise, z = (zx; zy)
0 is the mea-

surement, vk � N [0; R] is the random measurement
error, and F = diag[F2; F2] and G = diag[G2; G2]
with

F2 =

�
1 T
0 1

�
; G2 =

�
T 2=2
T

�
; H =

�
1 0 0 0
0 0 1 0

�

The unknown true acceleration a (k) is assumed
piecewise constant, varying over a given continuous
planar region Ac. In the MM framework, we consider
a generic finite set (grid) of acceleration values:

Ar , fai 2 Ac : i = 1; 2; : : : ; rg (5)

which defines the total model set. We approximate
the evolution of the true acceleration over the quan-
tized set Ar via a Markov chain model, that is,
a(k) 2 Ar with given P fa(0) = aig = Pi and
P fa(k) = aj ja(k � 1) = aig = �ij for i; j =
1; 2; : : : ; r.

4.2 Designs of EMA Algorithms

In the simulated well-known example of (Averbuch
et al., 1991; Li and Bar-Shalom, 1992; Munir and
Atherton, 1995; Li and Bar-Shalom, 1996; Li et al.,
1999b; Li and Zhang, 2000), the maximum acceler-
ation in any coordinate direction is assumed to be
about 4g. The mode space is thus defined as (Li and
Jilkov, 2001)

Ac ,
n
(ax; ay) :

q
a2x + a2y � 40

o
The basic set of fixed models A7, designed by quanti-
zation of Ac is (Fig. 1)8<
:

a1 = � [0; 0]0 a2 = � [2; 0]0 a3 = �
�
1;
p
3
�
0

a4 = �
�
�1;

p
3
�0

a5 = � [�2; 0]0 a6 = �
�
�1;�

p
3
�0

a7 = �
�
1;�

p
3
�0

9=
;

with � = 20 � 2g. This quantization is more efficient
than other rectangular designs with 9 and 13 nodes (Li
and Jilkov, 2001; Li, 2002).

Fixed Models
Expected Mode

Fig. 1. 7-Model Set Design

Two types of EMA design based on A7 were
considered—single-model augmentation, denoted by
A7+1(k) , fA7; â8(k)g (Fig. 1) and two-model aug-
mentation, denoted byA7+2(k) , fA7; â8(k); â9(k)g.
All Algorithms A, B, and C presented above were
implemented for both A7+1 and A7+2. The corre-
sponding algorithms are denoted for short as Af7 +
ig, Bf7 + ig, Cf7 + ig, i = 1; 2, respectively. The
EMAf7 + 1g algorithms use always â8(k) = �m1

as computed by (4). The EMAf7 + 2g algorithms
use â8(k) as in EMAf7 + 1g and compute â9(k) as
the probabilistically weighted sum of the accelerations
of the three most probable models in the respective
model set.

The following transition probability matrices for the
Markov chains overA7+1 andA7+2 respectively were
used in the simulation2

6666664

:894 :001 :001 :001 :001 :001 :001 :1
:05 :65 :05 :0 :0 :0 :05 :2
:05 :05 :65 :05 :0 :0 :0 :2
:05 :0 :05 :65 :05 :0 :0 :2
:05 :0 :0 :05 :65 :05 :0 :2
:05 :0 :0 :0 :05 :65 :05 :2
:05 :05 :0 :0 :0 :05 :65 :2
:001 :001 :001 :001 :001 :001 :001 :993

3
7777775

and2
666666664

:964 :001 :001 :001 :001 :001 :001 :015 :015
:05 :65 :05 :0 :0 :0 :05 :1 :1
:05 :05 :65 :05 :0 :0 :0 :1 :1
:05 :0 :05 :65 :05 :0 :0 :1 :1
:05 :0 :0 :05 :65 :05 :0 :1 :1
:05 :0 :0 :0 :05 :65 :05 :1 :1
:05 :05 :0 :0 :0 :05 :65 :1 :1
:01 :01 :01 :01 :01 :01 :01 :9 :03
:01 :01 :01 :01 :01 :01 :01 :03 :9

3
777777775

All other parameters of the IMM algorithms imple-
mented in the simulation are the same as given in (Li
et al., 1999b), e.g. T = 1s; Q1 = (0:003)2I; Qj =
(0:008)2I; j 6= 1; R = 1250I .

5. PERFORMANCE EVALUATION

5.1 Test Scenarios

The performances of the six MM tracking algo-
rithms were investigated first over a large number of
deterministic maneuver scenarios with fixed accelera-
tion sequences. Deterministic scenarios serve to eval-
uate algorithms’ peak errors, steady-state errors and
response times. We present below results for two of
them, referred to as DS1 and DS2, the same as used in



(Li and Jilkov, 2001). The other parameters for both
scenarios are T = 1s; Q = O; R = 1250I; x0 =
[8000; 25; 8000; 200]0.

To provide an as fair as possible performance com-
parison over an ensemble of maneuver trajectories the
algorithms were tested on the random scenario, devel-
oped in (Li et al., 1999b; Li and Zhang, 2000). With
such a scenario, it is difficult, if not virtually impossi-
ble, to design an MM estimator with subtle tricks that
are effective only for certain scenarios. In the random
scenario the acceleration vector is a 2-dimensional
semi-Markov process. All details and discussions are
given in (Li et al., 1999b). In the simulation we used
the same parameter values as given therein.

5.2 Simulation Results

Accuracy comparison results over 100 Monte Carlo
runs for DS1 are plotted in Fig. 2 for the EMAf7 +
1g algorithms versus the EMAf7 + 2g algorithms.
It is seen that for all three algorithms A, B, and C,
two-expected-mode augmentation in the EMAf7 +
2g algorithms have substantially reduced peak errors
compared with their f7 + 1g counterparts. During
the steady-state regimes (no-jumps present) the er-
rors of the respective algorithms A, B, and C are
virtually indistinguishable. The results for the other
deterministic scenario DS2 (not presented here) are
very similar. As shown in Fig. 3 over 500 runs of the
random scenario, the f7 + 2g algorithms have a small
overall error reduction relative to the EMAf7 + 1g
algorithms. Also plotted in this figure are the results
of the standard fixed-structure IMM algorithm with
13 models (denoted as IMM13) (Li et al., 1999b).
It is seen that the EMA algorithms, which are of a
variable structure, have a substantially better accuracy
than the fixed-structure IMM algorithm. As evidenced
by Table 4, this performance superiority is achieved
by the EMA algorithms at a computational complexity
only about half of that of the IMM13. The reason for
this performance improvement is clear from Fig. 4—
the augmenting model (i.e., the expected mode â 8) is
on average much better than every other model in the
set.

Fig. 5 depicts comparative results between the three
algorithmsA, B, and C over DS2. Although the accu-
racy differences are not significant, a visible tendency
is that Algorithm B provides a faster response (and
hence smaller peak errors) than the other two algo-
rithms. As explained before, this is due to the fact that
its set of the expected modes relies more on the current
measurement information than Algorithms A and C.
However, this results in larger steady-state errors.

The computational complexities of the algorithms
evaluated in terms of relative floating point operations
(FLOP) ratios with respect to the standard IMM13 are
summarized in Table 4.

Table 4. Computational Load (FLOP Ratio)

IMM13 = 1 A B C

EMAf7 + 1g 0:5069 0:5004 0:5428
EMAf7 + 2g 0:5977 0:5919 0:6685
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Fig. 2. RMS Position Errors (DS1): 7 + 1 vs. 7 + 2
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6. CONCLUSIONS

Practical algorithms of expected-mode augmenta-
tion, which have a variable structure, for MM state es-
timation over a continuous mode space have been de-
veloped and investigated. The simulations conducted
have demonstrated the capabilities of the proposed
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algorithms for performance enhancement and compu-
tation reduction.

The approach is generally applicable, wherever the
mode space is continuous. It can be applied to fixed-
and variable-structure MM algorithms and supple-
ments the existing methods of variable-structure MM
estimation and facilitates the design of more efficient
practical MM estimators.
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