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Abstract

In this final part, we discuss fault diagnosis methods that are based on historic process knowledge. We also compare and evaluate

the various methodologies reviewed in this series in terms of the set of desirable characteristics we proposed in Part I. This

comparative study reveals the relative strengths and weaknesses of the different approaches. One realizes that no single method has

all the desirable features one would like a diagnostic system to possess. It is our view that some of these methods can complement

one another resulting in better diagnostic systems. Integrating these complementary features is one way to develop hybrid systems

that could overcome the limitations of individual solution strategies. The important role of fault diagnosis in the broader context of

process operations is also outlined. We also discuss the technical challenges in research and development that need to be addressed

for the successful design and implementation of practical intelligent supervisory control systems for the process industries.
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1. Introduction

In contrast to the model-based approaches where a

priori knowledge (either quantitative or qualitative)

about the process is needed, in process history based

methods, only the availability of large amount of

historical process data is needed. There are different

ways in which this data can be transformed and

presented as a priori knowledge to a diagnostic system.

This is known as feature extraction. This extraction

process can be either qualitative or quantitative in

nature. Two of the major methods that extract qualita-

tive history information are the expert systems and trend

modelling methods. Methods that extract quantitative

information can be broadly classified as non-statistical

or statistical methods. Neural networks are an impor-

tant class of non-statistical classifiers. Principal compo-

nent analysis (PCA)/partial least squares (PLS) and

statistical pattern classifiers form a major component of

statistical feature extraction methods. The different

ways in which knowledge can be extracted from process

history are schematically presented in Fig. 1. We review

these approaches in this part of the review paper.

We also compare and evaluate the various methodol-

ogies reviewed in this three part series in terms of the set

of desirable characteristics we proposed in Part I. This

comparative study identifies the relative strengths and

weaknesses of the different approaches. It also reveals

that no single method has all the desirable features we

stipulated for a diagnostic system. It is our view that

some of these methods can complement one another

resulting in better diagnostic systems. Integrating these

complementary features is one way to develop hybrid

methods that could overcome the limitations of indivi-
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dual solution strategies. We review some recent trends in
this direction. The important role of fault diagnosis in

the broader context of process operations is also out-

lined. Finally, we also discuss the technical challenges in

research and development that need to be addressed for

the successful design and implementation of practical

intelligent supervisory control systems for the process

industries.

2. Qualitative feature extraction

As mentioned earlier two of the important methods

that employ qualitative feature extraction are the expert

systems and trend modelling approaches. In this section

we review these two approaches.

2.1. Expert systems

Rule-based feature extraction has been widely used in

expert systems for many applications. An expert system

is generally a very specialized system that solves
problems in a narrow domain of expertise. The main

components in an expert system development include:

knowledge acquisition, choice of knowledge representa-

tion, the coding of knowledge in a knowledge base, the

development of inference procedures for diagnostic

reasoning and the development of input�/output inter-

faces. The main advantages in the development of expert

systems for diagnostic problem-solving are: ease of
development, transparent reasoning, the ability to

reason under uncertainty and the ability to provide

explanations for the solutions provided.

There are a number of papers that discuss expert

system applications for fault diagnosis of specific

systems. Initial attempts at the application of expert

systems for fault diagnosis can be found in Henley

(1984), Chester, Lamb, and Dhurjati (1984) and Niida
(1985). Rich, Venkatasubramanian, Nasrallah, and

Matteo (1989) discuss a diagnostic expert system for a

whipped topping process. The objectives of this expert

system were twofold. First, the system classifies the

reasons for the observed problem as an operator error,

equipment failure or system disturbance. Second, the

expert system offers prescriptive remedies to restore the
process to normal operation.

Structuring the knowledge-base through hierarchical

classification can be found in Ramesh, Shum, and Davis

(1988) and an application of an expert system for

catcracker diagnosis can be found in Ramesh, Davis,

and Schwenzer (1989). Several large systems have been

built using such an approach and constitutes an

improvement over the unstructured rule-based systems.
Ideas on knowledge-based diagnostic systems based on

the task framework can be found in Ramesh, Davis, and

Schwenzer (1992). A rule-based expert system for fault

diagnosis in a cracker unit is described in Venkatasu-

bramanian (1989) and a specialized shell for diagnostic

expert systems can be found in Venkatasubramanian

(1988). A discussion on different forms of reasoning in

expert systems can be found in Ungar and Venkatasu-
bramanian (1990). More work on expert systems in fault

diagnosis can be found in Quantrille and Liu (1991). A

framework to represent the uncertain elements of the

diagnostic problem using belief networks, and the use of

distributed network (parallel) computations to deter-

mine the most probable diagnostic hypotheses can be

found in RojasGuzman and Kramer (1993).

There are a number of other researchers who have
worked on application of expert systems for diagnostic

problems. Basila, Stefanek, and Cinar (1990) have

developed a supervisory expert system that uses object-

based knowledge representation to represent heuristic

and model-based knowledge. A prototype has been

applied to improve the behavior of a packed-bed tubular

CO oxidation reactor under auto-thermal operation.

Zhang and Roberts (1991) have presented a methodol-
ogy for formulating diagnostic rules from the knowledge

of system structures and component functions. This

approach has been tested on a pilot scale mixing process

and a simulated CSTR system. Chen and Modarres

(1992) have developed an expert system, called FAX, to

address the determination of the root cause of process

malfunctions and suggestions for corrective action(s) to

avert abnormal situations. Becraft and Lee (1993) have
proposed an integrated framework comprising of a

neural network and an expert system. A neural network

is used as a first-level filter to diagnose the most

commonly encountered faults in chemical process

plants. Once the faults are localized within a particular

process by the neural network, a deep knowledge expert

system analyzes the result, and either confirms the

diagnosis or else offers an alternative solution. Tarifa
and Scenna (1997) have proposed a hybrid system that

uses signed directed graphs (SDG) and fuzzy logic. The

SDG model of the process is used to perform qualitative

simulation to predict possible process behaviors for

Fig. 1. Classification of process history-based methods
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various faults. Those predictions are used to generate

if�/then rules that are evaluated by an expert system

using information about the actual process state and

fuzzy logic. Zhao, Chen, and Shen (1997) have presented
a wavelet-sigmoid basis neural network and expert

system based integrated framework for fault diagnosis

of a hydrocracking process. Wo, Gui, Shen, and Wang

(2000) have presented an expert fault diagnostic system

that uses rules with certainty factors. Leung and

Romagnoli (2000) have presented a probabilistic

model-based expert system for fault diagnosis. Possible

cause and effect graph, an enhanced SDG has been used
for qualitative modelling. The diagnostic system has

been applied to a pilot scale distillation column. Tarifa

and Scenna (1998) discuss an expert system for fault

diagnosis of a multistage flash desalination process. An

expert system approach for fault diagnosis in batch

processes is discussed in Scenna (2000).

There are a number of other papers that discuss

specific applications of expert systems for fault diag-
nosis. However, in all the applications, the limitations of

an expert system approach is obvious. Knowledge-based

systems developed from expert rules are very system-

specific, their representation power is quite limited, and

they are difficult to update (Rich & Venkatasubrama-

nian, 1987). The advantage though is the ease of

development and transparent reasoning.

2.2. Qualitative trend analysis (QTA)

A second approach to qualitative feature extraction is

the abstraction of trend information. Trend analysis and

prediction are important components of process mon-

itoring and supervisory control. Trend modelling can be

used to explain the various important events happening

in the process, do malfunction diagnosis and predict

future states. From a procedural perspective, in order to
obtain a signal trend not too susceptible to momentary

variations due to noise, some kind of filtering needs to

be employed. For example, time series representations

assume, a priori, certain behavior as they are identified

using a known process behavior. Alternatively, one may

simply use a filter (such as an auto-regressive filter) with

a priori chosen filter coefficients (specifying the required

degree of smoothing). Both types of filters suffer from
the fact that they cannot distinguish well between a

transient and true instability (Gertler, 1989). The

essential qualitative characters might be distorted by

these filters. Avoiding this problem requires that the

trend be viewed from different time scales or different

levels of abstraction. Qualitative abstraction allows for a

compact representation of the trend by representing

only the significant events. For tasks such as diagnosis,
qualitative trend representation often provides valuable

information that facilitates reasoning about the process

behavior. In a majority of cases, process malfunctions

leave a distinct trend in the sensors monitored. These

distinct trends can be suitably utilized in identifying the

underlying abnormality in the process. Thus, a suitable

classification and analysis of process trends can detect
the fault earlier and lead to quick control. Also,

qualitative trend representation can pave way for

efficient data compression.

Cheung and Stephanopoulos (1990) have built a

formal framework for the representation of process

trends. They introduce triangulation to represent trends.

Triangulation is a method where each segment of a

trend is represented by its initial slope, its final slope (at
each point, or critical point of the trend) and a line

segment connecting the two critical points. A series of

triangles constitute a process trend. Through this

method, the actual trend always lies within the bounding

triangle, which illustrates the maximum error in the

representation of the trend. Janusz and Venkatasubra-

manian (1991) identify a comprehensive set of primitives

using which any trend can be represented. They use a
finite difference method to calculate the first and second

derivative of the process trend changes and based on

these values, the primitives are identified. This qualita-

tive formalism readily lends itself to hierarchic repre-

sentations as well. Rengaswamy and

Venkatasubramanian (1995) have shown how primitives

can be extracted from raw noisy sensor data by treating

the problem of primitive identification as a classification
problem using neural networks. Each data set in a given

time window would be classified to one of the primitives.

This work is oriented towards a syntactic pattern

recognition approach. Syntactic approaches are suitable

for hierarchical representation of the trend information

and are suitable for developing error correcting code,

which eliminates the effects of high noise and outliers.

At a lower level, a pattern classification approach like
neural networks is used to identify the fundamental

features of the trends observed. At a higher level, the

syntactic information is abstracted and represented in a

hierarchical fashion with the error correcting code

smoothing out the errors made at the lower level.

Vedam and Venkatasubramanian (1997) proposed a

wavelet theory based adaptive trend analysis framework

and later proposed a dyadic B-Splines based trend
analysis algorithm (Vedam, Venkatasubramanian, &

Bhalodia, 1998). Recently, Rengaswamy, Hagglund,

and Venkatasubramanian (2001) have discussed the

utility of trend modelling in control loop performance

assessment.

Konstantinov and Yoshida (1992) proposed a quali-

tative analysis procedure with the help of an expandable

shape library that stores shapes like decreasing con-
cavely, decreasing convexly and so on. The first step in

their method is the approximation of state variables by a

proper analytic function. The analytic noise-free model

is then converted into a qualitative form and the
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qualitative shapes are concatenated to describe the

overall trend. Whiteley and Davis (1992) discuss quali-

tative interpretations from sensor data as an adaptive

pattern recognition problem.
Multilevel abstraction of important events in a

process trend is possible through scale-space filtering

through the use of a bank of filters each sensitive to

certain localized region in the time�/frequency domain

(Marr & Hildreth, 1980). There are two underlying ideas

in the use of multilevel abstraction of process trends: (a)

changes in trends occur at different scales and their

optimal detection requires the use of filters or operators
of different sizes, and (b) a sudden change will give rise

to a peak or trough in the first derivative, or equiva-

lently, to a zero-crossing in the second derivative (a

zero-crossing is a place where the value of a function

changes sign, say from positive to negative). The interest

in zero-crossings stems from the fact that they are very

rich in information on the changes in a trend. This leads

one to search for filters with two salient characteristics.
First, it should be a differential operator, taking first,

second or higher-order spatial derivatives of the func-

tion. Second, it should be capable of being tuned to any

desirable scale, so that filters with small scale capture

gradual changes in the trend. An example of such a filter

that has been extensively used in image processing is a

Gaussian filter (Marr & Hildreth, 1980). The main

problem with a Gaussian filter is that, the representation
is highly redundant and the computational time for the

filters might become prohibitive. Bakshi and Stephano-

poulos (1992) propose multi-scale filtering using wavelet

transforms to handle this problem. In their procedure,

the process trends are decomposed at different scales

using wavelet transforms. At different scales, the

temporal characteristics are captured using triangular

episodes to facilitate pattern matching for fault diag-
nosis and supervisory control.

3. Quantitative feature extraction

In this section we will discuss the methods that are

based on quantitative feature extraction. The quantita-

tive approaches essentially formulate the diagnostic

problem-solving as a pattern recognition problem. The
goal of pattern recognition is the classification of data

points to, in general, pre-determined classes. Statistical

methods use knowledge of a priori class distributions to

perform classification. An example is a Bayes classifier

which uses the density functions of the respective classes.

Approaches like PCA, on the other hand, extract

information about major trends in the data using a

small number of relevant factors. Neural networks
assume a functional form for the decision rule thus

parameterizing the classifier. We review these methods

in this section.

3.1. Statistical feature extraction from process data

In real process operations, one is faced with the

problem of dealing with systems subject to random
disturbances. In contrast to deterministic systems, the

future state of stochastic systems is not completely

determined by the past and present states and future

control actions. The measurements are considered to be

statistical time series*/a single realization of an under-

lying stochastic process. Since the systems are under

random influences, it is reasonable or sometimes neces-

sary to formulate the systems in a probabilistic setting.
When the process is under control, the observations

have probability distributions corresponding to the

normal mode of operation. The underlying distributions

change when the process is out of control. In general,

probability distributions are characterized by their

parameters when a parametric approach is used. For

instance, if the underlying distribution of a monitored

variable is normal, then the parameters of interest are
the values of its mean and the standard deviation. Under

faulty conditions, either the mean or the standard

deviation may deviate from their nominal values. A

composite change can occur as well. Accordingly, fault

diagnosis can be stated as the problem of detecting

changes in the parameters of a static or dynamic

stochastic system. Basseville and Nikiforov (1993) pre-

sented the design of on-line change detection algorithms
and an analysis of their performance under a unified

framework. Both the Bayesian and the non-Bayesian

approaches are discussed therein.

In on-line statistical approach, samples are taken

sequentially and decisions are made based on the

observations up to the current time. If the decision is

made from the values of observations directly, then

when the observations x(t )�/[x1(t), x2(t),. . ., xn(t)]? � /

Rn where Rn is the so-called stopping region in statistics,

it is concluded that there is a change in the process.

More often a statistic g(t ), a function of observation

x(t), is designed and the decision is made according to

the comparison of g(t) with some threshold value c. This

idea can be translated into a ‘stopping rule’ problem

with a standard form

t� infft]1; g(t)]cg:
t is the greatest lower bound, i.e., the first time when

g(t) is greater than c. In on-line detection, it is desirable

to detect the change as soon as it occurs, i.e., to detect it

at the first time when x(t ) � /Rn or g(t)�/c. Thus, the

fault (change) detection amounts to the design of the

stopping rules or proper choices of statistic g(t) and

threshold c. Obviously a good detector must be sensitive

to change. However, the sensitivity to the process noise
usually increases along with the sensitivity to real

change. In other words, as the failure and delay of the

detection decrease, the number of false alarm tends to
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increase, which is certainly undesirable. A good design is

usually defined as one which will minimize the failure

and delay at a fixed false alarm rate.

Quality control represented one of the earliest
attempts of using statistics in on-line monitoring and

change detection. Shewhart control charts were intro-

duced in 1931 (Shewhart, 1931) followed by others such

as the cumulative sums chart in 1954 (Page, 1954).

Control charts approach is based on the assumption

that a process subject to its natural variability (common

cause variation) will remain in a state of statistical

control under which certain process and/or product
variables remain close to their desired values. Therefore,

by monitoring the performance of a process over time,

abnormal events can be detected as soon as they occur.

If the causes for such events can be diagnosed and the

problem can be corrected, the process is driven back to

its normal operation. The growing demand for product

quality and process reliability has led to an extensive use

of statistical process control (SPC) charts. Although the
basic concepts behind such SPC methods are still valid,

the charting methods used to implement them cannot

accommodate the progress in data acquisition technol-

ogy. In addition, in the event that the parameters

monitored are not independent, the use of univariate

control chart may be misleading and may cause confu-

sion due to the fact that the univariate method cannot

handle correlation.
Multivariate statistical techniques are powerful tools

capable of compressing data and reducing its dimen-

sionality so that essential information is retained and

easier to analyze than the original huge data set; and

they are also able to handle noise and correlation to

extract true information effectively. PCA method,

initially proposed by Pearson (1901) and later developed

by Hotelling (1947), is a standard multivariate technique
and has been included in many textbooks (Anderson,

1984; Jackson, 1991) as well as research papers (Wold,

1978; Wold, Esbensen, & Geladi, 1987). The main

function of multivariate statistical techniques is to

transform a number of related process variables to a

smaller set of uncorrelated variables.

Originating from the pioneering work of Wold (1982)

between the mid 1960s and early 1980s PLS method was
further developed by Wold and coworkers (Wold,

Albano, Dunn III, Edland, Esbensen, Geladi, Hellberg,

Johansson, Lindberg, & Sjostrom (1984a), Wold, Es-

bensen, & Geladi (1987) and Wold, Ruhe, Wold, &

Dunn (1984b)) in the mid and late 1980s. Similar to

PCA, conceptually, PLS is useful in reducing the

dimensions of both process variables and product

quality variables to be analyzed.

3.1.1. Principal component analysis/partial least squares

Theoretically, PCA is based on an orthogonal decom-

position of the covariance matrix of the process

variables along directions that explain the maximum

variation of the data. The main purpose of using PCA is

to find factors that have a much lower dimension than

the original data set which can properly describe the
major trends in the original data set.

Let p denote the number of measured process

variables; X be an n�/p matrix representing the mean

centered and scaled measurement whose covariance

matrix is a. The rows in X, x1, x2,. . ., xn , are p

dimensional vectors corresponding to samples; whereas

the columns are n dimensional vectors corresponding to

variables. From matrix algebra, a may be reduced to a
diagonal matrix L by a particular orthonormal p�/p

matrix U, i.e., a�/ULU?. The columns of U, u1, u2,. . .,
up are known as the principal component loading vectors .

The diagonal elements of L, l1, l2,. . ., lp are ordered

eigenvalues of a. They define the amount of variance

explained by each corresponding eigenvector. The

principal component transformation is given by

T�XU or ui�Xui (1)

Equivalently, X is decomposed by PCA as

X�TU?�
Xp

i�1

uiu?i (2)

The n�/p matrix T�/(u1, u2,. . ., up) contains the so-
called principal component scores that are defined as the

observed values of the principal components for all n

observations. Given the fact that covariance of T is a

diagonal matrix, ui vectors are uncorrelated. In addi-

tion, the ui , ui pairs are arranged in descending order

according to their associated li . Furthermore, one rarely

needs to compute all the p eigenvectors in practice, since

most of the variation in the data can be captured by the
first few PC’s. If a lower number aB/p is used, the

decomposition becomes

X�u1u?1�u2u?2� � � ��uau?a�E�
Xa

i�1

uiu?i�E; (3)

where E is the residual term. It has been found that the

first two or three PC’s are often sufficient to explain the

variability. Hence the dimensionality is greatly reduced.

By providing linear combinations with large variances,

PCA is useful in finding factors that describe major

trends and is capable of reducing the number of

variables.

When using PCA in process monitoring and quality
control, several steps are needed. An ‘in-control’ model

has to be established. From basic statistics, for a p�/1

normally distributed random vector z having mean t

and covariance matrix S, the statistic

x2�(z�t)? S�1(z�t)

has a central x2 distribution with p degrees of freedom.

x2 control chart can then be established with a lower
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control limit 0 and an upper control limit xa
2 where a is a

properly chosen significance level.

For the situation where S is unknown and must be

established, the Hotelling’s T2-statistic (Hotelling, 1947)
can be used to replace x2 distribution. With an ‘in-

control’ model established based on historical data

during normal operation, process monitoring is

achieved by comparing the factors against this nominal

model. By projecting new observations onto the plane

defined by the PCA loading vectors, the score and the

residuals can be obtained, the multivariate control

charts based on T2 can in turn be plotted, and the
decision is made based on the first a principal compo-

nents.

PCA is a procedure used for a single data matrix, e.g.,

the matrix of the process variable X. Oftentimes we also

have an additional group of data, e.g., product quality

variables Y. It is desirable to include all the data

available in the monitoring procedure and to use the

process variables X to predict and to detect changes in
the product quality variables Y. One way of doing this is

to use PLS method. It models the relationship between

two blocks of data while compressing them simulta-

neously. It is used to extract latent variables that not

only explain the variation in the process data X but also

that variation in X most predictive of the quality data Y.

The first PLS latent variable is the linear combination of

the process variables that maximizes the covariance
between them and the quality variable.

3.1.2. Applications of PCA and PLS

SPC has evolved from charting methods for univari-

ate systems or sets of independent variables to multi-

variate statistical projection methods. Other approaches

such as incorporating multivariate SPC with neural

networks have also been proposed and studied (Hos-

kins, Kaliyur, & Himmelblau, 1991; Nomikos & Mac-
Gregor, 1994). The successful applications of

multivariate statistical methods such as PCA and PLS

have been extensively reported in the literature. Over-

views of using PCA and PLS in process analysis and

control, fault detection and diagnosis were given by

MacGregor, Marlin, Kresta, and Skagerberg (1991) and

MacGregor, Jacckle, Kiparissides, and Koutondi (1994)

and MacGregor and Kourti (1995).
In an earlier work, Kresta, MacGregor, and Marlin

(1991) laid out the basic methodology of using multi-

variate SPC procedure to handle large numbers of

process and quality variables for continuous process.

Later on, Nomikos and MacGregor (1994) extended the

use of multivariate projection methods to batch pro-

cesses by using multiway PCA. To deal with nonlinear-

ity, Qin and McAvoy (1992) proposed a neural net PLS
approach that incorporated feedforward networks into

the PLS modelling. In order to handle nonlinearity in

batch processes, Dong and McAvoy (1996) utilized a

nonlinear PCA method. To facilitate the diagnosis

procedure in very large processes, new hierarchical

multivariate monitoring methods based on multiblock

PLS algorithm were presented by MacGregor, Jacckle,

Kipparissides, & Koutondi (1994). Raich and Cinar

(1996) proposed an integral statistical methodology

combining PCA and discrimination analysis techniques.

Based on angle discriminants, a novel disturbance

diagnosis approach (Raich & Cinar, 1997) was later

introduced that provides better results for cases in which

distance based discrimination is not accurate enough.

Chemometrics is a data analysis technique which has

been successfully applied in spectroscopy to reduce large

quantity of data into meaningful information. Chemo-

metric techniques have been applied to chemical en-

gineering processes (Kaspar & Ray, 1992; Piovoso,

Kosanovich, & Pearson, 1992; Piovoso, Kosanovich,

& Yuk, 1992) in recent years. These approaches rely on

the formation of a statistical model obtained from

historical data. Special events can be detected when

the process data deviate significantly from the nominal

operation model. Piovoso, Kasanovich, & Yuk (1992)

considered the use of chemometrics as a multivariate

analyzer to provide a composite measurement of the

state of a chemical process operation. Their technique

uses PLS to establish a correlation between the domi-

nant effect in the process and its relationship to other

process sensors; then apply PCA to build a model of the

process behavior unaccounted for by that dominant

effect. Dunia, Qin, Edgar, and McAvoy (1996) used

PCA for sensor fault detection and identification via

reconstruction. In their approach, for validation, it is

assumed that one sensor has failed and the remaining

sensors are used for reconstruction using the PCA

model. This procedure is followed sequentially until all

the sensors are validated.

A major limitation of PCA-based monitoring is that

the PCA model is time invariant, while most of the real

processes are time-varying. Hence the PCA model

should also be recursively updated. A comprehensive

scheme for recursive PCA update should include: mean,

covariance, principal components including number of

components to be retained, and the confidence limits for

T2 and Q (squared prediction error). Algorithms utiliz-

ing rank-one modification and Lauczos tridiagonaliza-

tion have been presented for recursive PCA by Li, Yue,

Valle-Cervantes, and Qin (2000). The recursive PCA

approach is demonstrated on adaptive monitoring of a

rapid thermal annealing process. A similar algorithm for

recursive PLS for adaptive modelling has been presented

by Qin (1998). It has been shown that the algorithm is

quite efficient as compared to the traditional PLS both

in terms of memory requirements and computational

speed. Two approaches, viz. moving window-based

adaptation and forgetting factor-based adaptation
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have been presented and applied to adaptive modelling

of a catalytic reformer.

The detection, identification and reconstruction of

faulty sensors is discussed in Qin and Li (1999).
Structured residuals approach with maximum sensitivity

(SRAMS) is used for sensor validation. The approach is

based on PCA and works well for quasi-steady-state

processes (i.e. no dramatic transients). The residuals are

designed such that each residual is insensitive to a

particular fault (or a particular group of faults) and it

is most sensitive to other faults. The SRAMS are

subjected to exponentially weighted moving average to
smoothen the effect of noise and transients, and they are

obtained using statistical methods. Indices such as

generalized likelihood ratio (GLR), Qsum (cumulative

sum) and Vsum (cumulative variance) of the SRAMS are

used for identification of various types of sensor faults.

Dunia and Qin (1998) present a methodology that

analyzes the fault subspace for process and sensor fault

detection. Necessary and sufficiency conditions for
detectability (occurrence of a fault), partial and com-

plete reconstructability (reconstruction of the measured

variables if the fault is known), identifiablity (deciding a

particular fault among a set of faults) and partial and

complete isolability of a fault from other faults have

been presented. This methodology has been explained

by its application on a separation process comprising of

two separation columns. Another work on improved
PCA for failure identification is presented by Wachs and

Lewin (1999). The idea of recursive summation of the

last few PCA scores to generate descriptive statistics for

process monitoring and improved resolution by enhan-

cing the correlations through optimal time shifting are

discussed in their work.

Another promising variant of the PCA approach is

the multiscale PCA (MSPCA) approach which inte-
grates PCA and wavelet analysis (Bakshi, 1998). PCA is

able to decorrelate the variables by identifying a linear

relationship between variables, while wavelet analysis

can extract deterministic features and approximately

detect autocorrelated measurements. Thus, MSPCA is

able to eliminate stationary as well as non-stationary

noise better than PCA or wavelets alone. The four steps

of MSPCA are: (i) wavelet decomposition of the
measured data; (ii) PCA on the wavelet coefficients at

each scale and selection of the number of principal

components to be retained; (iii) reconstruction of the

wavelet coefficients using the retained principal compo-

nents and thresholding of the reconstructed wavelet

coefficients; and (iv) reconstruction of the data by using

inverse wavelet transform. Monitoring is performed by

computing T2 (scaled squared scores) and Q (residuals)
at each scale. The limits for T2 and Q are calculated at

each scale. Slow events are detected at courser scales

first, and sudden changes are detected at finer scales.

Also, changes affecting measurements (though satisfying

the PCA model) are identified by T2 chart and the

changes violating the PCA model are detected in the Q

space.

As discussed above, improvements to the PCA
approach have been approached mainly in terms of

making the statistical based approaches adaptive to time

varying process conditions and enhancing the resolution

properties of these approaches. The dynamic enhance-

ments seem to work satisfactory on quasi-steady-state

situations and their performance in the presence of

significant dynamics need to be evaluated. Further, the

adaptability of these approaches to minor structural
changes in the process being monitoring needs to be

further investigated. While there has been some work on

improving the resolution property of PCA-based ap-

proaches, they are in general restricted to linear additive

faults and their applicability to other types of failure

situations has to be studied further.

In summary, contrary to the model-based approach,

multivariate statistical methods do not need an explicit
system model. They are capable of handling high

dimensional and correlated process variables and they

are powerful tools of revealing the presence of the

abnormalities. However, they do not possess ‘finger-

print’ or ‘signature’ properties for diagnosis, which

makes the fault isolation difficult. A few techniques

such as contribution charts and multi-block approaches

have been proposed; however, there is no complete
solution to this problem yet. There has been some effort

to combine the ideas in model-based approach to that in

multivariate statistical method. Gertler and McAvoy

(1997) have showed that there exists a close duality

between PCA and parity relations. To transfer the idea

of structured residuals into PCA, they suggested an

enhanced PCA method and showed that the standard

PCA model is related to a subspace representation of the
primary set of parity relations and that it is possible to

define partial PCA models that are related to subspace

representations of transformed parity relations. Since

such parity relations are selectively sensitive to subsets

of faults, it is possible to design an incidence matrix for a

set of such partial PCA models to yield a structure

similar to that in the model-based approach and having

fault isolation capabilities. Their work represents a
promising effort to bridge the gap between two sub-

cultures in fault diagnosis.

3.1.3. Statistical classifiers

Fault diagnosis is essentially a classification problem
and hence can be cast in a classical statistical pattern

recognition framework. The Bayes classifier for a two

class problem (Fukunaga, 1972), assuming Gaussian

density function for the classes, is

d1�(y�m1)
TS�1

1 (y�m1)
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d2�(y�m2)
TS�1

2 (y�m2)

A discriminant function h maps the decision space to

class space (with a priori probabilities for the classes

being the same).

h�d1�d2

hBd; x belongs to class I

h�d; x belongs to class II

d� log

�jS2j
jS1j

�
where d is the threshold of the classifier:

The same idea can be extended to the n class problem.
The Bayes classifier is an optimal classifier (minimum

classification error even when the classes overlap) when

the classes are Gaussian distributions and the distribu-

tion information is available. Notice that the distance

measure in the scaled form is used here. Note also that a

distance based classifier which scales its distance in this

fashion will be the same as the Bayes decision rule for

Gaussian distributions. When S1�/S2�/I , the Gaussian
classifier becomes the Euclidean distance based classi-

fier. Distance classifiers use distance metrics to calculate

the distance of a given pattern from the means of

various classes and classify the pattern to the class from

which it is closest. Among the distance based classifiers,

the most basic classifier is the Euclidean distance based

classifier. It simply uses the Euclidean distance from the

means of the classes and classifies the point to the class
from whose mean it is closest. This classification is exact

only when the classes are spherically symmetrical with

the same covariance. It would fail, for example, when

the classes are elongated ellipsoids and are adjacent.

When the covariance matrices of the distributions are

not identity matrices (or its scalar multiples), the

distributions are no longer spherically symmetrical. In

such cases, the preferred distance metric is no longer
Euclidean. In fact, even when the distributions are

spherically symmetrical, Euclidean distance is sufficient

only when the classes have the same covariance. For a

Gaussian distribution, the appropriate distance measure

is a scaled form of the Euclidean distance: (x�/

m )T S�1(x�/m ). A Gaussian distribution appears as

an ellipsoid when plotted in the input variable space.

The inverse of the covariance serves to transform the
ellipsoid into a sphere of unit radius. Thus, the distance

metric serves to transform the problem (ellipsoidal

distribution) to a spherically symmetric form before

classification can be done. There is another class of

distribution-free classifiers that reduce the need for huge

number of samples by making more precise assumptions

about the functional forms of the discriminant func-

tions. In particular, one may specify the functional form
for the classifier, leaving a finite set of parameters to be

estimated. The most common choices here are quadratic

or piecewise classifiers.

Fault diagnosis can be considered as a problem of

combining, over time, the instantaneous estimates of the

classifier using the knowledge about the statistical

properties of the failure modes of the system (Leonard
& Kramer, 1993; Rengaswamy & Venkatasubramanian,

2000; Smyth, 1994). The failure modes could be

approximated as density functions. The development

of density functions is a challenging problem and has

received considerable attention from various researches.

One of the most popular non-parametric technique for

density estimation is Parzen windows (Parzen, 1962). In

this estimator, an identical basis function is centered
around every data point and the density is estimated by

summing up all the density functions. Johnston and

Kramer (1994) introduce the idea of using hyper-elliptic

basis functions for the estimation of density functions. A

technique based on statistical cross validation is intro-

duced for evaluating different density estimators. A

mixture sum of multivariate Gaussians (Fukunaga,

1972) can be used to estimate probability density
functions.

3.2. Neural networks

Considerable interest has been shown in the literature

in the application of neural networks for the problem of

fault diagnosis. Neural networks have been proposed for

classification and function approximation problems. In

general, neural networks that have been used for fault
diagnosis can be classified along two dimensions: (i) the

architecture of the network such as sigmoidal, radial

basis and so on; and (ii) the learning strategy such as

supervised and unsupervised learning. Different net-

work architectures have been used for the problem of

fault diagnosis and these architectures will be discussed

subsequently.

In supervised learning strategies, by choosing a
specific topology for the neural network, the network

is parameterized in the sense that the problem at hand is

reduced to the estimation of the connection weights. The

connection weights are learned by explicitly utilizing the

mismatch between the desired and actual values to guide

the search. This makes supervised neural networks a

good choice for fault classification as the networks are

capable of generating, hence classifying, arbitrary re-
gions in space (Cybenko, 1988). On the other end of the

spectrum are neural network architectures which utilize

unsupervised estimation techniques. These networks are

popularly known as self-organizing neural networks as

the structure is adaptively determined based on the

input to the network. One such architecture is the ART2

network (Carpenter & Grossberg, 1988).

The most popular supervised learning strategy in
neural networks has been the back-propagation algo-

rithm. There are a number of papers that address the

problem of fault detection and diagnosis using back-
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propagation neural networks. In chemical engineering,

Venkatasubramanian (1985) and Watanabe, Matsura,

Abe, Kubota, and Himmelblau (1989) and Venkatasu-

bramanian and Chan (1989), Ungar, Powell, and Ka-
mens (1990) and Hoskins, Kaliyus, & Himmelblau

(1991) were among the first researchers to demonstrate

the usefulness of neural networks for the problem of

fault diagnosis. Later, a more detailed and thorough

analysis of the learning, recall and generalization

characteristics of neural networks for detecting and

diagnosing process failures in steady-state processes was

presented by Venkatasubramanian, Vaidyanathan, and
Yamamoto (1990). This work was later extended to

utilize dynamic process data by Vaidyanathan and

Venkatasubramanian (1992). A hierarchical neural net-

work architecture for the detection of multiple faults

was proposed by Watanabe, Hirota, Iloa, and Himmel-

blau (1994).

Traditionally feature extraction, which is the process

of developing features, is considered as a way to retain
the class discriminatory information and the reduction

of class common information in the set of measurements

from various classes (Himmelblau, 1978). Features

developed in this way would show that a measurement

is relatively similar to a particular class than others.

Hence it might be a good idea to perform some feature

extraction and then develop neural-net classifiers based

on the feature set. There are two important issues here:
(a) interclass discriminatory information; and (b) intra-

class similarity information.

Most of the work on improvement of performance of

standard back-propagation neural network for fault

diagnosis is based on the idea of explicit feature

presentation to the NN. There have been a number of

researchers who have worked on this issue. Fan,

Nikolaou, and White (1993) discuss the performance
gains through the incorporation of functional inputs in

addition to the normal inputs to the neural networks.

Incorporation of knowledge into the NN framework for

better diagnosis is discussed by Farell and Roat (1994).

Data processing and filtering is shown to lead to

significant performance improvement and reduced

training time. Tsai and Chang (1995) propose the

integration of feedforward NNs with recurrent NNs
for better performance. Integration of NNs with the

expert systems for fault diagnosis has been considered

by Becraft and Lee (1993).

Modifications have been suggested to the standard

back-propagation network for the problem of fault

diagnosis also. It has been argued that basis functions

generating bounded decision regions could be better

suited to the problem of fault diagnosis. For example,
Leonard and Kramer (1990) suggested the use of radial

basis function networks for fault diagnosis applications.

In classification, the decision boundary is often not

unique and this requires a means of saying whether a

particular boundary is desirable and how to construct a

decision. For fault diagnosis, it is essential to restrict the

nature of the network so that it can generate the

bounded decision regions. Holcomb and Morari

(1991), Kavuri and Venkatasubramanian (1993a,b,

1994) generalized radial units to Gaussian units and

proposed methods to solve the hidden node problem.
Bakshi and Stephanopoulos (1993) proposed Wave-

net: a multi-resolution hierarchical neural network.

Wavenet is a NN with one hidden layer whose basis

functions are drawn from a family of orthonormal

wavelets. One important advantage of the Wavenet is

that the nodes may be added or removed without

retraining the network because of the orthogonality

property of the wavelet basis functions. A continuum of

models exist with nearest-neighbor models at one

extreme, through radial basis functions, which cut the

input space into larger patches, to models with global

basis functions such as the hyperplanes and sigmoids.

Fig. 2 shows the types of nodes traditionally used in

neural networks and their classification.

There are also other architectures such as self-

organizing maps (Kohonen, 1984). The objective of

these methods is to give credit for patterns that are

similar to group together. The similarity measure is

usually a distance measure. Whenever a pattern is seen

that is not similar (in a distance metric sense) to any of

the previously formed classes, a new class is formed and

the pattern is retained as the defining pattern for the new

class and similarity is measured with respect to this

pattern. The crucial elements in these kinds of archi-

tectures are the distance metric one chooses and the

threshold for similarity. Clustering is a technique to

group samples so as to maximize separability between

these groups. Clustering algorithms specify the number

of groups and maximize an objective function that is a

measure of separability of these groups. In this manner,

clustering becomes a well-defined optimization problem.

In the clustering process credit is given to patterns

exhibiting similar characteristics. Clustering procedures

need two important components. First, they need a

measure for estimating similarity between different data

points. Without this no credit can be assigned for

patterns that are similar. Second, one needs representa-

tive patterns against which the similarity of other

patterns can be checked.

Fig. 2. Characteristics of nodes used in neural networks.
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The most popular clustering algorithm proposed in

the literature is the K-means clustering algorithm (Duda

and Hart, 1973). K-means clustering pre-supposes the

number of clusters needed and would cluster the data
accordingly. It utilizes all the cluster centers so that each

of the clusters is guaranteed at least one pattern.

Kohonen’s self-organizing maps (Kohonen, 1984) iden-

tifies the cluster center closest to the training pattern and

updates this cluster center and all its topological

neighbors. K-means clustering can be shown to be a

special case of Kohonen’s clustering algorithm. In

Kohonen’s algorithm, after the neighborhood is
decided, the algorithm makes all the clusters in the

neighborhood be the winners of the pattern. This leads

to the problem of gravity where all the cluster centers

migrate towards dense regions leaving less dense regions

unrepresented. To avoid this, a fuzzy clustering ap-

proach is proposed by Kavuri and Venkatasubramanian

(1993a)*/here a membership function makes cluster

centers relatively far off from the pattern have very little
movement towards the pattern*/leading to significant

reduction of the gravity problem. Self-organizing neural

network structures such as the ART2 network (Carpen-

ter & Grossberg, 1988) have also been extensively used

in fault diagnosis. Whiteley and Davis (1994) demon-

strate the use of ART2 network for the interpretation of

sensor data. Chen, Wang, Yang, and Mcgreavy (1999)

and Wang, Chen, Yang, and Mcgreavy (1999) discuss
the integration of wavelets with ART networks for the

development of diagnostic systems. For a collection of

papers on the application of neural networks in chemical

engineering problems, an interested reader is referred to

Venkatasubramanian and McAvoy (1992) and Bulsari

(1995). There are a number of papers on neural network

applications in process fault diagnosis and it is not

possible to provide an exhaustive review of all the
approaches here. However, the papers that we have

reviewed in this part should provide the reader a good

entry point to the literature in this area.

4. A comparison of various approaches

So far in this three part series, we have reviewed the

three conceptually different frameworks for process
fault diagnosis. In this section, we provide a compara-

tive evaluation of these different frameworks against a

common set of desirable characteristics for a diagnostic

system that we proposed in part I. The evaluations are

summarized in Table 2.

Quantitative model-based methods, such as parity

space and observer-based approaches, have several

desirable characteristics (Gertler, 1991). If one has
complete knowledge of all inputs and outputs of the

system, including all forms of interactions with the

environment, fault diagnosis would be a well-defined

problem regardless of the number of faults present. On

the other hand, if there is only a single sensor indicating

whether the system is normal or faulty, then nothing can

be diagnosed including the proper functioning of the
sensor itself. Effectiveness of any diagnostic procedure is

limited by the availability of sensor information. In

practice, the sensor information is between these two

extremes. Given a particular choice of measurements,

these methods can specify (a) whether a fault is

detectable; (b) can we distinguish the fault from other

unknown faults that we do not consider? (c) can we

detect the fault in the presence of process and measure-
ment noise? and (d) can we always distinguish a fault

from other faults we intend to identify? In answering

these questions these methods provide design schemes in

which the effects of unknown disturbances can be

minimized.

The cost for obtaining these advantages are mainly

modelling effort and the restrictions one places on the

class of acceptable models. The general state space
model of the system is given by:

x(t�1)�Ax(t)�Bu(t)�Ed(t)�Fp(t)

y(t)�Cx(t); (4)

E is the distribution matrix for the disturbances d(t)

which in the general case includes both structured and

unstructured uncertainties. The term Ed(t) characterizes

the unknown input or disturbance and represents all
uncertainties acting upon the system. The major pro-

blem in this approach is in this simplistic approximation

of the disturbances that include modelling errors. In the

design of the nonlinear unknown input observer, more

general models have been considered:

x(t�1)�Ax(t)�B(y(t); u(t))�Ed(t)�F(x(t))p(t)

y(t)�Cx(t)�K(x(t))p(t); (5)

In practice, however, severe modelling uncertainties

occurring due to parameter drifts come in the form of

multiplicative uncertainties. This is a general limitation

of all the model-based approaches that have been

developed so far. In addition to difficulties related to

modelling they do not support an explanation facility

owing to their procedural nature. The type of models the
analytical approaches can handle are limited to linear

and some very specific nonlinear models. For a general

nonlinear model, linear approximations can prove to be

poor and hence the effectiveness of these methods might

be greatly reduced. When a large-scale process is

considered, the size of the bank of filters can be very

large increasing the computational complexity.

Rule-based expert systems can be used where funda-
mental principles are lacking, where there is an abun-

dance of experience but not enough detail is available to

develop accurate quantitative models. However, its
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limitations are well-known (Rich & Venkatasubrama-

nian, 1987). Causal models are also a very good

alternative when the quantitative models are not avail-

able but the functional dependencies are understood.
Abstraction hierarchies help to focus the attention of the

diagnostic system quickly to problem areas. One of the

advantages of qualitative methods based on deep-

knowledge is that they can provide an explanation of

the path of propagation of a fault. This is indispensable

when it comes to decision-support for operators. They

can also guarantee completeness in that the actual

fault(s) will not be missed in the final set of faults
identified. However, they suffer from the resolution

problems resulting from the ambiguity in qualitative

reasoning. When quantitative information is available

partially, one could use the order-of-magnitude analysis

or interval-calculus to improve the resolution of purely

qualitative methods.

Pattern recognition approaches or classifiers are

constructed generally from historic process data. Neural
network architectures, such as radial basis function

networks and ellipsoidal unit networks, have been

demonstrated to perform well in terms of robustness

to noise and isolability requirements. There are some

limitations, however, to methods which are based solely

on historic process data. It is the limitation of their

generalization capability outside of the training data.

This problem can be alleviated by radial and ellipsoidal
units by avoiding a decision in case there are no similar

training patterns in that region. This allows the network

to detect unfamiliar situations arising from novel faults.

Besides its lack of ability to generalize to unfamiliar

regions of measurements space, networks also have a

difficulty with multiple faults. This brings out a crucial

point of distinction between model-based approaches

and classifiers based on historic process data. In the case
of qualitative model-based approaches, the combinator-

ial complexity is unavoidable and can only be partly

alleviated with efficient search (de Kleer & Brown, 1984;

Reiter, 1987). Because of the combinatorially many

multiple fault combinations, the search for multiple

faults by specifying them explicitly as different classes

and obtaining training patterns for them is not feasible.

Given this limitation, the ability of neural networks to
generalize to multiple faults has been tested with some

success (Venkatasubramanian & Chan, 1989; Venkata-

subramanian et al., 1990). Particular architectures

showed a greater ability to generalize than certain

others. For example, use of a mixture of Gaussians or

ellipsoids can provide a good approximation of the class

data (Kavuri & Venkatasubramanian, 1993a).

The general limitation of process history based
methods is not in the classifiers that are available to

them, but in the availability of only a finite sampling of

the distribution of the class data in the measurement

space. To explain this, consider the 3-dimensional

measurement space shown in Fig. 3. Three fault classes

are shown as shaded circles at three corners of the cube.

Three measurement patterns*/x1, x2 and x3*/are

considered in the measurement space for generalization.

Without assuming any classifier, one would expect that

1) x1 is in classes 1 and 2

2) x2 is in classes 1 and 3

3) x3 is in classes 2 and 3

This is, in general, beyond the scope of a classifier and

cannot be guaranteed. If we consider classifiers which

are linear transformations, then we should expect a

similar structure of the data in both the input and

output space. This brings out one important point*/

that the structure in the input space has strong implica-

tions on what output one can expect. Thus, if the input

space is such that x1 belongs to classes 1 and 2, then

distance-based classifiers can be expected to do multiple

fault diagnosis of x1 properly. However, this cannot be

ensured for the measurement space. One needs to

determine a proper feature space that has this property.

If one uses as input the residuals from the parity

equations of a parity-space approach, then the input

would be as expected in Fig. 3 and a required structure is

thus imposed on the input space. This suggests that,

when model information is available, one should use a

bank of filters to generate the inputs.

Filter banks are computationally expensive. This

suggests that it would be efficient to use qualitative

abstraction hierarchies to quickly reduce the focus of

diagnosis and then use filter banks in the region of

focus.

Table 1 summarizes the transformations that the

process data goes through in a diagnostic classifier for

some of the methods discussed in this three part series.

Fig. 3. Location of multiple faults in the output space.

V. Venkatasubramanian et al. / Computers and Chemical Engineering 27 (2003) 327�/346 337



Table 2 gives a comparison of various methods in terms

of the desirable characteristics of diagnostic systems. In

the table only some representative methods in each of

the three approaches (quantitative model-based, quali-

tative model-based, process history based) are chosen

for comparison. A check mark would indicate that the

particular method (column) satisfies the corresponding

desirable property (row). A cross would indicate that the

property is not satisfied and a question mark would

indicate that the satisfiability of the property is case-

dependent.

Consider neural networks as an example in Table 2.

Quick detection, isolability, and robustness to noise

properties of neural networks have been demonstrated

through the use of many case studies by different

researchers (Ungar, Powell, & Kamens, 1990; Leonard

& Kramer, 1990; Venkatasubramanian, Vaidyanathan,

& Yamamoto, 1990; Kavuri & Venkatasubramanian,

1994). Neural networks that generate bounded decision

regions have been shown to exhibit the property of

novelty identifiability (Leonard & Kramer, 1993; Kavuri

& Venkatasubramanian, 1994). Due to the procedural

nature of neural network development, they lack the

explanation and adaptability properties. Further, gen-

eration of classification error estimates is difficult using

the neural network approach. Since neural networks

predominantly work with process history data, the

modelling requirements are minimal. Further, once a

neural network is trained, the on-line computations are

simple function evaluations and hence the on-line

computational complexity is minimal. Finally, regarding

the multiple-fault identifiability property, as discussed

previously in this paper, if the input data structure is

favorable, then multiple fault diagnosis is possible.

However, the neural network development procedure

by itself does not explicitly take into account the idea of

multiple fault identifiability. This can be contrasted with

an observer-based approach where one could explicitly

include multiple fault identifiability in the design

procedure. We used similar basis for generating the

entries for other methods given in Table 2.

From industrial application viewpoint, the maximum

number of fault diagnostic applications in process

industries are based on process history based ap-

proaches. This is due to the fact that process history

based approaches are easy to implement, requiring very

little modelling effort and a priori knowledge. Further,

even for processes for which models are available, the

models are usually steady-state models. It would require

considerable effort to develop dynamic models specia-

lized towards fault diagnosis applications. The scope of

the process history based systems as applied in the

industry is mainly restricted to sensor failures. There are

very few industrial applications in published literature

that deal with parametric failures. Among the process

history based approaches, statistical approach seems to

have been well studied and applied. The reason for this

might be that with the current state-of-art in applica-

tions, detection seems to be a bigger concern than

detailed diagnosis. Hence, statistical approaches that

are easy to build and which do very well on fast

detection of abnormal situations have been successfull

in industrial applications. The other data based ap-

proaches that have been applied in the industry are

Table 1

Typical transformations in various diagnostic methods

Observers Digraphs QTA Neural networks

Measurement space Measurements Measurements Measurements Measurements

Feature space Residuals Qualitative state/partial pattern Trends Hidden nodes/any explicit feature

Decision space Crisp residuals/fault classes Fault classes Likelihood measures Output nodes

Class space Fault classes Fault classes Fault classes Fault classes

Table 2

Comparison of various diagnostic methods

Observer Digraphs Abstraction hierarchy Expert systems QTA PCA Neural networks

Quick detection and diagnosis ª ? ? ª ª ª ª
Isolability ª �/ �/ ª ª ª ª
Robustness ª ª ª ª ª ª ª
Novelty identifiability ? ª ª �/ ? ª ª
Classification error �/ �/ �/ �/ �/ �/ �/

Adaptability �/ ª ª �/ ? �/ �/

Explanation facility �/ ª ª ª ª �/ �/

Modelling requirement ? ª ª ª ª ª ª
Storage and computation ª ? ? ª ª ª ª
Multiple fault identifiability ª ª ª �/ �/ �/ �/
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ART2 networks and qualitative trend analysis (QTA).

QTA approach specializes more on diagnosis than

detection and hence might be a useful tool where

diagnosis is of importance. QTA approach seems to be

robust to routine variations in process operations;

however, the time taken to customize and implement

might be more than approaches such as PCA.

Though quantitative model-based approaches such as

observers have made an impact in mechanical and

aeronautical engineering applications, they have had

very little impact in process industries. This might be

due to the following reasons:

i) Chemical processes are inherently nonlinear in

nature. While the theory of linear quantitative

model-based approaches is quite mature, the design

and implementation for nonlinear models is still an
open issue.

ii) Most of the quantitative approaches are based on

input�/output models and if the models are re-

stricted to linear domain, the advantages of a

model-based approach over a simple statistical

approach such as PCA might be minimal. Hence,

it is easier to implement a PCA-based detection

approach than a model-based approach.
iii) Model-based approaches have been predominantly

restricted to sensor and actuator failures.

The impact of qualitative model-based approaches

such as QSIM and QPT in terms of applications has

been minimal. Many of the academic demonstrations of

these models have been on very simplistic systems and

implementing them for industrial systems is beset with

problems related to computational complexity and

generation of spurious solutions. Graph-based ap-

proaches have been researched upon quite extensively

and they have been applied in safety studies, such as

HAZOP analysis and tools are being developed for

using these types of models in real-time decision making.

In general, literature on industrial applications of

diagnostic systems are not many. This could be due to

the proprietary nature of the development of in-house

systems. Also, there seems to be a general lack of overall

penetration of diagnostic systems in process industries.

This might be due to the gap between academic research

and industrial practice. Two of the most important

considerations from an industrial viewpoint such as the

adaptability of the systems and ease of deployment are

seldom addressed in academic research. Most of the

techniques would do poorly on the issue of ease of

deployment save some detection techniques such as

PCA. Contrast this with, for example, the ease with

which PID controllers can be deployed. The other issue

of adaptability is crucial too from industrial perspective.

Process plants rarely remain invariant with periodic

minor changes in operating policy, retrofit design and so

on. Once a diagnostic system is deployed, it should be

able to adapt with minimal effort as new situations are

encountered and the scope of the system is expanded.

These issue need to be investigated further for successful
deployment of diagnostic systems in industrial setting.

Finally, there seems to be little articulation in the

literature about the benefits that can be accrued through

the deployment of diagnostic systems. There are some

general guidelines based on experience on the economic

impact due to abnormal situations, but there are no case

studies that analyze the specific benefits that can be

attained through the implementation of diagnostic
systems. More research is needed on this issue in line

with the work that has been carried out analyzing the

benefits of implementation of advanced control systems.

4.1. Hybrid methods

One of the important points that we have tried to

emphasize in this review is that no single method is

adequate to handle all the requirements for a diagnostic
system. Though all the methods are restricted, in the

sense that they are only as good as the quality of

information provided, it was shown that some methods

might better suit the knowledge available than others. It

is our view that some of these methods can complement

one another resulting in better diagnostic systems.

Integrating these complementary features is one way

to develop hybrid methods that could overcome the
limitations of individual solution strategies. Hence,

hybrid approaches where different methods work in

conjunction to solve parts of the problem are attractive.

As an example, fault explanation through a causal

chain is best done through the use of digraphs, whereas,

fault isolation might be very difficult using digraphs due

to the qualitative ambiguity and analytical model-based

methods might be superior. Hence, hybrid methods
might provide a general, powerful problem-solving

platform. There has already been some work on hybrid

architectures. The two-tier approach by Venkatasubra-

manian and Rich (1988) using compiled and model-

based knowledge is one of the earliest examples of a

hybrid approach. Process specific knowledge, also called

compiled knowledge of the process behavior can be used

to give quick identification of potential suspects. This
compiled knowledge can be acquired or learned during

the operations. This can reduce the time of search for

frequent faults. Frank (1990) advocates the use of

knowledge-based methods to complement the existing

analytical and algorithmic methods of fault detection.

Combination of methods allows one to evaluate differ-

ent kinds of knowledge in one single framework for

better decision making. The resulting overall fault
detection scheme would have a knowledge base consist-

ing of both heuristic knowledge and analytical models,

database, inference engine and explanation component.
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A blackboard-based cooperative problem-solving fra-

mework where different diagnostic methods work in

conjunction to perform collective process fault diagnosis

has been proposed by Mylaraswamy (1996), Mylaras-
wamy and Venkatasubramanian (1997) and Vedam,

Dash, and Venkatasubramanian (1999). A blackboard

architecture, called Dkit, in which different diagnostic

methods analyze the same problem, and a scheduler

which regulates the decision-making of these methods is

the central concept in this framework. The utility of

such a hybrid framework for solving real-time complex

fault diagnosis problems is illustrated through the use of
a diagnosis study on the Amoco Model IV Fluid

Catalytic Cracking Unit (FCCU) (Mylaraswamy,

1996). This framework was adopted by the Honeywell

ASM Consortium for the development of a commer-

cially-viable, next generation, intelligent control systems

called AEGIS and MSEP.

5. Role of fault diagnosis in design and other process
operations

Much interest has been shown in the concept of total

process control (Garcia, Ramaker, & Pollard, 1991)

with the realization that, due to the limitations of

accurate model development, automation of decision-

making requires the addition of an exception handling

decision layer. These include such tasks as identifying
the occurrence of events outside of normal operation,

diagnosing the root cause and finally synthesizing and

implementing a corrective action.

Fault diagnosis shares with other process operations

the realization that with powerful knowledge represen-

tation schemes, one can capture the expertise of

operators and control engineers that was gained over

years of experience with process plants. Process specific
knowledge can be used to improve general purpose

methodologies. There is a close coupling between

diagnosis and process operations and design of chemical

plants. Proper design of a chemical plant can reduce the

burden on the task of diagnosis. Also, the information

from diagnosis can be used to continuously improve the

performance of process operations. The information

from fault diagnosis can be incorporated into the
traditional solution paradigms of other process opera-

tions. The aim of this section is to provide a brief

overview of various design and operations modules that

would particularly share information with fault diag-

nosis module and also outline the nature of interaction

that one can expect.

5.1. Optimal sensor location

Much of the information one gets about the state of

the system is from its sensors. Hence, it is very important

that the sensors be located optimally. This is a task that

should be performed at the design stage of the plant.

The basic idea is to locate sensors to enhance observa-

bility, detectability and separability (Tanaka, 1989). The
detectability index characterizes the ability of the system

in detecting specified faults, whereas, separability index

characterizes the ease of separation of faults as a

function of the minimum angle between the functional

subspaces of the faults. Observability index imposes full

rank conditions on the system matrix. Sensors are

located based on the minimization of all three indices.

Other than these indices, one can also consider other
important factors like frequency of occurrence of

different faults, cost of sensors, severity of faults and

so on.

Recently, Rengaswamy et al. (Raghuraj, Bhushan, &

Rengaswamy, 1999; Bhushan & Rengaswamy, 2000,

2002a,b) have investigated the problem of sensor loca-

tion based on various fault diagnostic observability

criteria. In their work, they have shown how DG and
SDG can be used for deciding the location of sensors.

Concepts of fault observability and resolution are

introduced which then forms the basis for the sensor

location algorithm. Raghuraj, Bhushan, & Rengaswamy

(1999) use the DG in their sensor location algorithm.

Bhushan and Rengaswamy (2000) demonstrate that

better design could be achieved using the SDG of the

process.

5.2. Data reconciliation

Data reconciliation is an important activity per-

formed in the continuous process industries. Data

reconciliation is essentially a quantitative fault diagnosis

approach with the focus on detecting sensor faults and

sensor biases. Also, another important goal is the

reconciliation of measurement data. Data reconciliation
usually consists of three parts: (i) identification of the

biased parameter; (ii) estimation of the bias; and (iii)

rectification of the sensor measurements.

Data reconciliation can be performed in both steady-

state and transient conditions. Steady-state data recon-

ciliation is the problem of removing errors from sensor

variables given a collection of data points. It is usually

handled using linear least squares estimation techniques
and has been shown to give reliable results. In contrast,

dynamic data reconciliation is the problem of removing

errors under time evolutions of sensor variables. This is

a significantly tougher problem due to the presence of

differential constraints and the pronounced effect of

nonlinearity on the solution strategy.

Instead of the purely quantitative approaches to data

reconciliation one can use a combination of qualitative
approaches and quantitative approaches to better solve

the data reconciliation problem. The diagnostic quali-

tative knowledge can be used to reduce the search space
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and provide good initial guesses. The usefulness of such

an approach has been demonstrated by Vachhani,

Rengaswamy, and Venkatasubramanian (2001).

5.3. Supervisory control

Supervisory control is an activity that falls in scope

between regulatory control and planning. Planning,

typically, is the task of creating schedules and making

operating decisions on the time-frame of months. It

becomes imperative to have a decision layer at a lower

level than planning to coordinate various individual

control loops and to do exception handling on a much
smaller time-frame. Plant behavior in most cases is not

perfectly known. Even rigorous models are not adequate

to predict plant behavior with satisfying accuracy. There

is a natural variability in the process due to raw material

variability and due to unsteady environmental condi-

tion. This makes the closed world assumption invalid in

control strategy. Once a model is obtained and the

controller designed, changes in the plant operation can
occur that can render the controller ineffective. For

many situations this information on changes cannot be

anticipated at the design stage, but the controller may be

expected to perform over a different operating region or

meet more stringent performance criteria than originally

specified. When this happens, the controller may exhibit

undesirable behavior which requires some action either

by the operator or the control engineer. First some re-
tuning may be performed on-line. If this does not

correct the problem the loop would be taken off line

and a complete redesign performed. As the number of

loops under an engineer’s supervision increases, the

monitoring and correction of control loop problems can

become a very time consuming task. This is where we

need a supervisory control system to assist in the

decision process. The supervisory control system would
use the information available from the fault diagnosis

system to check and monitor the loops in the regulatory

control system. If there has been changes in the control

loops, the supervisory control system would then look

for different control configurations or set points that

would improve the process operations.

For example, the controller configuration, para-

meters, and actions are not only determined by the
mathematical models of the process and the controller,

but they are also crucially dependent upon whether the

assumptions that underlie the mathematical models are

still valid. In many ways the assumptions may be

violated. For instance, the controller’s effectiveness

depends on getting reliable data from the sensors. This

is one of the key assumptions underlying the models. If a

sensor is faulty, the controller action may become
ineffective or it may even cause adverse process beha-

vior. The model could have been linearized near the

steady-state operating condition, but due to some

equipment malfunction the process could have drifted

towards a new steady state. There could be other

equipment malfunctions which would make the con-

troller ineffective. There could be changes in the process
parameters due to external influences, which could call

for a different control configuration, or different set

points and gains.

Hence, fault diagnosis is an important module that

can help with information for supervisory decision-

making. At a lower level, ideas from diagnosis can be

used to perform controller diagnostics. Kraus and

Myron (1984) discuss an Expert Adaptive Controller
Tuning (EXACT) Controller using ideas from pattern

recognition approach. Gertler (1989) discusses an in-

telligent supervisory control which supplements a basic

feedback loop with an outer adaptation loop, consisting

of an identifier and a tuner. Identification means the

estimation of the plant model on the basis of a sequence

of input�/output measurements. Tuning would require

both monitoring the system and adaptation based on the
tests performed. The monitoring part of the algorithm

does excitation monitoring, stability monitoring and

trend filtering. Tuning would then be performed to

improve process operations or restore stability as the

case may be.

6. Conclusions and future directions

The basic aim of this paper is to organize, classify,

review and compare various approaches to fault diag-

nosis from different perspectives. Towards that goal, we

classify the different methods into three categories: (i)

quantitative model-based methods; (ii) qualitative

model-based methods; and (iii) process history based

methods. We also present a framework that shows how

these different approaches relate to and differ from each
other regarding the transformation of information from

the measurement space to the decision space. The

important components in the transformation are the

transformation from measurement to feature space and

the transformation from feature to decision space. A

priori process knowledge is used in the first transforma-

tion and different search techniques are used in the

second transformation. This led to the discussion on
diagnostic systems in terms of the typology of a priori

knowledge used.

We also propose a list of ten desirable characteristics

that one would like a diagnostic system to possess. We

compare and evaluate the various methodologies in

terms of these characteristics. This comparative study

identifies the relative strengths and weaknesses of the

different approaches. It also reveals that no single
method has all the desirable features we stipulated for

a diagnostic system. It is our view that some of these

methods can complement one another resulting in better
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diagnostic systems. Integrating these complementary

features is one way to develop hybrid systems that

could overcome the limitations of individual solution

strategies. We think that hybrid systems are an im-

portant future direction for research and development in

diagnostic systems. Two other areas of equal importance

for future research are: (i) integration of diagnostic

methods with other process operations for a more

comprehensive and effective intelligent supervisory con-

trol system; and (ii) implementational issues for large-

scale industrial applications. Even though we have

broadly classified the future directions into three cate-

gories, they are, however, not insulated from each other.

They are indeed related to one another. We discuss

below the key issues involved in these three future

directions of research briefly.

As noted before, the drawbacks of single-method

based diagnostic systems are serious enough to limit

their applications to small case studies and render them

unsuitable for large-scale industrial situations. This

makes the design and development of hybrid systems

important. Such considerations led to the first attempt

Fig. 4. Integration framework.
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towards hybrid systems in the form of the Dkit

diagnostic system that was demonstrated on a large-

scale FCCU and BRCP case studies (Mylaraswamy,

1996; Mylaraswamy and Venkatasubramanian, 1997;
Vedam, Dash, & Venkatasubramanian, 1999; Vedam,

1999). For similar reasons, the Honeywell ASM Con-

sortium adopted the Dkit architecture as its AEGIS

prototype, a next-generation intelligent control system

for operator support. Our experience in designing such

systems suggests that a practically successful hybrid

system is likely to have at least three diagnostic

components: (i) a quantitative method such as PCA
for quick detection, (ii) a trend-based diagnostic method

(e.g. QTA, wavelets) for explicitly assessing process

trends, and (iii) a qualitative causal model approach

(e.g. SDGs, abstraction hierarchies) to provide explana-

tions and cause�/effect reasoning for the operator.

Despite such promising starts towards hybrid systems,

much work still remains to be done.

Another important direction for research is the
integration of diagnostic tasks with other process

operations such as regulatory control, data reconcilia-

tion, and supervisory control tasks as depicted in Fig. 4

(Rengaswamy, 1995). The overall problem of process

operations management involves several subproblem

areas that are related to each other and cannot really

be treated as individual problems in isolation. For

example, the operating targets via refinery scheduling
linear programs, constructed using average operating

values, have often been found to be infeasible for

implementation at the process control level and hence

are routinely ignored (Lasdon & Baker, 1986). In the

case of data reconciliation, traditionally one does not

consider parameter drifts and structural faults as part of

the problem. However, an integrated view is necessary

for reconciliation of measured data in the presence of
process faults. Low-level events such as sensor failure or

some other equipment malfunction, can have a signifi-

cant impact on the higher level plans by calling for the

revision of previous schedules. Likewise, higher level

decisions have a serious impact on lower level activities

such as supervisory and regulatory control. Thus, while

these operational tasks may be intrinsically different

from each other, they are, however, closely related to
each other and cannot be treated as isolated tasks.

Hence, one needs an approach wherein all these

different tasks can be integrated into a single unified

framework so that the operational decision-making can

be made more comprehensively and more effectively.

Despite the close connection of diagnosis with con-

trol, it is striking that researchers, particularly in

academia, have largely tended to treat them as separate
problems. This artificial separation needs to disappear

in order for real progress to be made in this area. This

creates great research opportunities for the traditional

diagnostic and control communities.

The third direction of implementational issues for

large-scale diagnostic problems raises important chal-

lenges in software architecture, real-time hardware, field

testing and validation, maintenance, user interface and
operator training and acceptance. The design and

implementation of hybrid systems as well as integration

of diagnosis with other process operations face several

technical challenges. Without going into detail, we

would like to list some key ones here:

i) Ability to reason about process operations without

assuming accurate models.

ii) Ability to reason with incomplete and/or uncertain

information about the process.

iii) Ability to understand, and hence represent, process
behavior at different levels of detail depending on

the nature of the task.

iv) Ability to make assumptions about a process when

modelling or describing it. One has to ensure the

validity and consistency of these assumptions.

v) Ability to integrate different problem-solving para-

digms, knowledge representation schemes, and

search techniques.
vi) Ability to maintain global database and global

management of process knowledge.

vii) Ability to cope with data explosion and the need for

effective compression.

viii)Ability to keep the role of an operator primary and

active, not secondary and passive, in the operating

environment that is managed with the assistance of

on-line intelligent systems.

Developing solutions to overcome these difficult
issues towards the design of intelligent supervisory

control systems will set the pace of research and

development for the coming decade and beyond for

engineers in academia and industry. Indeed, we see the

successful design and implementation of intelligent

supervisory control systems for operator support in a

variety of large-scale process applications as the next

grand challenge problem for process control engineers.
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