Risk Assessment Via Monte Carlo Simulation: Tolerances Versus Statistics

B. Ross Barmish ECE Department University of Wisconsin, Madison Madison, WI 53706 barmish@engr.wisc.edu

COLLABORATORS

- A. C. Antoniades, UC Berkeley
- A. Ganesan, UC Berkeley
- C. M. Lagoa, Penn State University
- H. Kettani, University of Wisconsin/Alabama
- M. L. Muhler, DLR, Oberfaffenhofen
- B. T. Polyak, Moscow Control Sciences
- P. S. Shcherbakov, Moscow Control Sciences
- S. R. Ross, University of Wisconsin/Berkeley
- R. Tempo, CENS/CNR, Italy

Overview

- Motivation
- The New Monte Carlo Method
- Truncation Principle
- Surprising Results
- Conclusion

Monte Carlo Simulation

- Used Extensively to Assess System Safety
- Uncertain Parameters with Tolerances
- Generate "Thousands" of Sample Realizations
- Determine Range of Outcomes, Averages, Probabilities etc.
- How to Initialize the Random Number Generator
- High Sensitivity to Choice of Distribution
- Unduly Optimistic Risk Assessment

It's Arithmetic Time

Consider

$$1 + 2 + 3 + 4 + 5 + \cdots + 20 = 210$$

Data and Parameter Errors

Classical Error Accumulation Issues

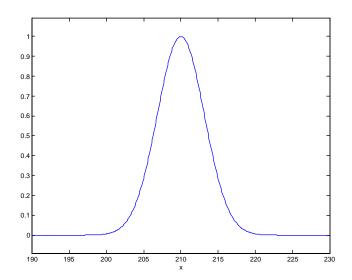
$$(1 \pm 1) + (2 \pm 1) + (3 \pm 1) + \cdots + (20 \pm 1) = 210 \pm 20$$

Two Results

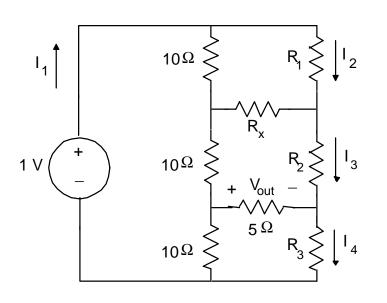
Actual Result

Alternative Result

190 - SUM - 230



Circuit Example



Output Voltage

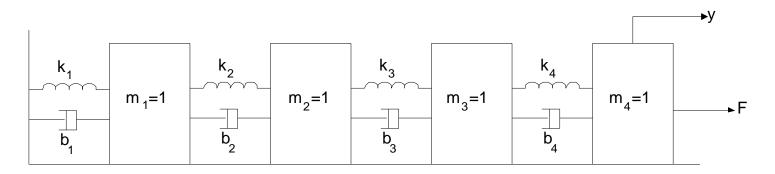
$$V_{out}(R) = \frac{N(R)}{D(R)}$$

$$N(R) = -200(10R_2 + 10R_4 + 10R_4 + R_3R_4) -350(R_1R_4 + R_2R_4 + R_2R_3 + R_1R_2 + R_1R_3) -30(R_2R_3R_4 + R_1R_2R_4);$$

$$D(R) = 50(2R_1R_4 + 10R_4 + R_2R_4 - 10R_3 - R_2R_3) -50(R_1R_2 - R_1R_3).$$

Range of Gain Versus Distribution

More Generally



with tolerances for m_i, b_i, k_i and performance

$$\left| \frac{Y(j\omega)}{F(j\omega)} \right| \leq \overline{g}$$

for all $\omega \geq 0$.

Desired Simulation

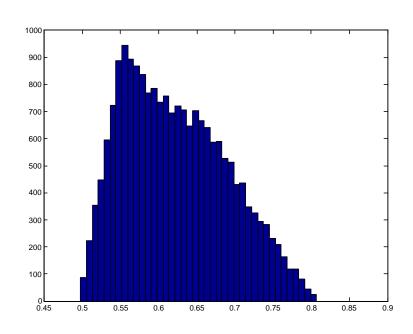
for i = 1:N RANDOMLY GENERATE m_i, b_i, k_i EVALUATE PERFORMANCE end

Two Approaches

- Interval of Gain
- Monte Carlo

Generate $k^1, k^2, \dots, k^N, c^1, c^2, \dots, c^N$ and

$$\hat{g}(\omega) \doteq \frac{1}{N} \sum_{i=1}^{N} g(\omega, k^i, c^i).$$



Gain Histogram: 20,000 Uniform Samples

How to Generate Samples?

Key Issue

What probability distribution should be used? Conclusions are often sensitive to choice of distribution.

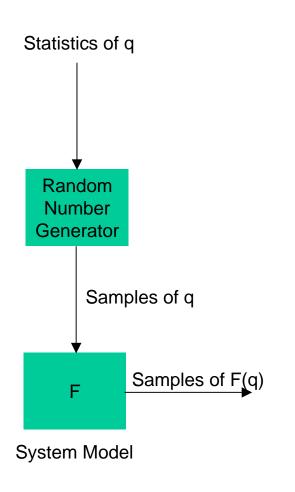
Intractability of Trial and Error

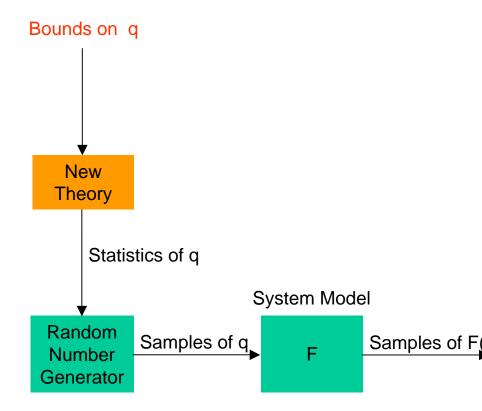
Combinatoric Explosion Issue

Key Idea in New Research

Classical Monte Carlo

New Monte Carlo





The Central Issue

What probability distribution to use?

Manufacturing Motivation

Uncertain capacitor

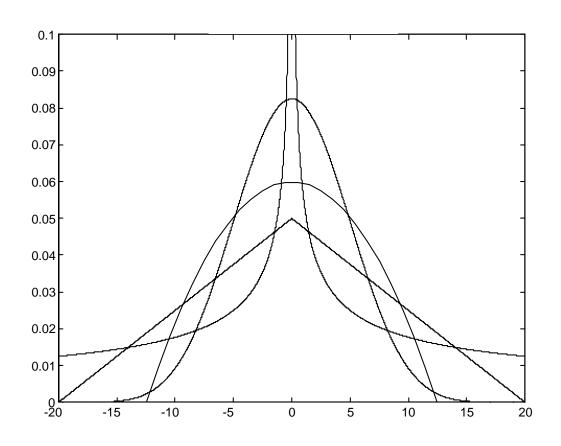
$$30 \mu \text{fd} \leq C \leq 70 \mu \text{fd}$$

nominally manufactured with

$$C_0 = 50 \mu \text{fd}$$

Positive and negative deviations about C_0 are equally likely. If $|\Delta C_1| < |\Delta C_2|$, ΔC_1 is more likely than ΔC_2 .

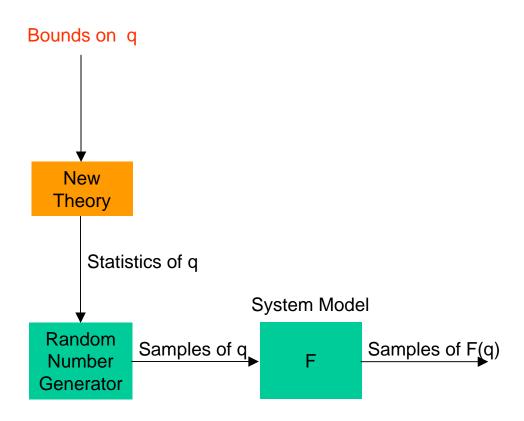
Distributions for Capacitor



Interpretation

- Probabilistic Guarantees
- Robustness With Respect to $f \in \mathcal{F}$
- A Posteriori Versus A Priori

Interpretation (cont.)

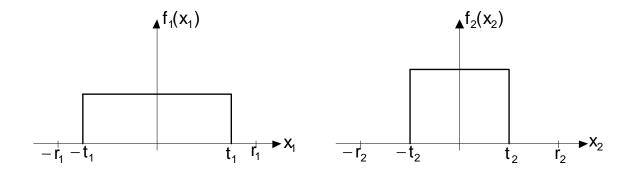


Truncation Principle

Problem is to find $f^* \in \mathcal{F}$ minimizing criterion function, call it $\Phi(f)$.

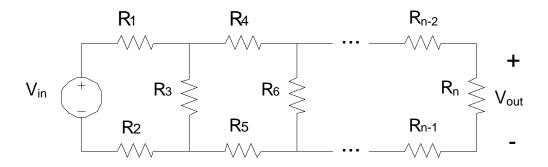
The Truncation Principle indicates that f_i^* is uniform over a sub-interval

$$T_i \doteq [-t_i, t_i] \subseteq [-r_i, r_i].$$



Notation: u^t and $t \in T$.

Example 1: Ladder Network



with density functions $f \in \mathcal{F}$ for each resistor.

Study Expected Gain

Solution: Set f_i^* to the Dirac Delta function distribution for interstage resistors R_i and set f_i^* to the uniform distribution for remaining resistors R_i .

Illustration for Ladder Network

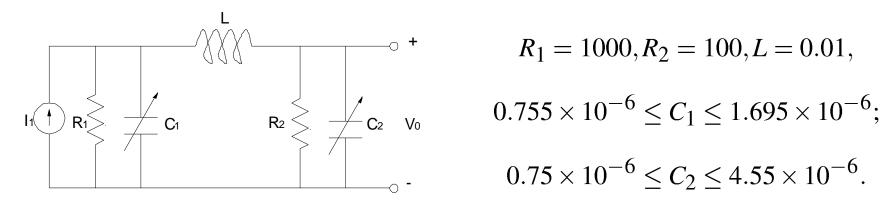
Three stages with with nominal values $R_{1,0} = R_{4,0} = R_{5,0} = R_{7,0} = R_{8,0} = 1$, $R_{2,0} = 2$, $R_{3,0} = 3$, $R_{6,0} = 5$ and $R_{9,0} = 7$, and uncertainty bounds $r_i = 0.8R_{i,0}$ for the inter-stage resistors and $r_i = 0.1R_{i,0}$ for the remaining resistors. Obtain

$$\mathcal{E}(g(q^{f^*})) \approx 0.1864$$

with n = 100,000 samples. In contrast, a more traditional Monte Carlo simulation using the uniform distribution for all resistors leads to a 20% difference.

Example 2: RLC Circuit

Consider the RLC circuit



$$R_1 = 1000, R_2 = 100, L = 0.01$$

$$0.755 \times 10^{-6} \le C_1 \le 1.695 \times 10^{-6};$$

$$0.75 \times 10^{-6} \le C_2 \le 4.55 \times 10^{-6}$$
.

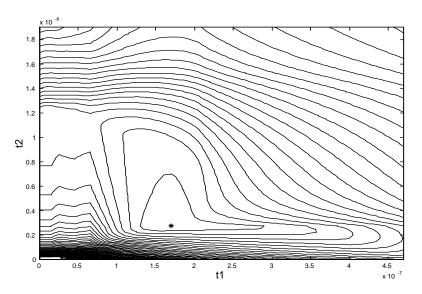
Performance is

$$OS_{max} \leq 96.3$$

Study probability of performance satisfaction with Truncation Principle. 20

Solution Summary For RLC

Plot contours of equal probability in (t_1, t_2) plane.



Obtain

$$t_1^* \approx 0.17 \times 10^{-6}; \ t_2^* \approx 0.275 \times 10^{-6};$$

and compare probability of performance with uniform:

$$\Phi(u^{t^*}) \approx 0.486; \quad \Phi(u) \approx 0.6912.$$

Current and Further Research

- The Optimal Truncation Problem
- Exploitation of Structure
- Correlated Parameters

New Application Areas; e.g., Cash Flows