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Summary

� Robustness analysis is the �rst line to ensure system safety.

{ Controller design is based on inexact model.

{ Robustness analysis predicts how well a system can tol-
erate uncertainty (e.g. model inaccuracy).

{ Robust analysis provide guidance for improving sys-
tem's tolerance to accidental faults.

� Classical Deterministic Techniques

{ The central problem of robustness analysis is comput-
ing the deterministic robustness margin, which is an
indicator of the system's ability to tolerate uncertainty.

{ Computing the deterministic robustness margin is in
general intractable.

{ Deterministic robustness margin can be an extreme
conservative of system robustness.

{ NP hard (Non polynomial complexity)

� Probabilistic Robustness Analysis

{ Probabilistic robustness margin is a new concept which
overcomes the conservatism of the classic deterministic
robustness margin.

� Existing methods of computing the probabilistic ro-
bustness margin depend on the feasibility of com-
puting the deterministic robustness margin. There-
fore, the application of existing techniques is limited
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to some speci�c problem. Many important prob-
lems, for example robustness problem with time
speci�cations, can not be solved by existing tech-
niques.

� We develop eÆcient randomized algorithms with
universal applicability.

� Explicit formula for binomial con�dence interval

� Probabilistic comparison

� Probabilistic bisection

{ Robustness degradation function provides more insight
for the robustness of the system.

� Existingmethods of computing the robustness degra-
dation function depend on the feasibility of com-
puting the deterministic robustness margin. Hence,
many important problems, for example robustness
problem with time speci�cations, can not be solved
by existing techniques.

� We develop eÆcient randomized algorithms with
universal applicability.

� Probabilistic robustness margin can be eÆciently
computed and can be taken as a starting point.

� Sample reuse algorithm

� Backward iteration
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Robustness Analysis is the First Line

to Ensure System Safety

� Controller design is based on inex-

act model
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Robustness Requirements

Robustness requirements |{

� Stability or D-stability;

� Time speci�cations such as overshoot, rise
time, settling time and steady state error.

� H1 norm of the closed loop transfer func-
tion;
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Uncertainty Bounding Sets

Let B(r) denote the set of uncertainties with
size smaller than r.

� lp ball

� Spectral norm ball

� Homogeneous star-shaped bounding set
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Deterministic Robustness Margin

� The maximal uncertainty radius r such
that the robustness requirement is guaran-
teed for every value of the uncertainty set
with radius r

Xinjia Chen


Xinjia Chen


Xinjia Chen


Xinjia Chen




9

Limitations of Classical Deterministic

Techniques

� Computing deterministic robustness margin
is in general intractable

� Conservatism

� NP Hardness | Non-polynomial Complex-
ity
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Probabilistic Robustness Margin

� Themaximal uncertainty radius r such that
the robustness requirement is guaranteed with
probability at least 1�� for the uncertainty
set with radius r
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Robustness Degradation Function

� Proportion of systems guaranteeing ro-
bustness requirements || Radius of un-
certainty set
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Probabilistic Perspective

Truncation Principle [Barmish, Lagoa,
Tempo (1997)]

Suppose that uncertainty is \peak" around

its nominal value. Then the worst-case prob-

ability is attained by uniform distribution
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Separable Assumption
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Figure 1: Illustration of Separable Assumption
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Estimating Probabilistic Robustness

Margin

� Probabilistic Comparison

� Computing Initial Interval

� Probabilistic Bisection
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Probabilistic Comparison

� Con�dence Interval
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Complexity of Probabilistic

Comparison
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Figure 2: Complexity of Probabilistic Comparison
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Constructing Robustness Degradation

Curve

� Step 1. Compute an estimateR for the prob-
abilistic robustness margin.

� Step 2. Successively apply Sample Reuse

Algorithm as a subroutine to construct ro-
bustness degradation curve for uncertainty
radius interval [ R

2n+1
; R2n ] for n = 0; 1; � � �.
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Mechanisms of Sample Reuse

Algorithm

� Backward Iteration

� Reuse Sample

� Reuse Performance Evaluation
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Sample Reuse Algorithm
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Sample Reuse Factor

Let ni be the number of simulations required
at ri. De�ne sample reuse factor

Freuse :=
Nl

E [
Pl

i=1 ni]
:
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�
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Evaluation of Sample Reuse Factor
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Figure 3: Performance Improvement (A : l = 200; b = 2a; B : l = 100; b =
2a; C : l = 100; a = 0; D : l = 20; b = 2a)
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Evaluation of Sample Reuse Factor
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Figure 4: Performance Improvement (A : l = 200; b = 2a; B : l = 100; b =
2a; C : l = 100; a = 0; D : l = 20; b = 2a)
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Illustrative Examples
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Figure 5: Uncertain System

C(s) =
s + 2

s + 10

P (s) =
800(1 + 0:1Æ1)

s(s + 4 + 0:2Æ2)(s + 6 + 0:3Æ3)

� = [Æ1; Æ2; Æ3]
T
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Robustness Problem with

Time-Domain Speci�cations
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Figure 6: Robustness Degradation Curve�
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Robust D-stability over Polytope
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Figure 7: Robustness Degradation Curve
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