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Abstract

In this part of the paper, we review qualitative model representations and search strategies used in fault diagnostic systems.

Qualitative models are usually developed based on some fundamental understanding of the physics and chemistry of the process.

Various forms of qualitative models such as causal models and abstraction hierarchies are discussed. The relative advantages and

disadvantages of these representations are highlighted. In terms of search strategies, we broadly classify them as topographic and

symptomatic search techniques. Topographic searches perform malfunction analysis using a template of normal operation, whereas,

symptomatic searches look for symptoms to direct the search to the fault location. Various forms of topographic and symptomatic

search strategies are discussed.
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1. Introduction

Diagnostic activity comprises of two important com-

ponents: a priori domain knowledge and search strategy.

The basic a priori knowledge that is needed for fault

diagnosis is a set of failures and the relationship between

the observations (symptoms) and the failures. A diag-

nostic system may have them explicitly (as in a table

look-up), or it may be inferred from some source of

domain knowledge. A priori domain knowledge may be

developed from a fundamental understanding of the

process using first-principles knowledge. Such knowl-

edge is referred to as deep, causal or model-based

knowledge (Milne, 1987). On the other hand, it may

be gleaned from past experience with the process. This

knowledge is referred to as shallow, compiled, evidential

or process history-based knowledge.

The model-based a priori knowledge can be broadly

classified as qualitative or quantitative. The model is

usually developed based on some fundamental under-

standing of the physics of the process. In quantitative

models this understanding is expressed in terms of

mathematical functional relationships between the in-

puts and outputs of the system. In contrast, in qualita-

tive models these relationships are expressed in terms of

qualitative functions centered around different units in a

process. The qualitative models can be developed either

Fig. 1. Forms of qualitative knowledge.
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as qualitative causal models or abstraction hierarchies.
Fig. 1 shows the taxonomy of domain knowledge based

on these two broad categories. In this part of the paper

we will review the various qualitative knowledge forms

shown in Fig. 1.

There are fundamentally two different approaches to

search in fault diagnosis (Rasmussen, 1986): topo-

graphic search and symptomatic search. Topographic

searches perform malfunction analysis using a template
of normal operation, whereas, symptomatic searches

look for symptoms to direct the search to the fault

location. Fig. 2 shows a classification of diagnostic

systems based on the search methods they employ. In

this paper we discuss the various search methods as

shown in Fig. 2.

2. Qualitative models

The development of knowledge-based expert systems

was the first attempt to capture knowledge to draw

conclusions in a formal methodology. An expert system

is a computer program that mimics the cognitive

behavior of a human expert solving problems in a
particular domain. It consists of a knowledge base,

essentially a large set of if�/then�/else rules and an

inference engine which searches through the knowledge

base to derive conclusions from given facts. Also, the

tree of these if�/then�/else clauses grows rapidly with the

behavioral complexity of the system. The problem with

this kind of knowledge representation is that it does not

have any understanding of the underlying physics of the
system, and therefore fails in cases where a new

condition is encountered that is not defined in the

knowledge base. Therefore, this kind of knowledge is

referred to as ‘shallow’ since it does not have a deep,

fundamental understanding of the system.

In symbolic reasoning, one often addresses three

different kinds of reasoning. They are abductive , in-

ductive and default reasonings. Abduction is the gen-

eration of a hypothetical explanation (or cause) for what

has been observed. Unlike simple logical deduction, we

can get more than one answer in abductive reasoning.

Since there is no general way to decide between

alternatives, the best one can do is to find a hypothesis

that is most probable. Thus abduction can be thought of

as reasoning where we weigh the evidences in the
presence of uncertainty. Searching for the cause of an

abnormality in a process system is thus an abductive

reasoning. In MODEX2 (Venkatasubramanian & Rich,

1988), a model based expert system for fault diagnosis,

abductive reasoning is used to generate hypotheses for

the sources of faults. In addition, abduction also

provides explanations of how the cause could have

resulted in the abnormality observed. Such a facility is
useful in providing decision support to plant operators.

Use of knowledge representation matters a great deal in

determining the computational effort. Model based

reasoning allows for efficient bottom�/up abduction by

suggesting proper rules to check. Efficiency of such

bottom�/up search in abduction is considerable (Char-

niak & McDermott, 1984).

Early work in learning concentrated on systems for
pattern classification and game playing. Inductive

learning is the classification of a set of experiences into

categories or concepts. Inductive learning is performed

when one generalizes or specializes a concept definition

learned so that it includes all experiences that belong to

that concept and exclude those that do not. A clear

definition of a concept or category is rarely simple

because of the great variety of experiences and un-
certainty (noisy data or observations). For this reason,

one prefers an adaptive learning scheme. An example of

an adaptive learning scheme is the failure-driven learn-

ing. Failure-driven learning is refining a concept from

failures of expectations as one has related experiences.

The failure of heuristic judgment in detecting a source of

malfunction in fault diagnosis can trigger a change in

the knowledge (or rule) that resulted in the judgment
(Rich & Venkatasubramanian, 1989). Experiences with

abnormalities in a plant can be used to generate rules

that relate a set of observations with specific causes. One

can refine this experiential knowledge over time by

generalizing to successful cases not covered and specia-

lizing when exceptions are noticed.

One frequently makes default assumptions on the

values of various quantities that are manipulated, with
the intention of allowing specific reasons for other

values to override the current values (e.g. since the

outlet is blocked, the flow is now zero), or of rejecting

the default if it leads to an inconsistency (e.g. since the

Fig. 2. Classification of search strategies.
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outlet of the tank is blocked, there cannot be a decrease

in tank level). A fundamental feature of default reason-

ing is that it is non-monotonic. In traditional logic, once

a fact is deduced, it is considered to remain true for the
rest of the reasoning. This is what one means by

monotonic. However, as new evidence arises, one often

needs to revise the deduced facts to maintain logical

consistency. Let us consider our previous argument

where we deduced that the tank level cannot decrease

(since the outlet of the tank is blocked). After this

deduction, if we get new evidence that the tank has a

large leak, we will have to retract the conclusion that the
tank level cannot decrease. Such a reasoning where

retraction of deductions is allowed is non-monotonic.

Default reasoning or non-monotonic reasoning is an

invaluable tool in dealing with situations where all the

information is not available at a time or if one has to

reason about many, probably inconsistent, cases simul-

taneously. Reiter (1987) has shown how default logic

can be used for reasoning about multiple faults or causes
for an abnormality.

The need for a reasoning tool which can qualitatively

model a system, capture the causal structure of the

system in a more profound manner than the conven-

tional expert systems and yet be not as rigid in nature as

numeric simulation led to development of many meth-

odologies to qualitatively represent knowledge, and to

reason from them. In this section we will discuss these
various forms of qualitative knowledge.

2.1. Digraphs based causal models

Diagnosis is the inverse of simulation. Simulation is

concerned with the derivation of the behavior of the

process given its structural and functional aspects.

Diagnosis, on the other hand, is concerned with dedu-

cing structure from the behavior. This kind of deduction
needs reasoning about the cause and effect relationships

in the process. In the evidential reasoning approach to

diagnosis, heuristic information in the form of produc-

tion rules is used. The underlying cause�/effect relation-

ships of the process are implicit in this form of

reasoning. In the first-principles model-based approach,

one begins with a description of the system together with

the observations made from the malfunctioning process.
The reasoning here is to identify functional changes

which resulted in the malfunctioning of the process

(Davis, 1984; Rich & Venkatasubramanian, 1987;

Venkatasubramanian & Rich, 1988). It is in the later

approach that qualitative causal models are very im-

portant and are used extensively.

Cause�/effect relations or models can be represented

in the form of signed digraphs (SDG). Digraph is a
graph with directed arcs between the nodes and SDG is

a graph in which the directed arcs have a positive or

negative sign attached to them. The directed arcs lead

from the ‘cause’ nodes to the ‘effect’ nodes. Each node

in the SDG corresponds to the deviation from the steady

state of a variable. SDGs have nodes which represent

events or variables and edges which represent the
relationship between the nodes. They are much more

compact than truth tables, decision tables, or finite state

models. To understand digraphs, consider a tank where

F1 is the inlet flow, F2 is the outlet flow, and Z is the

height of the liquid in a tank. The equations that

represent this system are:

F1�F2�
dZ

dt

F2�
Z

R

A corresponding digraph is given in Fig. 3. The figure
can be read as follows: an external change causes the

flowrate F1 to change, this causes a change in the liquid

level in the tank (dZ and Z ), this in turn causes the

outlet flowrate F2 to change and this in turn causes the

liquid level to change (a feedback loop here). The signs

in the arcs represent the direction of change. In a general

situation, the arcs may be event dependent, i.e., the

relationship between two events or variables may be
dependent on other events or variables in the system.

SDGs provide a very efficient way of representing

qualitative models graphically. There are mainly three

kind of nodes in a typical SDG representing a chemical

process: (a) those with only output arcs from them. They

represent basic or more precisely fault variables which

can change independently; (b) those which have both

input and output arcs, most often called process
variables and (c) those with input arcs only. They are

often called output variables and they do not affect any

other variable.

SDGs have been the most widely used form of causal

knowledge for process fault diagnosis. Hence we will

review the important contributions in the field of SDG

representation in sufficient detail. At this juncture, a

brief mention of terms used in digraph analysis is in
order. A subset of a digraph is called a strongly

connected component (SCC) if every node of this subset

can be reached from every other node of this subset.

Maximal strongly connected component (MSCC) in a

digraph is a node or SCC with no input arcs to it.

MSCC is sometime also called root node.

Fig. 3. Digraph for a simple tank example.
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Iri, Aoki, O’Shima, and Matsuyama (1979) were the

first to use SDG for fault diagnosis. SDG can be

obtained either from the mathematical model of the

underlying process or from the operational data (oper-
ator’s experience). From SDG, they derive what is called

a cause�/effect graph (CE graph). CE graph consists of

only valid nodes (nodes which are abnormal) and

consistent arcs. Consistent arcs are the arcs which

potentially explain local propagation of the fault and

hence the observed symptom or pattern. Only valid

nodes are considered because nodes which are normal

do not provide any path from sensor nodes to the fault
nodes. Sign of nodes in a SDG constitutes a pattern.

When the sign of some of the nodes is not known then

the pattern is called a partial pattern. In a typical

process, all the process variables are not usually

measured. When some of the nodes show abnormality,

a CE graph with partial pattern (known as quasi-CE

graph) is considered for diagnosis. The sign of the

unmeasured nodes is assumed sequentially and the
quasi-CE graph is expanded. All possible MSCCs are

identified as potential fault nodes by propagation

through the CE graph. When combinatorial search

space for the sign of unmeasured nodes is exhausted,

the diagnostic reasoning stops.

Umeda, Kuriyama, O’shima, and Matsuyama (1980)

showed how SDG can be obtained from differential

algebraic equations for the process. In this work the arc
gains were allowed to vary dynamically*/essentially to

handle nonlinearities. Shiozaki, Matsuyama, O’Shima,

and Iri (1985) address the issue of conditional arc in

their SDG representation. In their work, conditional or

dual event is represented by two arcs of different signs.

In this manner, the original causal origin will never be

omitted though the number of spurious solutions might

increase. Shiozaki, Matsuyama, Tano, and O’Shima
(1985) also extend the idea of SDG to include five-range

patterns instead of the usual three-range pattern used in

the standard SDG. This extension allows one to apply

SDG even in the absence of detailed quantitative

information which is crucial for setting the thresholds

in a three-range pattern SDG.

Kokawa, Satoshi, and Shigai (1983) used partial

system dynamics (such as time required for fault
propagation from one variable/process unit to another),

statistical information about equipment failure, e.g.,

failure probability, and digraphs to represent the failure

propagation network for identifying fault location. No

sign is required in this analysis but the method is limited

to systems without any feedback.

Rule based method using SDG has been used for fault

diagnosis by Kramer and Palowitch (1987). The basic
idea here is to consider all possible simulation trees.

These simulation trees consist of directed paths from

root (fault) nodes to symptom nodes. The simulation

tree is converted into logical rules. A methodology has

been presented for direct derivation of logical rules from

SDG. SDG used in these approaches is similar to the

one developed using the approach suggested by Umeda

et al. (1980).
An important work in the field of steady state

qualitative simulation (QSIM) using SDG has been

presented by Oyeleye and Kramer (1988). In this

work, algorithms for the systematic use of steady state

as well as dynamic model equations for digraph genera-

tion is discussed. The major focus of this work is on

elimination of spurious solutions (generated due to

qualitative nature of equations) without losing comple-
teness. Other than the qualitative equations or con-

fluences generated from the SDG, latent or redundant

equations are obtained from the original steady state

equations through algebraic manipulation. In addition

to this, the SDG generated from the dynamic model is

used to get some more confluences which turn out to be

very helpful in eliminating spurious solutions.

Confluences from latent equations are generated from
original set of independent equations through algebraic

manipulation. The new equations are called latent (or

sometimes redundant) equations as they do not provide

any new information for quantitative analysis. These

equations are very helpful in reducing the number of

spurious solutions. Some heuristics (such as sub-global

and global balances, elimination of group of variables

etc.) could be used for generating potentially useful
latent equations. There are some limitations imposed by

difficulties in automation (or modularity) and amount

of quantitative information required in generating latent

equations. This type of confluences are sometimes called

non-causal confluences because in general algebraic

equations are unable to represent causality explicitly.

Confluences describing the dynamics in systems

represented by ODEs or PDEs can be derived, as
causality is explicit, and it is from right to left. Directed

arcs are drawn from the variables on the RHS to the

variables on LHS (Iri et al., 1979). The SDG thus

obtained, can be used for analyzing the evolution of the

system for faults. It has been shown that earlier methods

fail to predict the ultimate response of the system

whenever inverse response (IR) and/or compensatory

response (CR) is exhibited by the system (except for
control loops). This is because the earlier methods

assume that fault can propagate through simple causal

paths (SCPs) only. No node is repeated in a SCP. IR/CR

occurs due to the presence of multiple feed forward

paths from root node to the node under consideration

with conflicting effects, or due to existence of negative

feedback (control as well as non-control) loops. The

corresponding variables are called inverse and compen-
satory variables (IVs and CVs) respectively. Controlled

variables are just a special case of CVs. Similar to

controlled variables, CVs can pass disturbances without

deviation in themselves. Necessary conditions under
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which system can exhibit IR/CR can be derived.

Algorithms for identifying IVs and CVs have been given

(Oyeleye & Kramer, 1988). Sufficiency conditions for

IVs can be derived from quantitative analysis only
(Chang & Yu, 1990). To propagate the effect across

IVs and CVs, additional arcs need to be drawn across

IVs and CVs. Once all the additional arcs are drawn, the

resulting SDG is called the Extended SDG (ESDG)

(Oyeleye & Kramer, 1988).

Once ESDG is obtained, assumption of SCP can be

used to predict the steady state response. ESDG can be

converted into equivalent set of confluences using nodal
balance (on nodes with at least one input arc). Nodal

balance simply states that the sign of a node is the net

influence of arcs incident on that node. These con-

fluences are causal in nature. Some of these are the same

as the non-causal confluences, but a few of them are new

and it could be very difficult to derive these confluences

as latent equations. Some of these confluences help in

eliminating the unstable steady state solutions. In
negative feedback loops, nodal balance on ESDG

automatically ensures the presence of SCPs (only

SCPs) because invoking a complex path results in

violation of at least one nodal balance at steady state.

Thus complex causal paths are automatically elimi-

nated. It turns out that nodal balances alone are unable

to eliminate complex paths in positive feedback loops

and hence spurious solutions are generated. To avoid
this, a restriction that at least one of the nodes in

positive feedback loop should assume the sign depicted

by an external effect is imposed. However, in this work,

no formal metrics on the efficiency with which spurious

solutions can be removed is discussed as this is a difficult

issue and the practical utility of such an analysis might

be questionable given the fact that the results derived

might be too case-specific.
In somewhat similar work, Chang and Yu (1990) have

reported various techniques that are useful in simplify-

ing SDGs for fault diagnosis. Special attention is given

to control loops. They have shown that ambiguities in

the sign of arcs in control loops can be resolved to a

great extent by writing the controller equations in

discretized and velocity from. The resulting SDG is

converted into equivalent rules as discussed by Kramer
and Palowitch (1987) and solved. The methodology has

been shown to be better than previous methods for fault

diagnosis of a CSTR system. In recent years, Wilcox and

Himmelblau (1994a,b) have approached the problem of

fault diagnosis using what is known as possible cause

and effect graph (PCEG) models. PCEG is in some

sense a digraph. PCEG models inherit a number of

properties from SDGs such as ease of construction,
handling recycle systems, control loops and complete-

ness. In addition, PCEG models provide more accurate

information about the state of the system and thus a

potential reduction in search space is achieved.

Vaidhyanathan and Venkatasubramanian (1995) have

used digraph-based models for automated HAZOP

analysis. HAZOP-digraph models (HDG) are used to

accomplish the task. HDGs can be seen as extension of

standard SDGs. In addition to process variable nodes

and arcs corresponding to the SDG, HDG has abnor-

mal cause and adverse consequence nodes containing

the knowledge required for hazard identification useful

for HAZOP analysis. These nodes can be attached to the

process variables. HAZOP analysis is performed by

generating deviations in process variables by using

appropriate guide words such as LESS OF, MORE

OF etc. and finding all possible adverse consequences by

propagating through HDGs. Use of SDGs for multiple

fault detection is demonstrated by Vedam and Venka-

tasubramanian (1997). The poor resolution of SDG is

overcome by using a knowledge base consisting of

knowledge about the process constraints, maintenance

schedule and so on.

Improvement of fault resolution in SDG models

through the use of fuzzy set theory is discussed by

Han, Shih, and Lee (1994). In their approach, after the

strong components which are the possible fault origins

are located, quantitative fuzzy set manipulation is

introduced and the variables are sequentially arranged

by their degree of membership and the most probable

fault origins are located. The results show that such an

approach improves the accuracy of resolution. Use of

fuzzy logic principles with SDGs for the removal of

spurious solutions is discussed in Shih and Lee

(1995a,b). In their work, dynamic confluences are

converted to dynamic fuzzy relations. Using this fuzzy

graph, spurious interpretations attributable to system

compensations and IRs from feedback loops are elimi-

nated. This method also applies fuzzy reasoning to

estimate the state of unmeasured variables to explain

fault propagation paths. A number of other researchers

have looked at the role of fuzzy reasoning in qualitative

models. Tarifa and Scenna (1997) have discussed the

combined use of SDG and fuzzy reasoning for fault

diagnosis. Work has been done on qualitative process

modelling using fuzzy digraphs and fuzzy causal rela-

tionships (Kim & Lee, 1998; Wang, Yang, Veloso, Lu, &

McGreavy, 1995). Genovesi, Harmand, and Steyer

(1999) have presented a framework for process super-

vision using fuzzy logic-based fault diagnosis. Li and

Wang (2001) have presented how fuzzy digraphs can be

used for qualitative and quantitative simulation of

temporal behavior of process systems. The literature

on combining fuzzy logic and qualitative models looks

at improving the representational scope of qualitative

models by increasing the granularity through the use of

fuzzy representations of real-valued functions. In that

sense, these hybrid approaches seem to hold promise.

V. Venkatasubramanian et al. / Computers and Chemical Engineering 27 (2003) 313�/326 317



2.2. Fault trees

Fault trees are used in analyzing the system reliability

and safety. Fault tree analysis was originally developed
at Bell Telephone Laboratories in 1961. Fault tree is a

logic tree that propagates primary events or faults to the

top level event or a hazard. The tree usually has layers of

nodes. At each node different logic operations like AND

and OR are performed for propagation. Fault-trees

have been used in a variety of risk assessment and

reliability analysis studies (Ulerich and Powers, 1988). A

general fault tree analysis consists of the following four
steps: (i) system definition; (ii) fault tree construction;

(iii) qualitative evaluation and (iv) quantitative evalua-

tion (Fussell, 1974). Before the construction of the fault

tree, the analyst should possess a complete understand-

ing of the system. In fact, a system description is also a

part of the analysis documentation (Bennetts, 1974).

The fault tree is constructed by asking questions such

as what could cause a top level event. In answering this
question, one generates other events connected by logic

nodes. The tree is expanded in this manner till one

encounters events (primary events) which need not be

developed further (Lapp & Powers, 1977). Once the

fault tree is constructed, the next step in the analysis is

the evaluation of the fault tree. Qualitative evaluation is

concerned with the development of minimal cut sets,

defined as being ‘a collection of primary failures all of
which are necessary and sufficient to cause the system

failure by the minimal cut-set in question’ (Fussell,

1974). A minimal cut-set identifies the critical compo-

nent failures. In quantitative evaluation, knowledge

about the probability of occurrence of primary events

is used to calculate the probability of failure of the top

level event. The term evaluation as used here is the

assessment of probability of occurrence of top level
events and not the evaluation of the exactness of the

fault tree generated.

Fault trees provide a computational means for

combining logic to analyze system faults. The attractive

nature of fault tree stems from the fact that different

logic nodes can be used (OR, AND, XOR) instead of

the predominantly OR node used in the digraphs. This

helps in reducing the spurious solutions and represent-
ing the system in a concise manner. The biggest problem

with fault trees though is that the development is prone

to mistakes at different stages. The fault tree constructed

is only as good as the mental model conceived by the

developer. To perform consistent diagnosis from fault

trees, the trees must comprehensively represent the

process causal relationships (explain all fault scenarios).

There are no formal methods to verify the accuracy of
the fault tree developed.

Fault trees have also been developed from digraphs

(Lapp & Powers, 1977). Fault trees determine causal

pathways through which primal events (faults) can

propagate through the system to cause the top event

(some significant malfunction). Given a top event, fault

trees develop, using the process information in the form

of digraphs, primal events or combinations of primal
events which can result in the top event. The process

information is provided in the form of unit models and

the process topology showing the connectivity informa-

tion among the units. Unit models represent how

variables are related both when the unit is working

and when it fails. The problem of fault-tree synthesis can

be formulated as a search in finite state-space. Given an

initial state, the algorithm applies ‘operators’ which
transform the initial state to a goal state. Operators such

as ‘AND’, ‘OR’ and ‘XOR’ are used in this transforma-

tion. The initial state is the top event. The goal state is

the fault-tree connecting the top event to all possible

primal events. Digraph defines the various possible

states. Operators use the digraph to answer the question

‘What could cause this?’ at each node in the fault-tree.

The answer to this is given by one of many alternatives
in which case the node expands to these alternatives

through an OR connection. If the answer involves all of

a given set of alternatives, the node expands through an

AND connection. Answering this question using only

local digraph information is not possible when there are

feedback and feedforward loops. Because of this, ‘loop

operators’ are developed (Kelly & Lees, 1986; Lapp &

Powers, 1977) which consider the function of the entire
loop into picture when trying to explain ‘what could

cause this?’. Though fault trees might be generated in a

rigorous fashion from digraphs, much of the representa-

tional appeal associated with fault trees is lost in this

process.

Once a fault-tree is synthesized, the information from

it is stored in the form of cut sets. A cut set is formally

defined as any set of primal events which, when they
occur simultaneously, cause the top event to occur. A

minimal cut set is a subset of a cut set, which is a

collection of all primal events that must occur together

for the top event to occur. The collection of all minimal

cut sets which can result in a top event specifies all the

ways in which a given top event can happen. Fault trees

do not serve the purpose of fault detection and cannot

therefore be diagnostic systems. Ulerich and Powers
(1988) derived a fault detection tree using the available

real-time data to verify events in the fault tree. This is

done by constructing an AND gate at each primal event.

The inputs to this gate are the primal event and the real-

time data that verify the event.

2.3. Qualitative physics

Qualitative physics or common sense reasoning about
physical systems has been an area of major interest to

the artificial intelligence community. Qualitative physics

knowledge in fault diagnosis has been represented in
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mainly two ways. The first approach is to derive

qualitative equations from the differential equations

termed as confluence equations. The basic idea in the

development of confluence equations is as follows.
Consider the tank equations given in the digraph

section. The steady-state confluence equations for this

example are:

[F2]� [F1]�0

[Z]� [F2]�0

where [F1] represents the sign of the deviation variable

F1. These equations can be solved qualitatively to get
the qualitative values of the variables. An algebra can be

specified which specifies how the qualitative values are

combined. If the allowable value for a variable is �/,

then it means that the variable can take only qualitative

high value, i.e., it can only increase.

An important thing to note here is that qualitative

behavior can be derived even if an accurate mathema-

tical model cannot be developed. Qualitative models do
not require detailed information (such as exact expres-

sions and numerical values) about the process. An order

of magnitude information about the normal operating

values of process parameters and variables is often

sufficient. As an example, consider predicting level of

the tank as the inlet flow rate increases. Using qualita-

tive reasoning, one can predict that level would also

increase (at least initially) without knowing the numer-
ical values of cross sectional area of the tank, the outlet

and so on.

Considerable work has been done in this area of

qualitative modelling of systems and representation of

causal knowledge. Simon (1977) and Iwasaki and Simon

(1986) suggested the method of causal ordering which is

used to get the causal relations by a suitable reduction of

the functional relationships known about the process.
The method known as causal ordering establishes, a

priori to diagnosis, a partial or complete ordering

between the variables in a system of equations. de Kleer

and Brown (1984) suggested the use of confluence

equations which can be developed from the differential

equations in the mathematical model. They used the

method of deviation propagation where they specify

rules to establish an ordering but only at the time of
propagating disturbances.

There is yet another method, called precedence

ordering, that has been used to order the variables

from the view point of information flow among them.

The central idea is that the information flow among

these equations is not simultaneous*/a recognition of

the presence of asymmetry (partial or complete pre-

cedence order among the variables) in the equations.
This asymmetry shows the channels of information flow

and thus represents causality. Precedence ordering has

been studied widely for solving sets of algebraic

equations simultaneously (Soylemez & Seider, 1973).

Even though precedence ordering was developed for

solving systems of equations, this technique can be used

for deriving causal models as well. In fact, the concepts

of causal ordering of Iwasaki and Simon (1986) and

deviation propagation in confluence equations of de

Kleer and Brown (1984) are related to this idea.
The other approach in qualitative physics is the

derivation of qualitative behavior from the ordinary

differential equations (ODEs). These qualitative beha-

viors for different failures can be used as a knowledge

source. Sacks (1988) examines piece-wise linear approx-

imations of nonlinear differential equations through the

use of a qualitative mathematical reasoner to deduce the

qualitative properties of the system. Kuipers (1986)

predicts qualitative behavior by using qualitative differ-

ential equations (QDEs) that are an abstraction of the

ODEs that represent the state of the system. The goals

of these methodologies are to reason from qualitative

physical and equational descriptions to qualitative

behavioral descriptions and to provide explanations of

behavior based on process observations and system

description. The advantage of these qualitative simula-

tors is their ability to yield partial conclusions from

incomplete and often uncertain knowledge of the

process. Each of the above theories start from a

description of the physical mechanism, construct a

model, and then use an algorithm so as to determine

all of the behaviors of the system without precise

knowledge of the parameters and functional relation-

ships. de Kleer and Brown (1984) emphasize modelling

individual physical components and deriving the beha-

vior of a system of these components by using their

connectivity to constrain the behavior of the overall

system. Qualitative simulation as proposed by Kuipers

involves specifying a constraint model of the physical

process in terms of qualitative versions of mathematical

relationships such as addition, multiplication, and

differentiation. The variables used in modelling the

physical system should satisfy these qualitative mathe-

matical constraints. The resulting structure represents a

qualitative abstraction of an ODE, or a QDE that

models the process. In terms of applications of qualita-

tive models in fault diagnosis, QSIM and qualitative

process theory (QPT) have been the popular approaches

and we review these approaches in some detail.

Conventionally, physical systems in science and

engineering are modelled using differential equations,

which are solved, either analytically or numerically to

yield functions that represent the system behavior.

Similarly, qualitative models represent an abstraction

of the real physical system, and in terms of qualitative

constraints, capture the information about the system.

These qualitative models are ‘solved’ to get the qualita-

tive behavioral description of the system. The QSIM
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representation and simulation algorithm allows us to

reason mathematically about the description.

Qualitative simulation of a physical system by QSIM

starts with a set of constraints modelling the structure of
the process and its initial state and produces the

envisionment*/a graph consisting of all the possible

future states of the system. Every path from the node to

the root in the graph corresponds to a possible behavior

of the system. The constraint model is a set of symbols

representing the process variables, and a set of con-

straints on how these variables may be related to each

other. The constraints allow us to express the simple
mathematical relationships between the variables such

as addition, multiplication and differentiation.

The fact that the variables in the qualitative simula-

tion are continuously differentiable real-valued func-

tions allows us to apply the mean value theorem, and

restricts the possible transitions from a given qualitative

description of state. The simulation starts with the initial

state, generates all possible transitions that are allowed,
and then employs the constraints to check which of the

transitions are allowed by them. These transitions are

then further filtered using global filters that detect

whether a steady state has been reached, or a cyclic

behavior is attained. Thus the successor state is

obtained. If the possible successor states are more than

one, the simulation branches, and a tree of qualitative

behavioral descriptions is obtained.
A powerful feature of the QSIM algorithm is the

ability to reason about the dynamic behavior of a system

rather than just the steady state behaviour. To generate

the behavioral description, the QSIM algorithm requires

the structural description of the system in terms of the

set of qualitative constraints, and the initial state of the

system.

There are two main problems with deriving conflu-
ence equations from qualitative physics: ambiguities and

spurious solutions. Ambiguities can be resolved com-

pletely only through the use of actual quantitative

values. Frameworks for reasoning about relative orders

of magnitudes have been proposed by Raiman (1986)

and Mavrovouniotis and Stephanopoulos (1987). In

these frameworks, influence magnitudes are related

using relations such as A is negligible compared to B,
A is close to B and A is the same order of magnitude as

B. A set of inference rules then generates a partial

ordering of values into groups significantly different in

magnitude (Ungar & Venkatasubramanian, 1990).

Spurious solutions refer to the generation of physically

unrealizable solutions by a qualitative reasoning tech-

nique. This problem can be alleviated to a reasonable

extent by modelling the system from different perspec-
tives (Kay & Kuipers, 1993; Kuipers, 1985).

Ideas from QPT have also been used in process fault

diagnosis (Grantham & Ungar, 1990, 1991). QPT

construes physical systems as consisting of entities

whose changes are caused by physical processes (For-

bus, 1996). The domain is described by a collection of

objects and each of these objects are defined completely

by a qualitative state. The qualitative state is defined by
a set of parameters which take on values in a quantity

space. The state of the object is defined by the

parameters represented by their position in the quantity

space. The intervals in the quantity space are chosen to

represent important events in the real number space. For

example, the temperature space might consists of three

intervals separated by its melting and boiling points.

The relationships between variables are represented by
qualitative proportionalities (Qprop). Qprop relations

represent the response of the system to perturbations.

To represent the primary cause of change, influence

relations are used. Comparing Qprops and influences to

traditional models, Qprops are analogous to algebraic

equations and the influence relations are analogous to

ordinary differential equations (Grantham & Ungar,

1990). These relationships are assumed to hold within
what are known as individual views only. In general,

views are representative of some physical phenomena.

For example, a view could be describing the phenomena

‘two-component liquid’ (Grantham & Ungar, 1990).

Grantham and Ungar (1990) use the QPT framework

to build a prototype first-principles troubleshooting

system. Grantham and Ungar (1991) address the issue

of building a comparative analysis system that accounts
for the changes in physical system and modifies the

underlying qualitative model. Further the system com-

pares the original and modified models to analyze how

structural changes affect behavior. The comparative

analysis is again based on the QPT framework.

Another important contribution in the area of quali-

tative physics is the compositional modelling strategy

for the development of tutoring and automatic model
formulation in diagnostic systems. Compositional mod-

elling is a strategy for organizing and reasoning about

models of physical phenomenon that addresses the

following problem: given an artifact description and a

query, produce a model of the artifact that is commen-

surate with the needs of the query.

The key issue in compositional modelling is how to

represent and organize knowledge about a domain so as
to support automatic formulation of models. A domain

theory that will represent knowledge would have to

describe phenomenon at several levels of granularity,

and incorporate multiple perspectives. Compositional

modelling uses explicit modelling assumptions to de-

compose domain knowledge and semi-independent

model fragments, each describing various aspects of

objects and processes. Falkenhainer and Forbus (1991)
layout a framework for compositional modelling. Given

a general domain theory, a structural description of a

specific system, and a query about system’s behavior,

the model composition algorithm composes a model,
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which suffices to answer the query while minimizing

extraneous detail.

2.4. Abstraction hierarchy of process knowledge

Another form of model knowledge is through the

development of abstraction hierarchies based on decom-

position. The idea of decomposition is to be able to

draw inferences about the behavior of the overall system

solely from the laws governing the behavior of its

subsystems. In such a decomposition, the no-function-

in-structure principle is central: the laws of the sub-

system may not presume the functioning of the whole
system (de Kleer & Brown, 1984). In a hierarchic

description, one could represent a generic description

of a class of process units. The governing equations

describing an entire class of process units may make

assumptions about the class as a whole but may not

make any assumptions about the behavior of particular

units. As an example, for a valve in pressure regulators,

the area available for flow decreases as the pressure
increases. However, this is not true for all valves and the

general description of a class of valves may not assume

this behavior. Another important principle for decom-

position of systems is the principle of locality: the laws

for a part specifically cannot refer to any other part. No-

function-in-structure allows consistent behaviors among

various units. Principle of locality permits the behavior

to be predicted based only on local information. Popular
decompositions of process systems are the following: (i)

structural: specifies the connectivity information of a

unit and (ii) functional: specifies the output of a unit as a

function of its inputs (and possibly state information).

In abstraction hierarchies, the process system is

decomposed into its process units. This decomposition

allows a general representation of the functionality of a

system in terms of the input�/output relationships of its
units. It is not important to the diagnostic system or the

reasoning module that the functionality be expressed in

qualitative or quantitative terms. One could consider

other forms of process description to decompose the

process system as well. For example, one can decompose

the process system based on abstract functionalities.

Moreover, there is no reason to restrict oneself to

descriptions at the level of units. Decomposition of a
process system to subsystems can be performed at

various levels of abstraction. If the level of abstraction

is control systems, then these subsystems represent

various individual control loops (Finch & Kramer,

1987; Shafaghi, Androw, & Lees, 1984). If the level of

abstraction is units, subsystems represent individual

units. This brings us to the concept of abstraction

hierarchies as the structural or functional description
of a system.

There are two-dimensions along which abstraction at

different levels is possible*/structural and functional

(Rasmussen, 1986). The structural hierarchy represents

the connectivity information of the system and its

subsystems. The functional abstraction hierarchy repre-

sents the means-end relationships between a system and
its subsystems. Majority of the work in fault diagnosis in

chemical engineering depends on the development of

functional decomposition. Structural decomposition is

an efficient decomposition in systems where there is a

general equivalence between structure and function, like

for example in an electrical circuit. The reason for the

popularity of functional decomposition in chemical

engineering is due to the complex functionalities of
various units that cannot be expressed in terms of

structure. Hence, the decomposition focused here is

the functional decomposition. This functional hierarchy

describes bottom�/up, what various units with certain

functions be used for and how they serve higher level

purposes. They describe top�/down how various pur-

poses are implemented through various units with

specific functions. The way the reasoning proceeds in a
hierarchical description depends on the task at hand.

Information on the proper function of a system is

obtained from the levels above. Causes of improper

function depend upon changes in the resources and

limitations specified at lower levels and hence are

explained bottom-up.

Diagnosis can be considered as a top-down search

from a higher-level abstraction where groups of equip-
ment and functional systems are considered to a lower-

level of abstraction where individual units and unit

functions are analyzed (Rasmussen, 1985). Based on this

understanding, Shum and Davis (1985) decomposed the

process into a hierarchy of functional subsystems. Each

node in the hierarchy corresponds to the intended

function of a subsystem. By comparing the function of

the subsystem with the intended function, the hypothesis
that a fault is present in that subsystem is evaluated.

Finch and Kramer (1987) represent the plant as a set of

interacting subsystems, where each subsystem is cate-

gorized as a control system (closed loops) or passive

system (open loops) or an external system. Each of these

subsystems has an associated function at this level of

system description. Depending on their function, these

subsystems are categorized as: (i) functional, stressed,
uncontrolled or saturated in the case of control systems

and (ii) functional or malfunctional in the case of

passive and external systems.

These subsystems are described at a lower-level as

process units, sensors, controllers, actuators and control

elements. The idea is that the failure of the purpose of

the higher-level subsystem is due to the failure of the

function of one or more of these units and to use this
higher level description to quickly identify the subsystem

which is the source of malfunction. Functional search is

a natural opening move in diagnosing complex process

systems having subsystems with specific functions that
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are individually recognizable in the overall system

response. This method has the virtue of avoiding

unnecessary detail in the early stages of diagnosis and

quickly focusing to the problem areas.
Hierarchical abstraction of mass and energy flow

structures at different levels of function (called Multi-

level Flow Models (MFM)), i.e., functional abstraction

hierarchy, has been used by (Lind, 1991). An MFM

model is a normative description of a system, a

representation of its function in terms of what should

be done, how should it be done and with what should it

be done. This leads to three basic concepts in MFM: (i)
goals, (ii) functions and (iii) physical components. Three

types of connectional relations such as (i) achieve

relations, (ii) condition relations and (iii) realize rela-

tions are used to connect objects. Diagnostic reasoning

strategies based on the MFM model can be found in

Larsson (1994). In this work, a functional representation

for the process is provided in terms of the goals of the

process, how these goals are achieved by a network of
functions, how the functions depend on subgoals and

how they are realized by physical components. The user

chooses a goal for diagnosis and this could be at any

functional level in terms of either the whole process or a

part of the process. The search propagates downwards

using achieve relationships checking if the functional

goals of the subsystems are achieved. If a flow function

conditioned by a subgoal is found to be at fault, then
corresponding subgoal is investigated recursively. How-

ever, if the subgoal is working, then that part of the tree

is skipped. This approach is demonstrated on a tank

process by Larsson (1994). Walseth, Foss, Lind, and

Ogaard (1992) show the utility of the MFM approach

for a diagnostic application in a fertilizer plant. Re-

cently, a hierarchical organization of diagnostic knowl-

edge by primary processing systems, subsystems,
components, behaviors and malfunction modes is de-

scribed in Prasad, Davis, Jirapinyo, Josephson, and

Bhalodia (1998). It is shown that such a hierarchical

decomposition provides effective modularity for orga-

nizing large-scale diagnostic knowledge bases and also

allows different techniques to be integrated to address

specific local problems. Another work on hierarchical

functional modelling can be found in Modarres and
Cheon (1999).

3. Typology of diagnostic search strategies

There are fundamentally two different approaches to

search in fault diagnosis (Rasmussen, 1986): topo-

graphic search, and symptomatic search. Topographic
searches perform malfunction analysis using a template

of normal operation, whereas, symptomatic searches

look for symptoms to direct the search to the fault

location. Fig. 2 shows a classification of diagnostic

systems based on the search methods they employ.

3.1. Topographic search

Search can be performed in the mal-operating system
with reference to a template representing normal or

planned operation. The fault will be found as a

mismatch and identified by its location in the system.

This type of search is called topographic search.

3.1.1. Decomposition techniques

All topographic strategies depend on search with

reference to a model of normal function and are

therefore well suited for identification of disturbances
that are not empirically known or that the designer has

not foreseen. Consistency and correctness of the strategy

does not depend on models of malfunction and hence is

less influenced by multiple unknown disturbances. Since

the faults are not known a priori, topological search

helps only narrowing the focus of fault diagnosis to a

subsystem. Fig. 4 shows how one can use this approach

to check the functionality of various subsystems in a
process.

The topographic search can be either a functional or

structural search. In structural search, one first identifies

the path of information flow from the input to the unit

of interest and its output. If there is a fault in the path all

the subcomponents participating in the information

flow are included in the hypothesis set (Milne, 1987).

Successive refinement is performed by selecting sub-
paths to localize the search. One performs this by

collecting a set of good paths and bad paths. The subset

of bad paths that also occur in the good paths is

assumed to be correct and the cardinality of the

hypothesis set is reduced.

In functional search, functionality of various groups

of subcomponents is used to search for a fault. Refine-

ments can be achieved by searching a hierarchy of
submodels at various levels of detail. Similar to the

structural search, a collection of normal submodels and

abnormal submodels are identified. Individual compo-

nents in both the normal and abnormal set is assumed to

Fig. 4. Topographic search.

V. Venkatasubramanian et al. / Computers and Chemical Engineering 27 (2003) 313�/326322



be normal thereby reducing the cardinality of the

hypothesis set. In practice, though, a combination of

structural and functional search is preferred.

The most important aspect of the topographic
searches is in the lack of assumption about the faulty

modes of operation. Assumption is made only about the

normal operating mode. Hence these searches are

relatively insensitive to novel and multiple faults and

as such can be used to identify these malfunctions. An

observation to note is that the search, more often than

not, comes up with a set of hypotheses rather than the

actual set of faults. Hence, though completeness might
be guaranteed, the resolution of the fault set might be

poor for practical utility.

3.2. Symptomatic search

A set of observations representing the abnormal state

of the system can be used as a search template to find a

matching set in a library of known symptoms related to

different abnormal system conditions. This type of
search is called symptomatic search. The main feature

of these methods is that their decisions are derived from

the structure of data sets, their internal relationships,

and not from the topological structure of system

properties. Symptomatic search is advantageous from

the view point of information economy. Its limitation is

that a reference pattern of the actual abnormal state of

operation must be available, and multiple faults and
novel disturbances may be difficult to identify.

In symptomatic approaches, the inputs to the process

are also provided to the reference model. The outputs of

the process are then compared to that of the reference

model. When the parameters in the system are not

directly measured, there are two different forms of

identifying parameter variations between the process

and the model. In a finite-state situation, with each state
corresponding to a distinct partition of the parameter

space, the process belongs to one of the finite possible

states. In such cases if all the states are explicitly

enumerated, one has the open loop formalism. If the

states are generated and tested based on the mismatch

feedback, one has the closed loop formalism.

3.2.1. Look-up tables

This is the simplest kind of symptomatic search. A

template of abnormal behavior and corresponding

symptoms are stored in the form of look-up tables.

This kind of approach gets complicated and intractable

for large-scale chemical systems. Hence one needs more

systematic approaches for solving the diagnosis pro-

blems in the case of complicated plants.

3.2.2. Hypothesis and test search

Hypothesis and test search is a very popular sympto-

matic approach to diagnosis. If a search is based on

reference patterns generated on-line by modification of a

functional model, in correspondence with a hypothetical

disturbance/fault, the search strategy is a hypothesis and

test search in the closed-loop form. In this approach,

hypotheses are generated sequentially and tested, as

shown in Fig. 5. The efficiency of this search depends on

the efficiency in generating hypotheses. Hypotheses are

generated from topographic search or symptomatic

search. In this approach, diagnosis proceeds in three

steps: (a) hypothesis formulation; (b) determination of

the effects of the hypothesized fault on the process (fault

simulation); and (c) comparison of the result to plant

data (hypothesis testing). If the predicted symptoms are

wholly or partially present in the plant, the hypothesis

may be retained, and the procedure repeated until no

better hypothesis can be found. As the fault set would be

very large, the set has to be reduced before fault

simulations can be done. Compiled or heuristic knowl-

edge is commonly used to reduce the fault set to give the

hypothesis set.

Fig. 6 shows a schematic of the closed loop approach.

In the closed loop approach, a candidate hypothesis is

chosen and is tested if the reference matches the process.

If the reference does not match the process, then a new

reference is chosen for evaluation. In the closed loop

approach, the information from the mismatch between

the current reference and the process is used in the

process of new hypothesis generation. In the open loop

approach, many reference models are used with different

hypotheses. By comparing reference and the process, the

closest reference model is identified as the most repre-

sentative of the process. Fig. 7 shows a schematic of the

approach.

For hypothesis generation, a hypothesis graph G(P)

for a closed diagnostic problem is evolved as the process

of hypothesis generation and testing continues. Evolving

the graph G(P) is essentially making explicit a portion of

G(P) by a search procedure (Nilsson, 1980). The graph

starts with a start node and a set of rules for generating

successor nodes from any non-terminal node until a

given termination condition is met. If the set of rules for

generating successor nodes are heuristic, then the

hypothesis generation through the evolution of the

Fig. 5. Sequential hypothesis generation and testing.
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graph G(P) is also heuristic. The general state-space

expansion of a graph is usually on the basis of ‘costs’

associated with the edges of the graph. An evaluation

function decides, based on the costs, which nodes of the

graph are to be opened. Peng and Reggia (1987a,b)

developed a probabilistic method to overcome the

combinatorial complexity in hypothesis-and-test ap-

proaches when multiple faults are considered. Their

approach while limiting the number of hypotheses

generated still guarantees the identification of the most

likely hypotheses. This approach makes use of the

‘parsimonious covering theory’ or the ‘Occum’s razor’

as the criterion for plausibility. Parsimonious covering

theory postulates that a simple cover is preferable to a

complex one. In other words, the simplest explanation is

the most likely explanation for the cause of the system

fault. Peng and Reggia (1987a,b) describe a probability

based approach to guide the formation of hypotheses so

that the most likely hypotheses are considered first.
One form of the open loop approach is the assump-

tion-based approach exploiting redundancy. When a

process fault occurs, the observed process behavior will

be in conflict with the expected behavior of a normal

process. This mismatch of behaviors can be attributed to

the failure of certain assumptions about normality in the

process. Each of the assumptions of normality assume

the non-occurrence of a certain fault. The task of a

diagnostic algorithm is then to identify the assumptions
that result in the mismatch. Assumption-based methods

require constraints to be developed based on distinct

groups of assumptions. Once the constraints are ob-

tained, they may be evaluated and checked for their

satisfaction. The fault set is then identified based on the

following method which assumes boolean logic for the

expression of the satisfaction of a constraint. The

satisfaction of the constraint can also be checked by
using non-boolean logic as discussed by Petti, Klein, and

Dhurjati (1990) in their Diagnostic Model Processor

(DMP) algorithm. Another variant of the DMP ap-

proach which improves the resolution of the fault

diagnostic algorithm using non-boolean constraint

checking can be found in Chang, Yu, and Liou (1994,

1995).

A diagnosis is a conjecture that certain units are
malfunctioning and the rest are functional. The problem

is to specify which units we conjecture to be faulty. An

assumption-based diagnostic algorithm searches for a

diagnosis by making or dropping assumptions about a

unit’s function. Groups of assumptions together form

invariant relationships about the process. These invar-

iant relations can also be called constraints. Balance

equations are an example of invariant relations. As-
sumptions in a balance equation may correspond to the

various parameter values. In the description of a

reactor, for example, an assumption may be made that

the reactor is not leaking. The governing equations of a

reactor would thus involve some assumptions about the

expected function of the reactor. Furthermore, since the

validity of a balance constraint can only be verified

using sensor data, one should also consider the assump-
tion of sensor accuracy. Validity of the assumptions

guarantees the constraint (balance) satisfaction. As-

sumption-based methods assume that a set of con-

straints, each with a distinct set of assumptions, is

available and that these constraints can be evaluated

based on the sensor information from the process.

4. Conclusions

In this second part, of three parts, of review paper,

various forms of qualitative models such as causal

models and abstraction hierarchies were reviewed.

Though qualitative models have a number of advan-

tages as discussed in this paper, the major disadvantage

is the generation of spurious solutions. Considerable

amount of work has been done in the reduction of the
number of spurious solutions while reasoning with

qualitative models. In SDGs, this is done using genera-

tion of latent constraints and similar techniques have

Fig. 6. Symptomatic search*/closed loop approach.

Fig. 7. Symptomatic search*/open loop approach.
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been proposed for qualitative physics based models such

as QSIM. The search strategies were classified as either

topographic or symptomatic search and the difference

between these two types of search strategies were
highlighted. Clearly, for a given qualitative representa-

tion, different search strategies could be used for

diagnosis. Hence, one can view the methods proposed

in the literature as different combinations of the

qualitative methods and search strategies reviewed in

this paper.
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