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Abstract

In this paper, fault diagnosis based on patterns exhibited in the sensors measuring the process variables is considered. The

temporal patterns that a process event leaves on the measured sensors, called event signatures, can be utilized to infer the state of

operation using a pattern-matching approach. However, the qualitative nature of the features leads to imprecise classification

boundaries at the trend-identification stage and hence at the trend-matching stage. Moreover, noise and other underlying

phenomena may lead to non-reproducibility of the same trends chosen to represent an event. Thus, a crisp inference process might

lead to a large knowledge-base of signatures; it could also cause misclassification. To overcome this, a fuzzy-reasoning approach is

proposed to ensure robustness to the inherent uncertainty in the identified trends and to provide succinct mapping. A two-staged

strategy is employed: (i) identifying the most likely fault candidates based on a similarity measure between the observed trends and

the event-signatures in the knowledge-base and, (ii) estimation of the fault magnitude. The fuzzy-knowledge-base consists of a set of

physically interpretable if�/then rules providing physical insight into the process. The technique provides multivariate inferencing

and is transparent. We illustrate the application of the proposed approach in the fault diagnosis of an exothermic reactor case study.

# 2002 Published by Elsevier Science Ltd.
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1. Introduction

One of the important reasons for developing a trend

analysis technique is the subsequent use of the classified

trends in fault diagnosis. Hence, typical reasoning

systems that depend on the use of ‘event signatures’

for fault diagnosis have three important components: (i)

A language to represent the trends (ii) A technique to

identify the trends and (3) A mapping from trends to

operational conditions. This process is shown in Fig. 1

comprising of the trend extraction and trend-utilization

stages. In a recent paper (Dash, Rengaswamy, &

Venkatasubramanian, 2001) we presented an interval-

halving scheme to facilitate automatic extraction of

temporal features from sensor data in terms of the trend

language of primitives (Janusz & Venkatasubramanian,

1991), thus covering the first two requirements of the

whole process (Fig. 1). The next and final step in the

pattern-recognition process is to be able to relate the

characteristic trends (signatures) to process operating

conditions. This is shown in Fig. 2. This paper addresses

this issue thus completing the process of trend-based-

reasoning.

The fundamental elements of the trend description

language proposed by Janusz and Venkatasubramanian

(1991) are the primitives i.e., A(0, 0), B(�/, �/), C(�/, 0),

D(�/, �/), E(�/, �/), F(�/, 0), G(�/, �/) where the signs

are of the first and second derivatives respectively (Fig.

3). It can be shown that these primitives can be used to

qualitatively explain any reasonable continuous func-

tion. A detailed description of this trend description

language can be found in Rengaswamy and Venkatasu-

bramanian (1995). The problem of recovering these

primitives from real-time noisy process data is a difficult

problem due to the absence of a priori knowledge about
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sensor trend characteristics such as noise level and

varying scales of evolution. For automatic trend extrac-

tion from noisy process data, we will use a novel

interval-halving approach that has been proposed by

Dash, Rengaswamy, and Venkatasubramanian (2001).

This approach parameterizes the data as a sequence of

primitives with the goodness of fit determined with

respect to noise. The interval-halving approach is a

recursive method, where, initially a single primitive is

sought to characterize the entire data record, failing

which, the interval is halved and the process is repeated

on the halved length scale till success is achieved. The

procedure is recursively applied until the entire data

record is covered. The fuzzy trend inferencing approach

presented in this paper relies on and uses such an

automatic trend extraction from real-time noisy process

data. In this paper, we do not provide a detailed

description of both these aspects (trend language and a

corresponding extraction mechanism) as they have been

discussed extensively elsewhere (Rengaswamy & Venka-

tasubramanian, 1995; Dash, Rengaswamy, & Venkata-

subramanian, 2001).

The main motivation for using fuzzy inferencing to

perform fault diagnosis is to handle the impreciseness in

trend representations. As we will discuss later, the same

underlying events could lead to slightly different trends

in sensors due to a variety of reasons such as different

magnitudes of the underlying events, noise character-

istics, other unknown phenomena and so on. One of the

ways to handle this problem is to generate a database

with a library of slightly varying signatures for each

individual underlying event. Such an approach would

suffer from both explosion in the size of the knowledge-

base and also difficulty in subsequent maintenance. A

natural way of handling this uncertainty is through the

use of fuzzy reasoning which is the focus of this paper.

Hence, to summarize, we will use the interval-halving

strategy for trend extraction and show the utility of

fuzzy logic to exploit the trend information for inferen-

cing. We will demonstrate the utility of this approach

through the use of a CSTR case study. It should be

Nomenclature

i generic index with no specific connotation
qi identified quadratic in trend
Pi primitive
t time stamps of trend
t* time stamps of trend signature
F* identified fault from Stage 1
tu common/uniform time interval formed by @ /[t , t*]
Tr extracted sensor trend
SI1,SI2 similarity indices
CI confidence index
/sP1P2

/ similarity between primitives P1 and P2

Superscripts

�/ indicates positive deviation
�/ indicates negative deviation
level fuzzy variable�/[low, medium, high]
Greek letters

a observed to signature magnitude ratio
m fuzzy membership function
DM change in steady state magnitude due to fault

Fig. 1. Feature extraction and mapping.
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noted that the application to fault diagnosis considered

here is not limiting, and that the whole methodology is

developed in a generic manner.

The structure of the rest of the paper is as follows. In
Section 2 we discuss some of the important issues in

inferencing based on sensor trends and motivate the use

of fuzzy logic. Section 3 discusses the proposed

approach in detail. The strategy has two stages: in Stage

1 we look for a fuzzy match in terms of a similarity

measure between the event signatures in the knowledge-

base and the identified trends, purely from a qualitative

standpoint. Then in stage 2 we use quantitative infor-
mation to get an estimate for the severity of the fault.

Both these stages are based on fuzzy inferencing. We

illustrate the application of the whole technique through

the fault-diagnosis of an exothermic CSTR case study in

Section 4. We end with conclusions in Section 5.

2. Issues in mapping

In this section we discuss some of the factors in the

trend-to-event mapping process and parallely motivate

the development of our approach i.e. the fuzzy trend-

matching and reasoning. Some of the important issues

to be addressed include:

2.1. Exact vs fuzzy identification/matching

In real-life systems, precision tends to be vague*/

more so, when dealing with qualitative features like

trends. An important factor in their consideration is that

unlike crisp and definitive measures such as numbers,

there is some latitude i.e. degree of fuzziness associated
with them, both in the identification and matching

stages. Trends present scope of variation even for the

same underlying event. It is important to understand

that the concept of a trend as understood when visually

seen can be different from what results when a

particular trend-identification scheme such as the trian-

gular representation (Cheung & Stephanopoulos, 1990)

or primitives (Rengaswamy & Venkatasubramanian,

1995) is employed. Depending on the particular repre-

sentation and extraction method, the final qualitative

description can vary in its feature-capture and detail for

the same data due to the technique i.e. trend language/

extraction method as also external factors such as fault

evolution, noise characteristics and other unknown

phenomena. In most cases it is practical to keep the

fundamental elements minimal i.e., succinct and allow

complex shapes to be described in terms of these (Fu,

1982). However, in view of the challenges (Rengaswamy

& Venkatasubramanian, 1995; Dash, Rengaswamy, &

Venkatasubramanian, 2001) that extraction techniques

face, the possibility of generating slightly different final

qualitative representation is real regardless of the

specific technique employed.

Given these facts, it is neither practical nor desirable

to develop exact identification and matching algorithms

from the point of view of robustness in real-life

applications. The inherent fuzzy nature of trends might

lead to slight variations in their representation and as

such instead of trying to fine-tune the performance, it is

in general simpler to acknowledge this and develop

techniques to accommodate it. In fact, it is this

qualitative nature of these features which lends it

robustness compared to numerical methods and makes

it appealing from an understanding and ease-of-use

viewpoint. The transformation of a data record of

numbers into qualitative shapes i.e. trends is in itself an

abstraction aiming to retain only important features i.e.,

there is encapsulation/condensation of knowledge. This

process may lead to some loss of precision, (sometimes

the precision is unnecessary) but is justified considering

the trade-off in terms of the succinctness gained, speed

and transparency of reasoning and other benefits.

Even while dealing with numerical values in deriving

conclusions in real-life situations, we almost always

Fig. 3. Fundamental language: primitives.

Fig. 2. Multivariate trend mapping from sensors to process states.
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relax requirements of exactness close to the boundaries.

Kramer (1987) presents an approach to chemical fault

diagnosis that utilizes patterns of violation and satisfac-

tion of the quantitative constraints governing the
process in which the equality constraints are relaxed to

approximately equal. Interpretation of the pattern of

constraint violations is treated by boolean and non-

boolean techniques and it is shown that non-boolean

reasoning techniques increase stability and robustness of

the diagnosis in the presence of noise.

2.2. Multivariate inferencing

The mapping from sensor trends to process states

involves reasoning and inferencing based on matching.

Clearly, we would like this evidence gathering procedure

to be as comprehensive and exhaustive as possible for

added confidence. Instead of using only single-sensor

evidences, it would be better to collect information from

multiple-sensors during the process. The multivariate
inferencing refers to this issue and is shown in Fig. 2.

Konstantinov and Yoshida (1992) present if�/then rules

which are simple and univariate i.e., only single sensors

are used in the process. The decision tree approach of

Bakshi and Stephanopoulos (1994) has a multivariate

feel to it, because the tree branches on different

variables.

2.3. Learning capability

Given that the technique is data-driven, it is essential

that the scope of the method develops as more

information becomes available. This is the issue of

incremental learning. The learning process ideally

should be automatic and easy. Minimal human inter-

vention is desired.

2.4. Transparency

One of the biggest advantages of trend-based reason-

ing is that it is easily understood and can be well related

to by operators and engineers alike. While we want it to

become sophisticated when required, retaining its trans-

parent nature should also be given importance.

All these issues need to be adequately addressed in
any effective technique. Here we present a fuzzy-trend

based approach which attempts to satisfy these criteria.

3. Proposed fuzzy logic-based reasoning strategy

In this section we briefly discuss fuzzy-logic, review

some of the fuzzy-logic based trend applications and
describe the relevance of fuzzy-logic to our trend-

matching strategy by showing how to incorporate the

same.

Fuzzy-logic: Zadeh in 1965 introduced the concept of

a fuzzy set that is a class with unsharp boundaries,

providing a basis for a qualitative approach to the

analysis of complex systems in which linguistic rather
than numerical variables are employed to describe

system behavior and performance. A much better

understanding of how to deal with uncertainty may be

achieved and better models of human reasoning may

then be constructed. Fuzzy logic (Zadeh, 1988) was

proposed to explain classes of objects having imprecise

boundaries where a set of inputs is mapped to a set of

outputs using if�/then rules. One of the attractive
features of fuzzy logic is its ability to convert numeric

data into linguistic variables using membership func-

tions that define how well a variable belongs to the

output i.e. degree between 0 and 1. A fuzzy model

(Tsoukalas & Uhrig, 1997) maps inputs to outputs using

a combination of rules, membership functions (m) and
logical operators (AND, OR etc.). A system created first

by Mamdani and Assilian (1975) evaluates the inputs
with membership functions, uses the rules and the

logical operators to combine them and generate an

output for each rule. These outputs can then be

aggregated by unifying the outputs of each rule to

generate a unified output. A crisp output can then be

created as a result of aggregation using a number of

defuzzification algorithms.

3.1. Fuzzy logic in trend signatures, similarity indices and

mapping

Fuzzy logic has found applications in many trend-
based reasoning techniques. To see how fuzzy logic fits

into the framework of trend representation using

primitives (Rengaswamy & Venkatasubramanian,

1995) as the language, consider Fig. 4. The overlap i.e.

unsharp boundaries between the elements P which

eventually might result in fuzziness in strings of P i.e.,

trend signatures is shown in Fig. 4. Thus trends

naturally lend themselves to fuzzy treatment. At the
mapping stage, the trends being compared can differ in

(i) the qualitative shape i.e., the sequence of primitives

Fig. 4. Fuzziness across the primitives (Table 1).
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Pi , (ii) the duration of Pi and (iii) the magnitude change

accompanying Pi . Fig. 5 shows two visually close trends

which differ in their Pi and their duration. There is a

need to make the technique cognizant of this very real
possibility so that such a scenario can be accommodated

and hence does not affect the performance.

We will be utilizing the trend extraction procedure

based on interval-halving (Dash, Rengaswamy, & Ven-

katasubramanian, 2001) in this work. For each sensor

record [y1, y2,. . ., yn ], at the end of the application of the

technique, we obtain M unimodal regions Ui over [ti ,

ti�1] each (i) described qualitatively by a primitive Pi

and (ii) parameterized quantitatively by a quadratic

qi�
Xk�2

k�0

bktk:

Thus the data is transformed into:

Qualitative description: trend Tr�fP1; P2; . . . ; PMg

Quantitative description�fq1; q2; . . . ; qMg (1)

describing it in its entirety. We will make use of both

these descriptions while concentrating more on the

qualitative abstraction. The mapping of trends to states

is achieved in the form of if�/then rules relating the

sensor trends to process state. This is usually a many-to-

one mapping with many sensor trends being mapped to

one fault. For example a rule might read,

If sensor S1 shows trend Tr1 AND sensor S2 shows trend Tr2 . . .

then event is F1

The need here is to develop methods to take care of

imprecision in Tr, as discussed above. In this case the

trends Tr are the qualitative descriptions extracted from

sensor data. Exact matching procedures would necessi-

tate a large number of rules, since we are not flexible in

the comparison procedure. For example, Tr�/BGE,

CF, CGF are all similar to some extent and hence a

strict comparison process will fail to recognize this fact.

A restrictive comparison procedure would require the
presence of all such possibilities in the antecedent of the

rules so that at least one of them matches an observed

trend, which clearly is not practical. Also, an assump-

tion in the trend-analysis scheme is that the sensors

show qualitatively similar trends for the same fault i.e.,

the severity of faults does not distort the trends to a

great extent. This allows us to reason based on patterns,

instead of attaching too much significance to the
numerical values. Of course, this assumption is not

restrictive, since we could always create new categories

of faults if the trends observed are very different at

different severities. Hence we relax the comparison

procedure to define a similarity of match between two

trends. This would make the knowledge-base size

manageable and more insightful. The next section

develops some relaxed criteria to judge the proximity
of two trends.

3.1.1. Similarity indices for trend matching

A variety of similarity measures may be defined

depending on the particular application. The set of

primitives (A�/G) are related to each other to some

extent (Fig. 4). As outlined earlier, one of the ways in

which identified trends could differ was in the symbol Pi

i.e., primitive thus contributing to fuzziness. For exam-

ple, B and C are more similar than are B and E. To
quantify this similarity between individual primitives in

a fuzzy manner we define a primitive similarity matrix

shown in Table 1 reflecting this degree of match [0�/1].

Each entry in Table 1, sP1P2
, gives a similarity between

P1 and P2. Note that some primitives such as D and G

are treated to be completely different as their funda-

mental behavior is opposite.

The similarity can also be thought of as a syntactic
(structural pattern-recognition (Fu, 1982)) approach.

Similar to the template-matching method in decision-

theoretic approach, a similarity or a distance measure

can be defined between a trend representing an un-

known pattern and a string describing a prototype

pattern. Recognition of the unknown pattern can be

Fig. 5. Uniform time interval tu for SI1 and SI2 calculation.

Table 1

Primitive similarity matrix sP
1
P
2
(Fig. 4)

A B C D E F G

A 1 0 0.25 0 0 0.25 0

B 0 1 0.75 0.5 0 0 0

C 0.25 0.75 1 0.75 0 0 0

D 0 0.5 0.75 1 0 0 0

E 0 0 0 0 1 0.75 0.5

F 0.25 0 0 0 0.75 1 0.75

G 0 0 0 0 0.5 0.75 1
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carried out on the basis of the maximum-similarity or

minimum-distance criterion. A distance between two

strings x , y can be defined in terms of the minimum

number of error-transformations used to derive one
from the other. The error transformations are usually

defined in terms of substitution (TS), deletion (TD) and

insertion (TI) errors. These errors are treated as syntax

errors by defining transformations. A weighted Le-

venshtein distance can also be used by defining non-

negative numbers s , g and d to transformations TS, TD

and TI respectively. If x , y are two strings then the

weighted Levenshtein distance is defined as

d(x; y)�min
j
fskj�gmj�dnjg (2)

where kj , mj and nj are the number of substitution,

deletion and insertion transformations respectively in j .
Various other algorithms for string matching can be

found in Cormen, Leiserson, and Rivest (1990).

Here we define two similarity indices, which are

intuitive and simple. Consider a trend in the knowl-

edge-base Tr*�/{P1�, P2�,. . ., PS�} with each Pi� occurring
over [ti�, t�i�1] and a trend to be compared Tr�/{P1,

P2,. . ., PM} with each Pi over [ti , ti�1]. In the general

case, both are of different length i.e., M"/S . We define
an uniform time ground as the time interval obtained by

the union of both the time stamps tu�/@ /[t , t*]. Let the

number of intervals in tu be R and its length be Tu. This

is shown in Fig. 5 for the two trends. Our similarity

indices are then defined on this tu:

(1) SI1: A simple similarity measure just based on the

sequence can be defined as

SI1�

Xi�R

i�1

sPiPi�

R
(3)

This incorporates the similarity of individual patterns,

as given in Table 1. Only the order of the primitives is

considered here.

(2) SI2: The definition of this similarity measure takes
into account the interval-length Dti�/tui�1

�/tui in addi-

tion to the sequence . Thus greater weightage is given to

longer intervals compared to the shorter ones.

SI2�
Xi�R

i�1

sPiP
+
i

Dti
Tu

(4)

This is more restrictive and calls for a stricter

matching.

We intend to maximize the similarity of the two

trends Tr, Tr* under inspection i.e. desire to evaluate the

trends as closely as possible . This means we would like
to maximize their similarity and so the final similarity

measure we use is the maximum of those defined above.

Thus

SI�max[SI1; SI2] (5)

Once the similarity measure is defined as above, we
are in a position to describe the proposed strategy for

fault diagnosis in the next section.

3.2. A two-staged strategy for fault diagnosis

We present here a two-stage strategy to detect and

diagnose faults. In Stage 1, the likely fault candidates

are determined (shortlisted) based purely on the quali-

tative shape responses from the measured variables. As

will be shown a multivariate strategy using multiple-
sensor evidences is utilized. In stage 2, we estimate the

severity of the shortlisted faults using quantitative

information from the change in steady state magnitudes.

This is shown in Fig. 6. Thus we utilize both qualitative

(Pi ) and quantitative (qi ) information (Section 3.1). The

advantages of utilizing both these kinds of information

was realized by Yu and Lee (1991) who proposed a

framework integrating quantitative process knowledge
(steady-state gains) described in terms of membership

functions into a qualitative model (signed directed

graph). The truth value of a hypothesis i.e. a fault

origin was calculated based on fuzzy logic and the

diagnostic resolution was shown to improve signifi-

cantly. We describe both the stages of our strategy in

detail next.

3.2.1. Stage I*/qualitative information

In Stage 1 we identify the possible fault candidates
using only the qualitative shapes of sensor trends

exhibited by the measurement sensors. The trend-

extraction is based on the interval-halving technique

presented in Dash, Rengaswamy, and Venkatasubrama-

nian (2001). The basic idea there was to recursively keep

halving the signal length until a quadratic could fit well

within the error bounds represented by noise. The noise

Fig. 6. Qualitative�/quantitative two-stage approach.
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estimation was done through a wavelet analysis. Details

of the procedure along with extensive examples can be

found in Dash, Rengaswamy, and Venkatasubramanian

(2001).
Rule-based knowledge-base: To identify the faults in

this stage we make use of a knowledge-base (Fig. 7)

mapping the fault signatures to the faults in the form of

if�/then rules (Section 3.1). The fault signatures are

patterns that are exhibited by the sensors in response to

a fault, obtained either from dynamic simulations or

historical databases. An example of the i th rule (i th

fault) is shown below

If sensor S1 0 trend Tr+1i AND

sensor S2 0 trend Tr+2i AND . . . then

Fault is Fi

(6)

where i�/1,. . ., M , i.e., there are M such rules relating
sensor trends to the M fault scenarios. Tr1i� refers to the

fault signature exhibited by Sensor S1 for fault Fi . Note

the multivariate nature of the inferencing due to the

conjunction operator AND used here.

Under the assumption that the sensor signatures are

broadly the same under different fault severities, we

require to store only one representative signature for

each sensor for each fault i.e., the antecedents in the
knowledge-base in this stage consist of only one fault

signature representative. Thus, if faults are simulated at

severity levels of low, medium and high, the medium

level fault signatures should suffice. As pointed out

earlier, if this is not the case (found by evaluating the

effectiveness) it is always possible to augment the

knowledge-base by creating additional fault classes.

Rules evaluation: To evaluate the rules for an

observed trend Tr, fuzzy inferencing is employed. By

comparing Tr fuzzily with the signature Tr* in each part

j of the antecedent (shown boxed in Eq. (6)) in the i th
rule, a similarity index SIi

j is obtained. This is shown in

Fig. 8. This is a measure of the degree of match between

the observed trend Tr and that in the knowledge-base

Tr*. Once all the SIi
js are evaluated, the overall

confidence index CIi of the i th rule’s consequent (i.e.

the fault) is calculated. The fuzzy logic interpretation of

AND (Tsoukalas & Uhrig, 1997) as min is employed,

thus CIi is given by the minimum over all the antecedent
parts j

CIi�min
j
[SI

j
i] (7)

This evaluation is physically intuitive. The truth value

of a hypothesis takes a value between 0 and 1, and the

strength of a rule is considered equivalent to the weakest
link (Yu & Lee, 1991) i.e., the part of the antecedent

with the smallest SIji value. Once all the CIi are

obtained, the faults are ranked in decreasing order of

their confidences. This process is shown in Fig. 7. Here

Fig. 7. Stage 1 : qualitative fuzzy reasoning using trend-matching.

Fig. 8. Mapping and fuzzy matching.
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we try to exploit only the qualitative shape information

and no magnitude information is used. One important

issue here is that of fault resolution . If all the faults can

be qualitatively resolved i.e., distinguishable based only
on the measured sensor signatures (CIi are well sepa-

rated), then this would result in a high degree of

accuracy in pinpointing the actual fault. However if

this is not the case i.e., the CIi are close, it is necessary to

add more discriminating sensors to resolve the conflict

or look for finer qualitative distinctions for better

discrimination. Of these two options sensor selection

based on fault diagnostic observability criteria using
qualitative models has been researched upon (Raghuraj,

Bhushan, & Rengaswamy, 1999). The second option is

possible in some cases (not always) and one needs to

develop tools that extract features for finer discrimina-

tion automatically. Once the most likely fault candidate

F* is identified, it is passed to the next stage to evaluate

the severity (fault magnitude).

3.2.2. Stage II*/quantitative information

In Stage 1 no quantitative information was used. In

this stage we estimate the magnitude of the detected

fault F* using fuzzy logic. This is shown in Fig. 9. The

knowledge-base in this stage consists of steady-state

magnitude changes DMS
i
level in sensor Si accompanying

faults at different levels (low, medium, high). This
information can be obtained from simulations. To

compare the observed magnitude change in sensor Si ,

DMS
i with that in the knowledge-base DMS

i
level, we

adopt a fuzzy-approach instead of strict matching to

lend robustness to the technique. Define the extent of

match at a level as

a
Si

level�
DMSi

DMSi

level

(8)

with membership function mlevel. Along the same lines as

trend comparison, we also do not desire an exact

magnitude match and hence use a membership function

defined on a normalized magnitude scale a�/[0, 2]

making it level-independent. This is shown in Fig. 10.
To be able to do so we define the fault magnitude of F*

as a fuzzy variable with fuzzy values LowF9, Med-

iumF9, HighF9 each having their own membership

functions as shown in Fig. 10. The 9/ signs indicate both

the directions of deviation. All the membership func-

tions used are Gaussian. The knowledge-base (Fig. 9)

consists of rules such as

If sensor a
S1
level is alevel AND a

S2
level is alevel

AND . . . then fault is levelF (9)

Here we make use of the quantitative information in
the trend i.e., magnitude change DM as a result of the

fault. To evaluate the magnitude we again make use of

standard fuzzy reasoning algorithms (Tsoukalas &

Uhrig, 1997) comprising of fuzzification, inferencing

and defuzzification steps (Section 3.1). We use the

Mamdani�/Min implication and centre of area defuzzi-

fication method to estimate the fault as shown in Fig. 9.
In the next section, we illustrate the whole methodology

in the fault diagnosis of a reactor. Going back to the

issues discussed in Section 2, we can easily see that the

proposed strategy satisfies all the criteria. It takes care

of the fuzzy aspect in trends allowing inexact matching.

Moreover given the ‘AND’ based inferencing used in the

rules, it is naturally multivariate. The rules are linguistic,

and thus transparent and insightful. Moreover, adding
rules to increment or expand the scope of the knowl-

edge-base as processes develop or new events are found

is relatively easy. The knowledge-bases, given their

human-like-reasoning nature, are thus easily related to

and understood, addressing the transparency issue. This

simplicity however does not limit its effectiveness.

4. Illustration

In this section, we show the application of the above

mentioned strategy on an exothermic reactor case study.

4.1. CSTR case study

The exothermic CSTR system given by Luyben (1990)
is simulated to obtain the manipulated and controlled

variable data to be used by the algorithm. The schematic

of the CSTR system is shown in Fig. 11. The process

involves a liquid phase reaction A(l)0/B(l) This reaction

is highly exothermic and occurs in the reactor. The

temperature controller controls the temperature of the

reactor by manipulating the flow rate of the coolant

flowing through the jacket. The level in the reactor is
controlled by the level controller by manipulating the

outlet flowrate from the reactor. Both the reactor and

the jacket are modeled with perfectly mixed-tank

dynamics. The reactant volume V and concentration

CA at any time is given by,

dV

dt
�F0�F

rA�CAk0e
�

E

RT

dCA

dt
�

F0

V
(CA0

�CA)�rA (10)

Assuming constant heat capacities and densities, an

overall heat balance on the reactor gives the reactant

temperature as,
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Fig. 10. Membership functions.

Fig. 9. Stage 2: quantitative fuzzy reasoning using DM extent matches.
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dT

dt
�

F0

V
(T0�T)�

rA(�DH)

rCp

�
UA(T � Tc)

VrCp

Overall heat balance on the jacket gives the coolant

temperature,

dTc

dt
�

Fc

Vj

(Tc0�Tj)�
UA(T � Tc)

VjrjCj

Propotional controllers are used to control the

temperature T by manipulating the outlet coolant flow

rate Fj and the volume V by manipulating the outlet

reactant flow F of the reactor.

Fj�Fjs�KT (Tset�T)

F�Fs�KH(Vset�V )

Fig. 11. Schematic of the CSTR process.

Table 2

Values for the CSTR of Fig. 11

Notation Variable (Steady state/con-

stant) value

V Volume of reactor 48 ft3

CA Reactant concentration in reactor 0.2345 lb mol A/ft3

T Reactor temperature 6008R
F0 Inlet feed flow rate 40 ft3/h

CA0 Inlet reactant concentration 0.50 lb.mol A/ft3

Tc Jacket temp. 590.518R
Fc Coolant flow rate 56.626 ft3/h

T0 Inlet feed temp. 5308R
Vj Volume of jacket 3.85 ft3

k0 Frequency factor 7.08�/1010 /h

E Activation energy 30 000 Btu/lb mol

R Universal gas constant 1.99 Btu/lb mol 8R
U Heat transfer coefficient 150 Btu/h ft2 8R
A Heat transfer area 150 ft2

Tc 0 Inlet coolant temperature 5308R
DH Heat of reaction �/30 000 Btu/lb mol

Cp Heat capacity (process side) 0.72 Btu/lbm 8R
Cj Heat capacity (coolant side) 1.0 Btu/lbm 8R
r Density of process mixture 50 lb m/ft3

rj Density of coolant 62.3 lb m/ft3

KT Proportional constant of tempera-

ture controller

4.3

KH Proportional constant of level con-

troller

10

Table 3

Measurement and fault variables for CSTR

No Sensors

Measurement sensors

1 Volume of reactor V

2 Outlet concentration Ca

3 Outlet temperature T

4 Outlet coolant temperature Tc

Fault variables

1 Inlet flow rate Fo

2 Inlet Concentration CA0

3 Inlet temperature T0

4 Inlet coolant temperature Tc 0
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The values of the constants and parameters used in

the simulation and the notation are tabulated in Table 2.

4.2. Knowledge-base and trend fuzziness

To evaluate the proposed strategy fault scenarios are

simulated for knowledge-base construction and testing.
The measurement sensors and the fault variables for the

case study are shown in Table 3. The normal behavior of

the process is defined by the steady state, represented by

the primitive ‘A’.

Knowledge-base: To construct the knowledge-base we

carry out fault simulations in positive and negative

deviations for all the 4 input fault variables at a noise

level of 5%. Three levels of step faults (low , medium and
high ) are simulated in each direction for all the fault

variables (totalling 4�/3�/2�/24 scenarios) as shown in

Table 4. The level of the fault is treated as a fuzzy

variable with fuzzy values low, medium and high. For

Stage 1, which involves only the qualitative shapes of

sensor responses, we only use the shapes from the

medium level faults in the knowledge base. This is to

enforce and evaluate the assumption that the qualitative
shapes are same at different levels of the fault. We thus

retain only one representative (medium) of the fault

scenario. We desire to do with minimal information at

this stage. This amounts to the following 8 scenarios:

F9
0 , C9

A0, T
9
0 and T9

c0. The fault signatures correspond-

ing to these scenarios form the Stage 1 KB as shown in

Table 5. This knowledge-base is used in fuzzy-inferen-

cing using trend shapes as shown in Fig. 7. The
knowledge-base for Stage 2 on the other hand uses

magnitude information and consists of all the quantita-

tive information for all levels of faults i.e., all 24

scenarios (Section 3.2). The inferencing procedure for

Stage 2 is shown in Fig. 9.

Trend identification and fuzziness: The trends from the

measurement sensors are extracted using the interval-

halving technique described in Dash, Rengaswamy, and
Venkatasubramanian (2001). To illustrate the issue of

variability in trend extraction as discussed in Sections 2

and 3.1, we show a sample of the identified trends at

different fault and noise levels. Fig. 12(a and b) shows

the sensor shapes for the F0
� fault at levels �/5, �/15

respectively. Although visually the trends look similar,

one can notice slight variations in the extracted trends as

shown in Table 6. Similar behavior can also be seen due

to the effect of noise as shown in Table 6 where the

Table 4

Simulated step fault scenarios

F0 CA0 T0 Tc 0

Level Fault Level Fault Level Fault Level Fault

�/5 LowF0
� �/0.05 LowCA0

� �/20 LowT0
� �/20 LowTc 0

�

�/10 MedF0
� �/0.10 MedCA0

� �/40 MedT0
� �/40 MedTc 0

�

�/15 HighF0
� �/0.15 HighCA0

� �/60 HighT0
� �/60 HighTc 0

�

�/5 LowF0
� �/0.05 LowCA0

� �/20 LowT0
� �/20 LowTc 0

�

�/10 MedF0
� �/0.10 MedCA0

� �/40 MedT0
� �/40 MedTc 0

�

�/15 HighF0
� �/0.15 HighCA0

� �/60 HighT0
� �/60 HighTc 0

�

Table 5

Stage 1 Knowledge base: qualitative shapes of Med faults only

No Fault Variable Fault signatures

1 MedF0
� V [D]

CA [C D E]

T [E C D E]

Tc [G E C D E]

2 MedF0
� V [F E]

CA [F E]

T [D E]

Tc [C D F E]

3 MedCA0
� V [A]

CA [B D F D]

T [B D E]

Tc [B D E]

4 MedCA0
� V [A]

CA [E]

T [D D G E]

Tc [G E]

5 MedT0
� V [A]

CA [G E D]

T [D D E]

Tc [D G E]

6 MedT0
� V [A]

CA [B D]

T [E D]

Tc [D G E D]

7 MedTc0
� V [A]

CA [D G E C D F C F A]

T [E B D F E E B D E D]

Tc [C C D F E C G]

8 MedTc0
� V [A]

CA [B D]

T [E D]

Tc [F]
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identified primitives are given for different noise levels.

However the assumption that the trends are broadly the

same hold true across all these scenarios allowing

qualitative analysis. It should be emphasized that this

difference is not a shortcoming in the identification

technique or a deficiency in the trend analysis metho-

dology, but an inevitable offshoot of the qualitative

nature of the technique which leads to some latitude in

preciseness. As was discussed extensively in Section 2,

there is a need to accommodate such fuzziness as trends

might never be exactly reproducible given the inherent

fuzziness.
Similarity index: To show the way trends are pro-

posed to be matched, we give a few examples in Fig. 13.

The similarity indices between the fault signatures and

the observed trends varies between 0.1 and 0.96 and is

seen to follow intuition. The calculation of SI was

discussed in Section 3.1. For example, when the trend of

Tc for F�
0 (7) fault (Case l) is matched against the fault

signature of MedF�
0 (Fig. 13(a)), the movement is

fundamentally different (positive vs negative). This is

manifested in the low SI of 0.1. On the other hand when

comparing with the trend of MedF0
� (Fig. 13(d)), the

trends are visually very similar and the same fact is

shown by the high SI value. Similarly, the remaining two

trends*/T (SI�/0.96) and CA (SI�/0.53) for fault C�
A0

Fig. 12. Effect of fault level: sensor trends at 7.5% noise level for (a) F0
� (5) and (b) F0

� (15).

Table 6

Variation in identified trends due to fault level/noise

Levela Variable Trends

�/5 V [D(14)]

CA [B(14) D(46) E(135)]

T [F(14) E(8) B(28) D(47) E(238)]

Tc [E(16) C(28) D(53) E(246)]

�/15 V [D(22)]

CA [B(14) D(44) E(77)]

T [E(16) C(28) D(47) F(94)]

Tc [G(14) E(9) B(28) D(48) E(94)]

Noiseb Variable Trends

7.5 V [D(14)]

CA [C(14) D(46) E(103)]

T [E(16) C(28) D(46) E(118)]

Tc [G(14) E(7) C(28) D(53) E(115)]

10.0 V [D(14)]

CA [B(14) D(45) E(133)]

T [F(14) E(8) B(28) D(53) E(232)]

Tc [E(17) D(56) D(25) E(371)]

a Fault F0, Noise�/7.5%.
b Fault F0 , Level�/10%.
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(0.07) (Case 3) matched against signature MedC�
A0 show

good matching (Fig. 13(b and c)).

4.3. Testing of fault cases

Test cases: Eight different test fault scenarios are

simulated to be tested using the two-stage approach.
The method was discussed in great detail in Section 3.2.

All the test fault cases (Cases 1�/8) are listed in Tables 7

and 8. All these faults are simulated at different levels to

evaluate the robustness of the technique.

Stage 1: The extracted sensor trends from the 8 test

scenarios are also shown in Tables 7 and 8. Each of the

scenarios is evaluated using the fuzzy procedure as

described in Section 3.2 and shown in Fig. 7. The top
two fault candidates as a result, ranked by the con-

fidence index CI, are shown. For each test scenario, the

measurement sensor (Si) trends along with the similarity

index between the fault signatures of the candidate fault

(SISi
) and observed trends evaluated as outlined in

Section 3.1 are tabulated. The overall confidence CI is

taken to be the minimum (Section 3.1) over all SISi
for

the given fault candidate. For all the cases, it is seen that
the correct fault is identified with good resolution. In

fact, it can be seen that in all the cases except one, the

first and second closest faults are comfortably separated.

One case where the separation is not obvious is one of

differentiating between the inlet coolant temperature

increase and inlet temperature increase (Case 7, Table

8). One can see that the top two faults show the

confidence of 0.49 and 0.40, respectively. The reason

for such a behavior becomes clear upon looking at the

sensor responses for the T0 and Tc0 faults. Fig. 14 shows

the response of all the 4 measurement sensors for the

MedT�
0 and LowT�

c0 faults. Visually there is not much

difference in the sensor responses for both the cases. The

sensors respond in remarkably the same manner for

these two different faults i.e., the fault signatures are

close. Since the whole technique is data-driven i.e., no

fundamental understanding of the process is incorpo-

rated the performance is limited by the quality of the

knowledge-base. This as mentioned earlier is the issue of

good fault resolution (Section 3.2).

A poor fault resolution in this technique can thus

arise when trends exhibited are similar for all the

measured sensors across different faults thus leaving

little or no evidence for distinguishability. To overcome

this problem either additional discriminating sensors

need to be added or finer features which may help

distinguish the faults needs to be emphasized. Another

reason for such a performance could be high nonlinear-

ity in the trend manifestation across fault severity levels

Fig. 13. Examples of SI variation.
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which would invalidate the assumption of similar

patterns across fault levels. In such a case it would be

necessary to store additional fault patterns at those

levels i.e., create additional fault classes in Stage 1

knowledge base. The important point though in testing

all these cases is that we get excellent results for

situations that are different from the ones used for

knowledge-base generation in terms of the fault severity

levels.

Stage 2: Once the most likely fault is identified in

Stage 1, its magnitude estimation is carried out in Stage

2 as described in Section 3.1. For all the Cases 1�/8, we

carry the top-most identified fault F* to this stage. The

severity estimation method was outlined in Section 3.2

and shown in Fig. 9. The results are shown in Table 9. It

is seen that the simulated and the estimated fault

magnitudes are very close.

We also tested the robustness of the approach to

variations other than noise and fault severity level.

These results are summarized in Table 10. In case 9, we

have a large CA0 fault and a small T0 fault and in the

Case 10, we have a small CA0 fault and a large T0 fault.

In both the cases, we also let the second smaller fault

manifest itself 2 h after the original larger fault. It can be

seen from Table 10 that the approach is still quite robust

to such variations with the approach identifying clearly

the correct fault. Hence for secondary faults that have

very small magnitude, the fuzzy measure is robust and

addition of new rules is not necessary highlighting the

utility of the proposed method. However, when there are

multiple faults such as simultaneous occurrence of two

faults with large magnitudes (Case 11), then the

approach might not provide the correct diagnosis and

this is to be expected of any data based approach.

Table 8

Stage 1: testing of faults: Cases 5�/8

Case Simulated fault (10% noise) Sensor Si Trends TS
i

Fault 1st SIS
i

CI�/min[SIS
i
] Fault 2nd SIS

i
CI�/min[SIS

i
]

5 T0
� (�/30) V [A] MedT0

� 1.0 MedCA0
� 1.0

CA [G E D] 0.98 0.59

T [B D E] 0.72 0.58

Tc [E C D F] 0.62 0.62 0.43 0.43

6 T0
� (�/55) V [A] MedT0

� 1.0 MedCA0
� 1.0

CA [E B D] 0.48 0.48 0.31

T [E D] 0.74 0.25 0.25

Tc [D F E D] 0.72 0.32

7 Tc 0
� (�/30) V [A] MedTc0

� 1.0 MedT0
� 1.0

CA [G E D E D] 0.49 0.49 0.47

T [E C D G E B D F] 0.58 0.40 0.40

Tc [C D D G E D] 0.52 0.47

8 Tc 0
� (�/55) V [A] MedTc0

� 1.0 MedT0
� 1.0

CA [B D] 0.95 0.68

T [E D] 0.67 0.67 0.50

Tc [F] 1.00 0.15 0.15

Table 7

Stage 1: testing of faults: Cases 1�/4

Case Simulated fault (10% noise) Sensor Si Trends TS
i

Fault 1st SIS
i

CI�/min[SIS
i
] Fault 2nd SIS

i
CI�/min[SIS

i
]

1 F0
� (�/7) V [C D] MedF0

� 0.76 0.76 MedCA0
� 0.13 0.13

CA [D E] 0.79 0.32

T [F E B D E] 0.91 0.50

Tc [F F B D E] 0.88 0.51

2 F0
� (�/13) V [E] MedF0

� 0.54 0.54 None

CA [F E] 0.83

T [D F E] 0.72

Tc [B D G E] 0.81

3 CA0
� (�/0.07) V [A] MedCA0

� 1.0 MedT0
� 1.0

CA [D G D] 0.53 0.53 0.37

T [B D E] 0.96 0.50

Tc [B D E] 0.95 0.36 0.36

4 CA0
� (�/0.13) V [A] MedCA0

� 1.0 MedT0
� 1.0

CA [E] 1.0 0.38

T [F E] 0.64 0.64 0.47

Tc [D D G E] 0.71 0.24 0.24
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5. Conclusions

Process trend analysis is increasingly becoming an

useful tool to model and reason about process behavior.

Two important components of this approach are trend

extraction and mapping of trends to process states. In an

earlier paper (Dash, Rengaswamy, & Venkatasubrama-

nian, 2001) we presented a robust, efficient and simple

approach to extract sensor trends based on an interval-

halving technique. In this paper, we addressed the trend-

analysis based reasoning strategy i.e., establishing and

utilizing relationships between sensor trends and process

operations. We listed the main issues involved in this

task and discussed at length the issue of fuzziness in the

qualitative features represented by trends. We argued

Fig. 14. Similar sensor responses for MedT0
� and LowTc 0

�.

Table 9

Stage 2: testing of faults: level estimation

Case Fault Level Estimated level

1 F0
� 7 6.77

2 F0
� 13 10.2

3 CA0
� 0.07 0.0672

4 CA0
� 0.13 0.1052

5 T0
� 30 29.77

6 T0
� 55 41.19

7 Tc 0
� 30 27.02

8 Tc 0
� 55 41.25
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the use of fuzzy-logic to handle the uncertainty of these

temporal features for robust inferencing. Similarity

indices to perform fuzzy trend matches were then

defined. Our main contribution*/the two-stage strategy

towards trend-based inferencing was presented in detail.
Stage I dealt with only the qualitative aspect of the

trends and utilized multivariate inferencing to reason

about process state based on the trends. Stage II used

the quantitative information in a fuzzy manner (low,

medium and high) to estimate magnitude changes. An

exothermic reactor case study was used to demonstrate

the strategy extensively with various fault scenarios.

Although the application to fault diagnosis was illu-
strated, the method was developed generically and thus

can find use in any trend-based-reasoning process. The

technique performed well in the fault scenarios consid-

ered, estimating their severities correctly. However, as

was pointed out in Section 4.3, the method is data-

driven and so in the absence of other knowledge the

performance is limited by the quality of the knowledge-

base. In particular, fault-resolution depended on the
fault signatures’ ability to distinguish across faults*/in

case of identical signatures across all sensors, poor fault

resolution can be expected. It is necessary in these cases

to add discriminating sensors or augment the system

with additional knowledge about the process.

Future research is underway at integrating such data-

driven techniques with model-based methods to over-

come these shortcomings.
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i
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i
CI�/min[SIS

i
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9 /C�
AO(�0:07)T�

O (�3)/ V [A] Med/C�
AO/ 1.0 Med/T�

o / 1.0

CA [E C D D E G] 0.40 0.40 0.41

T [B D E D] 0.70 0.33 0.33

TC [E B D E A D] 0.54 0.39

10 /T�
O (�30)C�

AO(�0:001)/ V [A] Med/To�/ 1.0 Med/T�
co/ 1.0

CA [G E D] 0.60 0.60 0.45 0.45

T [B D D E] 0.71 0.45

TC [B D E] 0.72 0.53

11 /T�
O (�30)C�
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co/ 1.0 Med/T�

o / 1.0
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T [B D E E B D] 0.42 0.39 0.39

TC [B D E E B D] 0.44 0.39
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