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Address-Free Memory Access Based on Program
Syntax Correlation of Loads and Stores

Lu Peng, Jih-Kwon Peir, Qianrong Ma, and Konrad Lai

Abstract—An increasing cache latency in next-generation pro- benchmarks running on the out-of-order SimpleScalar model
cessors incurs profound performance impacts in spite of advanced [4] have shown that each cycle reduction of fheaccess delay
out-of-order execution techniques. One way to circumvent this improves the IPC by 5%—10% [18].

cache latency problem is to predict load values at the onset of In Fig. 1, a conceptual out-of-order execution pipeline is par-
pipeline execution by exploiting either the load value locality . . T ” . ; |
or the address correlation of stores and loads. In this paper, we ltitioned into two phases. First, an instruction is fetched, de-
describe a new load value speculation mechanism based on thecoded, renamed, and issued through ftbat endof pipeline
program syntax correlation of stores and loads. We establish a stages. Afterwards, the register operands are read and the in-
symbolic cache (SG)which is accessed in early pipeline stages gy ction is executed (including memory access) and committed
to achleye a zero-cycle load. Instgad of using memory addresses,through theback encbf pipeline stages. In order to be stall free
the SC is accessed by the encoding bits of base register ID plus i - : - ’
the displacement directly from the instruction code. Performance @ Source instruction must produce the data before its dependent
evaluations using SPEC95 and SPEC2000 integer programs onexecutions. In other words, a critical producer, when itis fetched
SimpleScalar simulation tools show that the SC achieves higher and issued at the same cycle as its dependent instructions, needs
prediction accuracy in comparison with other load value specula- , generate the result in the front end of the pipeline to avoid any
tion methods, especially when hardware resources are limited. -

stall of its dependents. Such a dependent stall-free memory load
instruction is called aero-cycldoad.

There have been several attempts to achieve a zero-cycle load
ODAY’S high-performance processor pipeline permitby predicting and speculating the load value [5], [11], [15], [16],
overlapping instruction execution to achieve more thd@d2], [25], [26] or the load address [2], [6], [9], [10] in the

one instruction per cycle (IPC) average execution rate. Thient-end of the processor pipeline. Both load value and load
available instruction-level parallelism (ILP) constrains thigddress predictions generally suffer a low prediction accuracy.
parallel execution because dependent instructions must waitfer address predictions, a lengthy cache access is still required
the data produced by the source instructions. The severitythat may delay the load dependents even if the predicted load
terms of execution delays, depends primarily on the speed thddress is correct.
the producer instruction can generate the needed data. In this paper, we exploit a new avenue to speculatively obtain
Memory load latency presents a classical pipeline bottlenettle load value in front-end stages of the pipeline. First, we ob-
even when the data is located in the first-level cadhg. Usu- serve that store-load and load-load correlations are established
ally, the load data fromL; is not ready until late stages ofin software and often displayed in the program syntax in the
the pipeline while the dependent instruction requires the ddem of a base register ID plus a displacement value. There-
at an earlier stage. This load-to-use delay exacerbates in fage, it is reasonable to use part of the store-load encoding bits
cent high-performance microprocessors in which multicycléase register 1D+ displacement) directly to capture such cor-
first-level caches become the norm [12], [14], [21], [23], [24]celations. Second, applications exhibit spatial locality among
As the cache size, clock frequency, and complexity of microamnemory references. Such locality can also be observed in the
chitecture continue to increase in next-generation processorpritgram syntax when nearby loads or stores differ only by a
is estimated that thB, cache accesses may consume two to fivgmall displacement value. Therefore, it is beneficial to establish
cycles [2]. This increasing load latency from caches will furstore-load dependences on a large block granularity to capture
ther lengthen the load-to-use delay and will have profound péhe spatial data reference locality.
formance impacts in spite of advanced out-of-order executionThe syntax correlation holds when the content of the base
techniques [2], [3], [18]. Simulations using SPEC2000 integéegister remains unchanged. This property exists in various
program constructs such as accessing global and local vari-

_ _ , _ables, saving/restoring registers during procedure/function
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Fig. 1. Processor pipeline and dependent stall-free point.

Based on these observations, we proposgrabolic cache  Memory renaming techniques establish dynamic dependence
(SC) An SC is a small separate data cache that is accessedatelations between stores and loads [25]. A separate storage
early front-end stages using certain encoding bits directly froebement called aalue file (VF)is used to save the correlated
memory instructions. The speculative data retrieved from tldata. When a memory-load instruction is fetched, an indirect ac-
SC can trigger the execution of dependent instructions to avaiess to the value file based on the PC of the load can retrieve the
any delays. Performance evaluations using SimpleScalar todéga without going through a lengthy cache access. Studies show
and SPEC95/SPEC2000 integer programs show that the averthgée there are many more loads that consume the value from the
prediction accuracy reaches over 70% using small SCs. This aame producer than those loads which repeat the same value or
curacy is generally higher than other data speculation methodddress from the previous instance of the same load. Therefore,
especially when hardware resources are limited for constructitigre is a better chance to obtain the correct load value by using
extra caches and tables. The remaining paper is organizedrasnory renaming through the VF rather than based on the load
follows. A few related work on hiding cache latency will bevalue/address locality. This approach, however, requires addi-
given in the next section. The motivations and important obseienal hardware to establish the correct dependence links among
vations for the proposed method will be described in Section I8tores and loads. The load value cannot be accurately predicted
This is followed by discussions of design and related issues tmfore such a correlation has established dynamically. A similar
establishing the SC in Section IV. In Section V, performanddea has been exploited to dynamically establish store-load [19]
evaluations of three-data speculation methods are given. Sewmd load-load [20pssociationsA small synonym filewhich
eral design parameters for the SC are also evaluated. Findtlyeps the correlated data can be indirected accessed by the PC
Section VI concludes the paper. of the load.

Recently, another early load address resolution technique for
deep-pipelined machines has been proposed [3]. The authors ob-
served that the addresses for certain types of memory loads, such

The most aggressive load value speculation is to predict the stack access, constant, or stride-based memory access, have
value at the onset of pipeline execution. A load-value historggular increment/decrement patterns. By tracking the registers
table is established and accessed using the program counter ((7%&J for this type of load, register updates can be computed at
of the load. This scheme allows loads bypassing caches cdire decode stage. As a consequence, the dependentload can start
pletely to achieve a zero-cycle load. A value prediction can Itiee address generation and cache access earlier after the load is
successful if the value is repeated from the previous executiordaficoded. Although nonspeculative, this approach is limited to
the load [15], [16], [26], or the load value is followed certain rememory loads with certain address patterns. Also, the lengthy
currence patterns [22]. However, the lack of a close correlatioache access is still required.
between the instruction address and the value of the load make$here have been other attempts to achieve fast cache accesses.
it difficult to achieve a high prediction accuracy [5], [11], [15],The real cache index bit prediction based on the base register
[16], [22], [26]. content enables parallel address translation and cache access

Another way to circumvent pipeline hazards caused by tfie3]. Due to small offset values, the zero-cycle load technique
cache latency is to predict the load address at the onset[Hfuses a simple carry-free adder for fast approximation of the
pipeline execution so that a cache access can start speculatil@dyl address. To avoid speculative address calculations, a spe-
without going through the normal decode, rename, and addre&d compiler-directed register is added in [7] to save the content
generation stages [2], [6], [9], [10]. Existing address predictionf the base register for the next load so that the load address can
methods exploit regular patterns such as stride-based addtessalculated in the decode stage. The SAM cache [17] uses the
patterns, and irregular but repeated patterns such as addrebass address and the offset separately to access the cache di-
for traversing link-based data structure. However, the difficultectly. Although all these techniques achieve fast cache access,
remains of predicting a significant portion (over 30% [2]) otheir impact in hiding the long cache latency on deep-pipelined
load addresses that do not fall into these two categories. Immécroarchitectures is rather limited.
recent proposal, dynamic dependence links were established@he proposed SC has several advantages over existing cache
between the instruction which updates a register to the instrlgtency hiding methods. First, the SC can handle any type of
tion where the register is used as the base register [8]. Ooads, address patterns, or special usages of base registers.
the updated value is available, the dependent load address $anond, unlike address predictions or register tracking, loads
be calculated early and more accurately. However, the lengtiiyough the SC can bypass the address generation and cache
cache access is required still, even with a correct address. access completely to achieve a zero-cycle load. This is similar

Il. RELATED WORK
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Disjoint * copy_disjunct (Disjunct * d) {
Disjunct * di;
if (d==NULL) return NULL;
dl = (Disjunct *) xalloc(sizeof (Disjunct))

*dl = *d;
dl->next = NULL;
dl->left = copy_connectors(d->left);

dl->right = copy_connectors (d->right);
return dl;

}

copy_disjunct:
addiu $sp,

sw $s1, BW

addu $s1,

sw $ra, R2¥

sw $s0, &R

beq $s1l, $0, <copy_disjunct>
addiu $a0, $0, 20

jal <xalloc>

addu $s0,

1w $vo,

1w - $vl,

1w $a0,

1w $al, | q
sw $vo, M NS
sw $vl, ¢ Register save/restore
sw $al, 8(

sw $al, |

lw $v0, f G o i
sSwW $vo, Access linked records
sw $0,

1w $ao0,

jal <copy_c

1w $ra, R4

1w $s1, XN ~\\»\

1w $s0, "\§§“\$\\\

addiu $sp,

jr $ra

Fig. 2. Example I: source and assembly codes of function copy-disjunct from Parser.

to the value prediction method. However, instead of being basedrhe store/load syntax correlation and reference locality can
upon the history of the load values, the SC captures store/ldalobserved in several program constructs.

syntax correlations with higher accuracy. Third, unlike the Register Save and Restore in Procedures and Functidss
memory renaming technique, where the store/load correlatighown in Fig. 2, store/load dependences can be established per-
is established dynamically by the hardware, the store/logsttly with a matching pair of the base registsp) and dis-
correlation is directly obtained from the instruction encodinglacement for saving and restoring register contents when the
bits to simplify the hardware requirement. In addition, the Sfenctioncopy_disjuncts invoked. Although the invocations of

can capture spatial locality among memory references. xalloc andcopy_connectorsnay change the value of tiap,
the original value in theopy_disjuncts restored after returning
[ll. SYNTAX CORRELATION OF MEMORY REFERENCES from the function calls.

The foundation of the SC is based on store-load and load-load\ccess Records in Linked Data Structuresthe same ex-
correlations from the program syntax in the form of a base regmple, the pointersd( d1) are used to copy and construct a
ister ID and a displacement value. This simple memory refdtew node in the target linked structure. Different records (also
ence syntax also exhibits spatial locality. In this section, we wiiointers in this case) in each node of the old and the new linked
provide two programming examples and describe qualitativedjructures are accessed using pointérgl. In the assembly
the existence of such syntax correlations and reference locafi§de, the two pointers are loaded in regist®, $s1 and are
in real programs. In Fig. 2, the source and the assembly cods€d as the base registers to access these records with small
of a simple functiorcopy_disjunct from Parsesf SPEC2000 Vvariations of the displacement value. The syntax correlations
are given. This function is invoked many times to build a ne@nd reference locality among these accesses are clearly demon-
copy of a disjunct list. The second example bsW is extractétfated in the assembly code.
from Bzip of SPEC2000 (Fig. 3). This function is also invoked Access Array VariablesSimilar store/load correlations are
multiple times to perform bit-stream I/Os. also observed in accessing array data structures in several
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INLINE void bsW(int32 n, UInt32 v){ #define bsNEEDW (nz) {
bsNEEDW (n) ; while (bsLive>=8) {
bsBuff|=(v<<(32-bsLive-n)); spec_putc ( (UChar)
bsLive+=n; (bsBuff>>24) ,bsStream) ;

} bsBuff<<=8;

(a): bsLive-=8;
bytesOut++;

bew: 1w ovo, RSN .-

addiu sp,

sw $s0, 16($sp)

addu $s0, $0, $a0

sw $s1, 20($sp)

addu $s1, $0, $al )

:Yti 258, 236385) Caller (SendMTFValues) of bsW:
bne $v0l .....

Ll: 1lbu $a0, 3 ‘\\‘\\\\\\\\: \\ lbu v0, 0O

;Zl \\\4\\\\\\\\ \& lb $a0, 0($v0)
. u a v
iw $vo, %‘\\i\\:i\:\i\\‘\\‘ ..... !
N
..... \\\\\\\\\\\\\ TN jal <bsW>
) beq $v1,$$0 <L1> lbu | $vl, 0($sl) |
L addiu O P
1w NEETARERNN (e):
subu \\‘\\\?\‘f\'\
v i
sllv $vo, $sl $v0 AN
or $vl, $vl, $vO .
addu \\.§\\\. Access global variables
o 4 R
1w Call
o L 20($sp) ‘ allee save/restore
1w $s0, 16($sp)
addiu  $sp, $sp, 32
jr $ra

Fig. 3. Example II: function bsW from Bzip. (a) Source code. (b) Assembly code. (c) Partial assembly code from caller SendMTFValues.

studied workload. For example, intensive array accesses hes been updated in thesW the original base address is re-
observed in several functions iBcc of SPEC2000. Nearby stored to keep the syntax correlation alive.
references to different elements of the same array with the same
base address provide syntax correlated stores and loads.
Access Global VariablesAs shown in Fig. 3, three global
variables bsBuff bsLive andbytesOutare accessed when the An SC is a small data cache which is addressed by the en-
functionbsWis invoked. Due to the limited registers, these varicoding content of load/store instructions. The SC can be ac-
ables are loaded/stored multiple times based on the same glatesised once loads/stores are fetched out of the instruction cache.
pointer $gp. The access of global variables exhibits both thas a result, pipeline stages involving register file access, ad-
syntax correlation and the spatial locality. dress generation/translation, and cache access can be bypassed.
Access Local Variable$n thebsW the callee-saved registersThe impact of pipeline performance using an SC is very sim-
$s0 and$s1 are freed up for local usages to avoid saving paraniar to that of using the VF in memory renaming techniques
eters of n and v from registe$a0 and$a1 to the local stack and [25], where the speculative load data is fetched out of the VF
retrieving them later for computations. However, in functionsdirectly through a store/load correlation table. In this paper,
that involve more complex computations and/or more tempae focus on the accuracy of load data speculation using the
rary local variables, it is inevitable to increase the local stack a8C. We omit discussions of integrating the SC into a pipeline
cesses using the stack poin$ep and/or the frame pointe¥s8  microarchitecture.
that also display strong syntax correlations and spatial locality. It is essential to properly extract the symbolic address from
Save/Restore Base Registefhiere are evidences that thehe encoding bits of load/store instructions to capture the syntax
syntax correlation is still hold even if the base register has beeorrelations. A typical memory instruction consists of an op-
updated between two memory accesses. This is due mainlyctale, a register source/destination, and a memory source/desti-
the fact that a base register may be freed up for other usages aatibon. Intuitively, we can use the memory source/destination to
the original base address is restored before the next memory fefm a 32-bit symbolic address as illustrated in Fig. 4. The least
erence. In Fig. 3, we also show a partial assembly code fronsignificant 16 bits are extracted from the displacement value,
callerSendMTFValuesf thebsW In this caller,$s1 is used as and the base register ID (5 bits) are inserted next to the displace-
a base register before calling theW After returning from the ment. Although simple, this approach suffers aliasing problems
bsW,$s1 continues to be used as a base register. Althdsgh because multiple memory addresses can be mapped to the same

IV. ESTABLISHING A SYmMBOLIC CACHE
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1w $3,12($sp)

31 2120 1615 0

Unused (11) BaseID (5) Displacement (16)

Symbolic Address = 0000 0000 0001 1101 0000 0000 0000 1100

Fig. 4. Extracting symbolic address from memory instructions.

(a) :

P-color = 010010 1w $3,12($sp)
31 27 26 2120 1615 0
Unused (5) | P-color (6) | BaseID (5) Displacement (16)

Symbolic Address = 0000 0010 01[01 1101] 0000 [0000 00]00 1100

:

(b) : Randomized Index = 011101

Fig. 5. (a) Adding procedure color to symbolic address. (b) Index randomization in accessing the SC.

symbolic address. In addition, this simple symbolic address for-
mation creates other access and alignment problems.

« Aliasing of Symbolic AddressVith the simple address A+ Procedure Coloring and Index Randomization

mapping in Fig. 4, a 32-bit memory address is representedn order to alleviate the stack access aliasing problem in dif-
by a 21-bit symbolic address. Therefore, multiple memorfgrent procedures, various procedure coloring techniques can be
addresses can be expressed by the same symbolic addiEssstructed. A straight-forward technique is to maintain a global
An obvious example can be found in stack accesses fayunter calledP-color. The P-color is incremented whenever a
local variables and for saving and restoring registe@ocedure call is encountered. It is decremented after returning
during procedure/function calls. Although accessing faeom a procedure. The P-color can be incremented contiguously
different stack frame in each procedure invocation, thie nested or recursive procedures before being decremented.
same stack pointgi$sp) and frame pointe($s8) with a  Stack accesses between a caller and its callees can be differ-
small range of displacement values are commonly usezhtiated by the P-color to avoid conflicts in the SC.
The contents in the SC for local variables and saved The P-color can be concatenated with the symbolic address
registers are likely overwritten in the callee procedurdsr stack accesses. The width of the P-color counter is flexible.
and cannot be reused after returning from the procedurégy. 5(a) illustrates the symbolic address after adding a 6-bit
» Uneven SC Index Distributiort is well known that dis- P-color. It is important to know that the P-color is only applied
placement values in memory references are unevenly dis-stack accesses which usey and$s8 as the base register.
tributed with a high percentage of “0” and a few other cor®@ther memory accesses do not add the P-color to allow sharing
stants. Using a portion of the high-order displacement bits global variables among different procedures or functions.
as the index to the SC may potentially generate heavy con-An uneven distribution of the index bits extracted directly
flict misses. from the displacement value has a potential to create heavy con-
» Word/Byte AlignmeniThe most difficult problem lies in flict misses in the SC. This problem comes from the fact that
the difference of the line boundary between a symbolligh-order displacement bits are often all zeros and can be dealt
and aL; cache lines. This alignment problem is due to theith by a simple randomization technique. Instead of extracting
fact that offset bits of a cache line are not always the sarimelex bits from the symbolic address directly, randomized index
between the symbolic and the real addresses. Itis esserttitd can be formed bgxclusive-ORinghe original index bits
to properly align the data layout in the symbolic cachffom the displacement with the bits from the base register ID
according to the symbolic address to capture the spatéald the P-color as illustrated in Fig. 5(b). In this example, it is
locality of memory references. assumed that the SC has 64 sets with 64-B line size. The six
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Ll Cache Line Unfitted Data

010 001 000

Alignment

111 110 101

Unfilled Data SC Cache Line

Fig. 6. Data alignment in symbolic cache.

index bits are obtained Isxclusive-ORingormal index bits in V. PERFORMANCEEVALUATION
position 6 to 11 with the base register ID and partial P-color bits

. - Performance evaluations of three load value speculation
starting at position 16-21.

methods are given including the last value and stride-based

value prediction (VP), the memory renaming (MR), and the

B. Word/Byte Alignment proposed symbolic cache (SC). Our primary focus is to com-

pare the prediction accuracy among these three mechanisms.

One remaining issue is the data alignment between the SC &dgsimulations are carried out on tf&im-Savenodel of Sim-

the L, data cache. The symbolic address within a cache line, i¢Scalar. Twelve integer programSp, Li, M88k, Perlfrom

the last few offset bits, may not be the same as the offset bitsitEC95 andBzip, Gce, Gzip, Mcf, Parser, Twolf, Vortex, Vpr

the real address. In order to exploit spatial reference localiffom SPEC2000 are used. Version 2.7.2.3 ssbig-na-sstrix-gcc

the cache line fetched from; needs to be rearranged in theeOmpiler with options: (-funroll-loops -O2) is used to generate

SC such that the data layout can be aligned with the symbdite Pinary code. For each workload, we skip the first 900

address. The basic alignment algorithm works as follows. whEjllion instructions, use the next 100 mllllon |nstrL_Jct|ons_to_

a memory request misses the SC, the target cache line is fetc ggm up the caches .a!"d tgbles, then collect simulation statistics

from the memory hierarchy and loaded into the SC. The tar §m the next 500 million instructions.

byte/wqrd is placed in the SC according to offset bi_ts of thg pata Alignment

symbolic address. For example, assume there are eight acces

S . . . .
units in a cache line as shown in Fig. 6. The symbolic OffsetiéWe first investigate and evaluate different alignment granu-

the target unit is 010 while the offset of the real address is 1 'i‘.”ty' Table I shows _matches of the Ieast—S|gn|f|ca_nt tW.O bits
tween the symbolic and the real addresses with different

In this case, the target data 101 is loaded into unit 010 in the SC. L .
The remaining units are loaded according to the location of tm}emory access granularity in the simulated programs. On the
erage, 87.4%, 3.2%, and 9.4% of memory references are

. . . \
target unit. Ther(_a are thus two important aspects to Cor]S'dergocrcessing word, half-word, and byte respectively. Mismatches
a proper data alignment.

of the two bits for the three access granularities are about 0%,

1) Granularity of Data AlignmentDepending on memory 0.5%, and 4.5%. The word access is always aligned at the word
access granularity, it is conceivable that the data aligheundary for both the real and the symbolic addresses. On the
ment can be performed at byte, half-word, word, oether hand, the word alignment creates 5% of mismatches for
double-word level. The byte-level alignment can adalf-word and byte accesses. Since the word alignment reduces
commodate accesses by other granularity with tixtra valid bits significantly, we will simulate both byte and
expense of maintaining more valid bits for the alignmen¥ord alignments and show their impact on the SC accuracy.
information. With regards to the line fill on SC misses, preliminary studies

2) Handling Underflow/Overflow Data Since the line Show that the option of filling the entire SC line by fetching

boundaries of the SC and tlig caches may be different potentially more than on&; cache lines provides very limited
only a partial line can be filled on each SC miss. ipenefit. Moreover, to place the entire targetline into the SC

addition, there is excessive data from the tafgetache on each miss does not benefit the accuracy much either. There-

line that cannot fit into the requested line location in théore, pnly thg simple_ partial SC line fill by d_ropping any unfitted
SC. The simplest and most natural solution is to only fi ata is considered in subsequent evaluations.

a partial SC line and drop the unfitted data. Other optiors Sensitivity of P-Color and Index Randomization

include fetching two adjacerit; lines for each requested
SC line, and/or to search and place the overfloywdata
into the correct second SC line.

Table Il shows the accuracy of load-value speculation using
a 4 KB SC with the word-alignment and 0, 2, 4, P-color bits.
In general, we observe an average improvement from 68.8% to

Performance evaluation on these design options will be givg0.4% by adding a 2-bit P-color. A few benchmark programs
in the next section. It is important to keep the SC design simmfiow no improvement at all with the simple P-color mechanism.
since the primary goal of establishing the SC is to provide After examining dynamic function calls in these programs, we
zero-cycle load. found that there are very few nested calls and the program ex-



320 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 3, JUNE 2003

TABLE |
MATCHING OF THE TWO LEAST-SIGNIFICANT ADDRESSBITS BETWEEN REAL AND SYMBOLIC ADDRESSES FORACCESSINGWORD, HALF-WORD, AND BYTE
Word Hword Byte Total
match | unmatch | match | unmatch | match | unmatch | match | unmatch
Go 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
Li 88.7 0.0 0.0 0.0 9.7 1.6 98.4 1.6
M88k 93.1 0.0 0.3 0.0 6.6 0.0 100.0 0.0
Perl 87.6 0.0 0.0 0.0 11.7 0.8 99.2 0.8
Bzip 60.1 0.0 5.0 2.6 9.6 22.8 74.6 25.4
Gcee 91.9 0.0 5.8 0.1 1.4 0.9 99.1 0.9
Gzip 60.7 0.0 13.7 3.0 10.4 12.3 84.8 15.2
Mcf 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
Parser 99.2 0.0 0.0 0.0 0.2 0.5 99.5 0.5
Twolf 71.0 0.0 5.0 0.3 9.5 14.2 85.5 14.5
Vortex 96.7 0.0 2.3 0.0 0.4 0.6 99.4 0.6
Vpr 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
Average 87.4 0.0 2.7 0.5 4.9 4.5 95.0 5.0
TABLE I

LOAD ACCURACY USING THE SC WITH/WITHOUT THE P-COLOR

Go Li M88ksim Perl Bzip Gce Gzip Mcf Parser Twolf Vortex Vpr Average
No-color 45.9 72.4 90.0 75.4 51.9 83.9 66.4 62.2 62.6 74.4 70.7 70.1 68.8
2-bit 46.3 73.8 91.5 79.6 52.9 85.3 66.4 62.4 65.8 74.0 74.5 72.5 70.4
4-bit 46.3 73.8 91.5 79.6 52.9 85.3 66.4 62.4 65.8 74.0 74.5 72.5 70.4

TABLE Il
LOAD ACCURACY USING THE SC WITH INDEX RANDOMIZATION

Go Li M88k Perl Bzip Gee Gzip Mcf Parser Twolf Vortex Vpr Average
4-way 43.0 69.3 86.2 71.2 50.1 81.9 66.4 57.2 56.4 70.8 63.6 62.8 64.9
Fully-asso 47.5 76.9 92.3 80.0 52.9 85.6 66.4 62.5 68.5 74.2 76.4 72.5 71.3
Random 46.3 73.8 91.5 79.6 52.9 85.3 66.4 62.4 65.8 74.0 74.5 72.5 70.4

ecution tends not to frequently traverse back and forth amohgse register ID. Although higher set associativities increase the
multiple procedure levels. For instance, in Gzip, about 98% oépacity in each set to hold more lines for each base register,
the calls are labeled at level 6. We also observe that therdrisquent updates of base registers wipe out the corresponding
no benefit in increasing the number of bits in the P-color. Witborrelated data in the SC.
more P-colors, more levels of procedure invocation can be dif-
ferentiated. However, analysis of application programs reve%ls c
that perfectly-nested or deeply-recursive procedures that benefit
with more P-colors rarely exist. The actual execution path nor- The accuracies of three load value speculation mechanisms
mally traverses among a few levels of procedures. Also, dueéte evaluated. Both byte and word alignments for placing a line
a small SC, the data from ancient ancestors is difficult to hold the SC are considered. Also, index randomizations and a 2-bit
anyway. P-color are applied to improve the load accuracy. For a fair com-
The benefit of index randomization is more evident iparison, we simulate the three methods using comparable hard-
Table lll, in which the accuracies of three 4 KB SC configware with respect to the extra storage requirement to build ad-
urations are displayed. By randomizing the index, a 4-wajjtional tables and caches.
set-associative SC can achieve the accuracy approaching tdhe VP scheme establishes a value history table to remember
that of a fully-associative SC. On the other hand, without thtke recent value of each load. For matching the PC of a load,
process, it degrades the accuracy of the 4-way design frgmoper tags are maintained in the value history table. In ad-
70.4% to 64.9%. dition, an increment value is needed in each entry to accom-
These results suggest that the effective working set betwaandate a stride-based predictor. The MR scheme uses a VF to
base register updates is very small. Once the content of a blasep store/load correlated values for later accesses. In addition,
register changes, the old data in SC based on the same basetvegextra tables are needed. The store/load cache (SLC) saves
ister becomes stale. Because the original index bits are likglginters to the VF. The SLC is addressed by the PCs of loads
to be all zeros (Fig. 5), stores and loads using the same base stores with tags for matching the correct PC for indirect ac-
register may locate in very few sets even with index randomizeesses to the VF. The store-address cache (SAC) also records
tions. Given the fact that the randomized 4-way SC achieveswinters to the VF. The SAC is accessed by load/store addresses
accuracy comparable to that of a fully-associative SC, the folar establishing load/store correlations. Again, address tags are
lines in each set are enough to hold the working set for eanbcessary to make a correct correlation. The SC is simply a data

omparison of Three-Data Speculation Methods
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TABLE IV

Six CONFIGURATIONS FORACCURACY COMPARISONS
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MR
Configurations VP VF SLC SAC SC

(word) (word) (link) (link) (line/size)
1 128 64 128 128 16/1KB
2 256 128 256 256 32/2KB
3 512 256 512 512 64/4KB
4 1024 512 1024 1024 128/8KB
5 2048 1024 2048 2048 256/16KB
6 4096 2048 4096 4096 512/32KB
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Fig. 7. Average accuracies of three-data speculation methods.

cache addressed by the symbolic address. There is no extra handacy. The accuracy improvement is leveling off with larger
ware except for a small tag array in which each tag along witlalue history tables. This confirms a poor correlation between
a few valid bits is associated with a 64-B symbolic cache linethe load value and its instruction address.

We consider six configurations for accuracy comparisons asThe byte alignment does not improve the accuracy much. For
shown in Table IV. The hardware requirement is represented &yl KB SC, for instance, the byte alignment improves the av-
the total number of entries in the respective tables and cachasge accuracy of the word alignment from 70.4%—71.1%. As
Because of the additional tag arrays, the storage requirementdioown in Table I, there is very little or no difference between
the VP and the MR are actually about 40%—50% and 10%-198ste or word alignment for a majority of the programs. The two
more than that of the SC in each configuration. Note that in thisograms that benefit the byte alignment the mostBaip and
first-cut estimation, extra control logic is not considered. Gzipbecause of their high percentage of subword accesses and

Fig. 7 plots the average accuracy curves based on the twalismatches of the least-significant 2 bits between real and sym-
integer programs for the three-data speculation methods. Gbaolic addresses.
erally speaking, the SC has the highest accuracy, especially witfThe SC size plays a minor role in providing accurate load
small configurations. For example, more than 70% of the loadalues. Again, this is due to the fact that the working set between
can obtained correct values from a small 4 KB SC. These resuisse register updates is very small. Since the randomized SC
demonstrate the existence of store/load syntax correlations amaex is still mapped to very few sets for each base register,
spatial locality that can be captured effectively by small SCicreasing the SC size (i.e. the number of sets) does notimprove
The MR scheme, on the other hand, requires eight times of the capacity for loads using a specific base register.
hardware storage to reach about 67% accuracy. The MR schemidow considering the third configuration with a 4 KB SC, the
performs poorly with small configurations primarily because adiverage prediction accuracies are 55.0%, 56.6%, 70.4%, and
misses to the small SLC/SAC for establishing correct store/lo@d.1% for the VP, the MR, and the SC with word alignment
correlations. In addition, the correlation must be established {&C-word) and the SC with byte alignment (SC-byte), respec-
fore a correct value can be obtained. The MR scheme shatively, as shown in Fig. 8. Among the twelve integer programs,
more improvement when the configuration size increases. WM88k, Per| andGcc show very good syntax correlations with
bigger SLC/SAC, data dependence links can be built more pmrer 80% of prediction accuracies, whilg Gzip, Twolf, Vortex
cisely than those approximated by the symbolic address. HoandVpr show reasonable accuracies over 7@o6, Bzip, Mcf
ever, the SC still maintains an edge by capturing the spatial lnd Parser, on the other hand, have poor accuracy, especially
cality. The last/stride value predictor generally has the worst d&r Go with an accuracy only about 47%. Recall that in order
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Fig. 8. Accuracy of three-data speculation methods for individual programs (based on configuration 3).
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Fig. 9. Correct/incorrect load value speculations with respect to different base register groups.

to hold the syntax correlation, the base register content mustaad$sp + $s8, each represents 20.5%, 26.4%, 11.3%, 18.2%,
main unchanged between two correlative memory instructiormd 22.5% of the total loads, respectively. (Note there is about
We found out inGo, about 64% of the loads are executed using of the loads using other registers.) The accuracies of the five
a newly updated base register. On the other hand, only 22% drade register groups are 29%, 73%, 63%, 98%, and 94%. As ex-
24%, respectively, for the loads (BccandM88k are executed pected, it is highly accurate to access global variables and local
right after their base registers have updated. More detailed arsifick frames. For other loads, the compiler first pigksand
ysis with respect to the base register updates will be given in the as temporary registers to hold base addresses for memory
next Section V-D. accesses. The base address is often computed or loaded from
The SC scheme does not perform well against the other tw@mory for an indirect access right before the load that results
schemes und@zipandParser. In Bzip a main functiorfull GtU  in anincorrect values from the SC. Theregisters, which show
that finds matches of character strings, has shown good valueti@her accuracy, are also used for passing parameters to callee
cality and good dynamic store/load correlations established functions. We observe that many functions have memory ad-
the MR scheme. However, the SC handles this function poodyesses (pointers) as parameters that are passing througih the
because the base addresses of the matching strings are catmisters. In each callee function, theregisters are frequently
lated right before loading characters from the two strings. ésed as a base without any modification. We also found in Gcc
similar behavior has also found Parser. that certain memory addresses are passing through several func-
In Fig. 9, we break down correct and incorrect load valugon levels using th&a registers. Thus, memory loads based on
speculations using the SC with respect to the base register IBs.can potentially keep the correlations alive through several
We separate base registers into five gro$ps$a, $s + $t, $gp  function levels.
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Fig. 10. Load accuracy and distribution with respect to the distance to the last base register update.

D. Accuracy Regarding Base Register Update also from some local variable accesses. An average accuracy of
_ 98.4% is obtained for these long-distance loads.

_ The syn'Fax correlation holds when the content of the base re_gCompiIer optimization techniques may be applied to improve

iter remans Enfhar;%ed from the Iaf]t men;]ory reference With, sy ntax correlations of stores/loads. For example, we observe

the same symbolic address. Fig. 10 shows the average acCUfgey o ameters are sometimes passed to the callee through the

of all the Ioads with respect to the d'St?‘me to f[he last updatec ller's stack frame. Accessing the parameters before an update

the base register. For example, the distance is equal to 1 f%f%e frame pointer may keep the correlation alive. Further dis-

load when the base register of the load is used for the first tirEﬁssions in this direction is out of the scope of this paper
as a base register after an update to the register. Similarly, the '

distance is equal to 2 if a register is used for the second time
as a base register for either load or store after the content of the
register has updated. The distances of 20 or longer are repre® new load data-speculation method, based on instruction
sented by a Sing|e data point_ In generaL the accuracy goesSMﬁtaX correlations of stores and loads, has been introduced in
with the distance due to the locality of references. A cold midBis paper. Instead of establishing the store/load correlation dy-
is encountered when the distance is equal to 1 unless the laf@gpically at runtime, the proposed method establishes a small
update did not change the content of the base register from 8y&bolic cache to capture existing syntax correlations and
previous use of the same base register. memory reference locality. The symbolic cache is addressed
A few observations can be made from the figure. First, whdly the encoding content of store/load instructions to enable
the distance is 3 or longer, the speculative load data from tf@t@ accesses in the front end of the processor pipeline to
SC is very accurate with an average accuracy about 98%. THirorten load-to-use latency. Performance evaluation of SPEC
indicates a very strong reference locality based on the symbdfieger programs has demonstrated that the proposed method
addresses of nearby stores and loads. can achieve an accuracy over 70% with a small 4-kB symbolic
Second, instead of all cold misses, the average accurac{d&he- With compiler helps to reduce base register updates and
36% when the distance is equal to 1. This accuracy comes fréfnP€tter utilize displacement values, further improvement of
restoring base register content before the load. Unfortunatelyg SC accuracy may still be possible.
significant portion (39%) of the loads use a base register at the
first time after its updates. With only 36% of accuracy, these
loads produce 25% inaccurate data with respect to the totalThe authors would like to thank the anonymous referees for
loads. Therefore, the distance-1 loads are the major factor f@bviding very helpful comments.
the overall accuracy. For example, in the two high-accuracy
programs,Gcc and M88k, only 22% and 24% of loads are REFERENCES
distance-1 with an accuracy of 46% and 68%, respectlvely. Or"[1] T. Austin and G. Sohi, “Zero-cycle loads: microarchitecture support for

the other handGo has 64% of loads are distance-1 with a poor ~ ~ reducing load latency,” iProc. 28th Int. Symp. Microarchitectuyr&nn

accuracy of 18%. Arbor, MI, Dec. 1995, pp. 82-92.
. . [2] M. Bekerman, S. Jourdan, R. Ronen, G. Kirshenboim, L. Rappoport, A.
Third, about 24% of the loads have distances of 20 or longer. Yoaz, and U. Weiser, “Correlated load-address predictor®tae. 26th
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