
Performance Analysis of Multimedia Retrieval
Workloads Running on Multicores

Yunping Lu, Xin Wang, Weihua Zhang, Haibo Chen, Senior Member, IEEE, Lu Peng, and Wenyun Zhao

Abstract—Multimedia data has become a major data type in the Big Data era. The explosive volume of such data and the increasing

real-time requirement to retrieve useful information from it have put significant pressure in processing such data in a timely fashion.

However, while prior efforts have done in-depth analysis on architectural characteristics of traditional multimedia processing and

text-based retrieval algorithms, there has been no systematic study towards the emerging multimedia retrieval applications. This may

impede the architecture design and system evaluation of these applications. In this paper, we make the first attempt to construct a

multimedia retrieval benchmark suite (MMRBench for short) that can be used to evaluate architectures and system designs for

multimedia retrieval applications. MMRBench covers modern multimedia retrieval algorithms with different versions (sequential, parallel

and distributed). MMRBench also provides a series of flexible interfaces as well as certain automation tools. With such a flexible design,

the algorithms in MMRBench can be used both in individual kernel-level evaluation and in integration to form a complete multimedia

data retrieval infrastructure for full system evaluation. Furthermore, we use performance counters to analyze a set of architecture

characteristics of multimedia retrieval algorithms in MMRBench, including the characteristics of core level, chip level and inter-chip

level. The study shows that micro-architecture design in current processor is inefficient (both in performance and power) for these

multimedia retrieval workloads, especially in core resources and memory systems. We then derive some insights into the architecture

design and system evaluation for such multimedia retrieval algorithms.

Index Terms—Multimedia retrieval, benchmarks, architectural characteristics

Ç

1 INTRODUCTION

OUR society has entered into the Big Data era, with data
volume increasing at exponential rate. Among various

data types, multimedia data, such as images and videos,
have become one of the major types. Video data occupies 64
percent of the customer Internet traffic in 2014 and was pre-
dicted to increase to an 80 percent occupation by 2019 [1].
Among them, more than 400-hour worth new videos were
uploaded to YouTube every minute in 2015 [2]. In the mean-
time, Facebook hosts more than 240 billion of user-uploaded
images [3].

To extract useful information from such data, multimedia
retrieval applications are emerging to process such multime-
dia data, including video recommendation [4], travel guid-
ance [5] and content-based TV copyright identification [6].

To guarantee retrieval accuracy, typical applications usually
extract and utilize hundreds of high-dimensional features
to represent an image or a video frame. Thus, in contrast
to traditional text-based retrieval applications, multimedia
retrieval applications are not only more data-intensive but
also more computation-intensive, which lead to significant
pressure on real-time processing. For example, SURF [7] is
one of the most widely-used image or video retrieval algo-
rithms [8]. It can only achieve the process speed of a handful
images or video frames per second on general-purpose pro-
cessors. Although these applications are becomingmore and
more popular, there are currently no systematic benchmark
suites to understand their architectural characteristics, which
are critical to design and implement optimizing architectures
and systems for such workloads. Most related benchmarks
are still text-based [9], [10] or target tradition multimedia
processing [11], [12].

As a first attempt, we design and implement a multime-
dia retrieval benchmark suite (MMRBench) for architecture
design and system evaluation, by selecting representative
algorithms in the multimedia retrieval fields. We also imple-
ment multiple programming versions for these algorithms,
such as sequential, parallel and distributed versions. To sat-
isfy varied evaluation requirements, we provide automation
tools for adjusting the parameters and generating input.
Furthermore, we provide a basic framework including all
the major processing stages of multimedia retrieval applica-
tions as well as the data transfer interfaces between different
processing stages. In this framework, the algorithms in dif-
ferent stages can be easily replaced with different versions
or other algorithms. The parameters and inputs can also be
adjusted based on the provided tools. Therefore, users can

� Y. Lu and W. Zhao are with the Shanghai Key Laboratory of Data Science,
Fudan University, Shanghai, China and the School of Computer Science,
Fudan University, Shanghai, China and Parallel Processing Institute, Fudan
University, Shanghai, China.
E-mail: luyping@sina.com, wyzhao@fudan.edu.cn.

� X. Wang and W. Zhang are with the Software School, Fudan University,
Shanghai, China and the Shanghai Key Laboratory of Data Science, Fudan
University, Shanghai, China and Parallel Processing Institute, Fudan
University, Shanghai, China.
E-mail: xin_wang@fudan.edu.cn, whzhang.fd@gmail.com.

� H. Chen is with the Institute of Parallel and Distributed Systems, Shang-
hai Jiaotong University, Shanghai, China. E-mail: haibochen@sjtu.edu.cn.

� L. Peng is with the Division of Electrical and Computer Engineering, Loui-
siana State University, Baton Rouge, LA. E-mail: lpeng@lsu.edu.

Manuscript received 10 Sept. 2015; revised 5 Jan. 2016; accepted 10 Feb. 2016.
Date of publication 23 Feb. 2016; date of current version 12 Oct. 2016.
Recommended for acceptance by A. Dubey.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2016.2533606

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2016 3323

1045-9219� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

flexibly evaluate their designs by using different algorithms
in MMRBench individually or in integration for a full work-
flow system evaluation.

Furthermore, we use performance counters to study a set
of architectural characteristics of these algorithms, including
the characteristics of core level, chip level and inter-chip level.
We observe obvious mismatch between the requirement in
multimedia retrieval workloads and current predominant
processor architecture. We conclude the characteristics of
these workloads in three levels. In the core level, the programs
have the following characteristics: (1) complex branch behav-
ior and small instruction working set, (2) lower instruction-
level parallelism (ILP) and memory-level parallelism (MLP),
(3) insensitive to floating-point operations; in the chip level,
they (1) require modestly sized L2 cachewhich acts efficiently
in data fetch and relatively small data working set in last level
cache, (2) have abundant thread level parallelism and critical
imbalance problem; and in inter-chip level, they have low off-
chip memory bandwidth utilization. Based on the analysis,
some insights into architecture design are derived for these
algorithms.

In summary, this paper makes the following
contributions:

� Design and implementation of a multimedia
retrieval benchmark suite, including state-of-the-art
algorithms, different implementation versions, auto-
mation tools and a flexible system framework. Such
a design enables the algorithms to be used individu-
ally or combined together to form an integrated sys-
tem for evaluation.

� Detailed analysis on the architectural characteristics
of multimedia retrieval algorithms compared to con-
ventional benchmark suites and predominant pro-
cessor architecture.

� Architecture design insights. Based on the above
performance evaluation, we provided architect-
ure design insights on the application level, the core
level, the chip level, and the inter-chip level. These
can be used to design efficient architecture for multi-
media retrieval programs in the future.

The paper is organized as follows. Section 2 explains the
motivation of this paper and Section 3 discusses the related
work. Then Section 4 gives an overview of MMRBench and
Section 5 presents the design of the basic framework. Section 6
analyzes the architectural characteristics of MMRBench.
Finally, Section 7 concludes the paper.

2 MOTIVATION

Currently, the transistor threshold and voltage scale prob-
lems limit the further improvements on single-core proces-
sor performance, both in compute density and power
efficiency. As more andmore emerging workloads dominate
in cloud environments, researchers now begin to optimize
server systems to meet the performance requirement and
power constraints by removing unnecessary components
such as graphic chips and using more green power supply.
However, modern processor architectures are still inefficient
in space and power for cloud workloads such as web
search [13]. Considering multimedia retrieval workloads
are more data-intensive and computation-intensive than

traditional text-based retrieval workloads, we aim to investi-
gate whether there is a mismatch between the characteristics
of these workloads and the predominant commodity pro-
cessors. Further, we intend to analyze the system and archi-
tecture characteristics for emerging multimedia retrieval
applications, with the goal of gaining insight into designing
efficient processor architecture and systems in this area. To
achieve such goals, our workload characterization should
meet the following targets.

� Representative system behavior: A multimedia retrieval
workflow typically consists of three stages: feature
extraction, feature matching and spatial verification.
Algorithms in these stages handle different compu-
tation hence have varied characteristics. Therefore,
one should include popular algorithms from all
these stages to understand the characteristics of mul-
timedia retrieval systems.

� State-of-the-art techniques: Varied algorithms and
techniques may apply to the three aforementioned
workload stages. For example, feature extraction
applications may include both global and local fea-
ture based algorithms. However, since low precision
in matching (more than 30 percent error rate [14]),
global feature based algorithms have been rarely
used in real applications. As a result, state-of-the-art
algorithms and techniques should be used in system
evaluation and characterization.

� Applicable to cloud computing: As cloud and datacen-
ter computing are gaining increasing momentum,
the proposed multimedia retrieval workloads should
be able to extend to cloud and datacenter level in
computation, storage and communication intensity.
In addition, varied input sets are desirable to show
an application’s characteristics at different system
scales.

� Flexible infrastructure: We envision an integrated
evaluation framework with flexible computation ker-
nel modules. As such, the framework can be applica-
ble to various system designs and experimental
environments, e.g., from multi-threading in a multi-
core processor design to distributed implementation
at the datacenter level.

3 RELATED WORK

In this section, we discuss several existing benchmark suites
and prior research on the evaluation of performance and
power efficiency of modern processors.

3.1 Benchmark Suites

In order to compare the multimedia retrieval algorithms
with other applications, we choose representative bench-
mark suites designed for different targets for comparison.

� Traditional benchmarks: SPEC [15] has designed several
benchmark suites, such as SPECCPU, to satisfy differ-
ent evaluation scenarios. Splash2 [16] and PAR-
SEC [17] are two most popular benchmarks for
parallel system evaluation. Parboil [18] is another par-
allel benchmark suite focusing on GPGPU-like

3324 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2016

architecture. However, emergingmultimedia retrieval
algorithms are not considered in such suites.

� Multimedia benchmarks: Traditional multimedia bench-
mark suites include ALPBench [11], MiBench [12], SD-
VBS [19] and MEVBench [20]. Still, they mainly focus
on traditional multimedia decode and encode process-
ing.1 Although both of traditional multimedia algo-
rithms and information retrieval ones process
multimedia data, the major processing steps are
largely different. Multimedia retrieval algorithms
focus on how to extract and analyze these multimedia
data.

� Cloud benchmarks: Benchmark suites aiming to cloud
environment are also becoming popular. Intel
researchers published MapReduce based HiBench
[10]. CloudSuite [9] is designed to cover the emerging
scale-outworkloads in cloud environments. However,
most of these benchmarks target text-based work-
loads. The characteristics of multimedia-based infor-
mation retrieval applications are not reflected.

3.2 Architecture Evaluation

In this section we review prior work on performance evalu-
ation and architecture design.

� Performance evaluation: Most of performance evalua-
tions on efficiency of modern processors are based
on traditional commercial applications. For scientific
applications, Tuck and Tullsen indicates that the
SMT mechanism can notably improve performance
[22]. Nikos et al. characterize a commercial database
server running on emerging chip multiprocessor
technologies and find the major bottleneck is data
cache stalls [23]. Nan et al. propose a model to evalu-
ate the earth system simulation framework [24]. Xu
et al. discuss the performance modeling of Sparse
Matrix-Vector Multiplication (SpMV) on GPUs [25].
Xue et al. simulate the performance of atmospheric
dynamics on supercomputers [26]. To catch up with
specific infrastructure trends such as datacenters,
Ranganathan et al. discuss the implications for archi-
tecture research and suggesting some high-level
challenges for the community to address [27].

� Architecture design: As multi-core and many-core sys-
tems becoming a mainstream, many researches
advocate new processor structure design for them.
In [28], Hardvellas et al. show that server chips will
not scale beyond a few tens of cores such that we
cannot afford to power. They then propose use sim-
pler cores and reduce on-die caches to overcome the
initial power barrier. Other efforts such as [29] and
[30] study optimal cache and DRAM structure for

given applications. For emerging cloud workloads,
Kozyrakis et al. [31] provide a characterization on
large-scale online services workloads and give some
insights into such cloud server designs. In Cloud-
Suite [9], [32], Ferdman et al. identify the key micro-
architecture needs for scale-out workloads and
design efficient scale-out processors. Although there
are many architecture optimizations for different
workloads, none of them consider the characteristics
of multimedia retrieval applications in their designs.

4 MMRBENCH OVERVIEW

In this section, we first describe the generic workflow of
multimedia retrieval applications. We then describe our
methodology to select multimedia retrieval algorithms for
this work, followed by a brief overview of such algorithms.

4.1 Multimedia Retrieval Workflow

Multimedia retrieval applications generally consist of three
stages: feature extraction, feature matching and spatial
verification.

� Feature extraction: In this stage, feature points are
extracted to represent an image or a video frame. Fea-
ture extraction algorithms can be divided into two
classes: Global Feature Based Algorithms (GFBAs)
and Local Feature Based Algorithms (LFBAs). GFBAs
use one unique feature to represent an image, while
LFBAs adopt hundreds of points to guarantee the
results are insensitive to various transformations,
such as scaling, rotation and illumination. Due to
GFBAs’ low retrieval precision [14], LFBAs are
widely used in real-world applications. Therefore,
we focus on LFBAs in this work.

� Feature matching: The way to judge whether two
images are similar is to check whether they have
enough similar feature points. The similarity metric
applies the Euclidean distance. Due to the huge
amount of image processing data, most multimedia
retrieval applications apply approximate algorithms
in their matching stages to avoid excessive computa-
tion. When the matched points between two images
exceed a threshold, these two images will be consid-
ered as matched. Therefore, floating-point precision
in feature matching is important. We apply this
insight in our analysis in Section 6.

� Spatial verification: The matching results are usually
polluted by false matching. To filter out these mis-
matched feature points, spatial verification algo-
rithms are adopted to refine the matching results by
checking the spatial relationship of the matched fea-
ture pairs from the above stage.

Fig. 1 illustrates the aforementioned workflow with two
images of Mona Lisa as an example. In this example, we
assume the feature points of the image on the left are trained
in a backend database and the image on the right will be
used to query the database. Many more images will be proc-
essed in a real world scenario. In the feature extraction
stage, the feature points in images are extracted. The red
points in the images represent the positions of extracted

1. Although multimedia retrieval algorithms are considered in SD-
VBS [19], only two feature extraction algorithms are included in its
design, while most algorithms in it are traditional multimedia algo-
rithms. Ferret [21] is a toolkit to construct content-based similarity
search systems. Therefore, it is not designed for performance evalua-
tion. No state-of-the-art algorithms are included in it and no architec-
tural characteristics are analyzed in it. Moreover, it is global feature-
based, which has been shown to have low retrieval precision [14].
Therefore, as we described in Section 4.1, local feature-based algorithms
are widely used in current real-world applications.

LU ETAL.: PERFORMANCE ANALYSIS OF MULTIMEDIA RETRIEVALWORKLOADS RUNNING ON MULTICORES 3325

feature points. In the feature matching stage, each feature
point is compared with those in the database. If the number
of matching points exceeds a certain threshold, e.g., 20, they
will be considered as similar. Note that, multimedia
retrieval applications typically do not achieve a total match
among all points between two images due to varied image
transformations. As a result, a threshold is generally set.
More matching points over the threshold would not affect
the result. Lastly, spatial verification algorithms are adopted
to filter out false matches, e.g., the points on the frame in the
right image of Mona Lisa in Fig. 1. Based on the final results
of this stage, the matching images are ranked based on their
numbers of matching points.

4.2 Workloads

Each processing stage of multimedia retrieval applications
contains various algorithms. To choose the most representa-
tive ones, we conduct a survey on the top conferences
related to multimedia retrieval applications, such as IJCV,
CVPR and ACM Multimedia, over the last five years. If an
algorithm has been cited more than certain threshold (we
set the threshold to 10 in this work), it is considered the state
of the art and is selected in this work. As a result, we select
eight multimedia retrieval algorithms. The chosen algo-
rithms are shown in Table 1 (T:train/Q:query). Here we
also find that SIFT and SURF are the most popular algo-
rithms in feature extraction stage and VOC-Tree is applied
with the most frequently in feature matching stage.

� SIFT (Scale Invariant Feature Transform) [33] is an algo-
rithm to detect local features in images. SIFT detects
features (or points) which are invariant to scaling,
rotation, illumination and viewpoint. It consists of a
detection stage and a description stage. In the detec-
tion stage, scale invariant points are detected. In the
description stage, each point is assigned with one or
more orientations to achieve rotation invariance.

Then, a 128-dimension descriptor vector is computed
for each point.

� SURF (Speeded-Up Robust Features) [7] is another scale,
illumination and rotation-invariant algorithm. The
workflow of SURF also contains detection stage and
description stage. However, SURF has slightly differ-
ent ways of detecting feature points. It uses a special
structure “integral image” instead of Gaussian pyra-
mid in SIFT, which enables it to process faster while
keeping similar distinctiveness of feature points.

� MSER (Maximally Stable Extremal Regions) [34] is a fea-
ture detection algorithm. Instead of extracting feature
points, MSER extracts co-variant regions from an
image, called MSERs. MSER has the advantage that
features can be reliably matched regardless of the
appearance of the surroundings of the actual region.

� HOG (Histogram of Oriented Gradients) [35] is an algo-
rithm used for object detection. The technique counts
occurrences of gradient orientation in localized parts
of an image. It is computed on a dense grid of uni-
formly spaced cells and uses overlapping local con-
trast normalization to improve accuracy. Generally,
HOG is used for pedestrian detection.

� KD-Tree [34] is originally designed for exacting near-
est neighbor search in multi-dimensional data. In its
training stage, multiple randomized trees are created
by selecting the top N dimensions with the greatest
variance. In the querying stage, it uses best bin to
find a set of approximate solutions.

� VOC-Tree (Vocabulary Tree) [36] defines a hierarchical
quantization built by recursively doing k-means
clustering. In its training stage, the training data are
processed through defining k cluster centers and
recursively defining quantization cells by splitting
each quantization cell into k new parts. The tree is
constructed level by level, up to some maximum
number. In the querying stage, each feature point
traverses through the tree by comparing itself to
each of k cluster centers and choosing the closest one
until it reaches the leaf node.

� LSH (Locality Sensitive Hashing) [37], [38] is a method
of performing probabilistic dimension reduction of
high dimensional data. When training data, it hashes
the items so that similar items can be more probable
to be mapped to the same buckets than dissimilar
data. It has two parameters: the width parameter k
and the number of hash tables L. In the querying
step, it hashes the query point q into each of the L
hash tables. In each hash table, it iterates over k hash
functions. It retrieves the points hashed into the
same buckets as q.

Fig. 1. Example of three-stage (a, b and c) multimedia retrieval.

TABLE 1
Overview of the MMRBench

Application Function Input

SIFT Feature Extraction Image/Video Frame
SURF Feature Extraction Image/Video Frame
MSER Feature Extraction Image/Video Frame
HOG Feature Extraction Image/Video Frame
KD-Tree(T/Q) Feature Matching Feature Points
VOC-Tree(T/Q) Feature Matching Feature Points
LSH(T/Q) Feature Matching Feature Points
RANSAC Spatial Verification Feature Points

3326 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2016

� RANSAC (RANdom SAmple Consensus) [33], [39] aims
to filter “outliers” out of “inliers” in a data set. Inliers
are consistent with the estimated (spatial) model and
can be explained by some set of model parameters
while outliers do not fit the model. The retrieval pre-
cision under the spatial consistency can be improved
with RANSAC.

5 METHODOLOGY

This section present our analysis methodology in infrastruc-
ture, metrics, tools and experimental setup.

5.1 Infrastructure

Our goal is to build an evaluation infrastructure that is con-
venient for users to construct test suites for their varied
evaluation needs, e.g., architecture designs for datacenters
or system evaluations on multi-core architectures. To
achieve this goal, we have provided multiple versions for
the selected algorithms, which includes sequential version,
multi-threaded version for multi-core architecture and
Hadoop (map-reduce) version for large-scale distributed
environment. Most of these algorithms have multiple ver-
sions of open-source implementation. We select the sequen-
tial implementation whose paper has most citations to
ensure that the algorithms in our benchmark suite are popu-
lar and represent state-of-the-art. The parallel and map-
reduce version of these workloads are all implemented
from scratch by ourselves.

In addition, we provide both multiple input sets and
automation tools that facilitate input data generation and
control parameter adjustment. To make it convenient for
users to construct a real multimedia retrieval system, we
also provide a framework with an interface API between
retrieval stages. Fig. 2 illustrates our multimedia retrieval
evaluation framework, of which we describe the features in
the following.

� Framework: The framework includes the computation
modules for all the stages in the workflow and the
data transfer interfaces between the stages. Each algo-
rithmmodule can be replacedwith another one in the
same stage. The intermediate result of an algorithm

can be transformed into a format that can be proc-
essed by the next stage through the API interface.

� Input sets: In our current design, we assemble three
input sets: small, medium (standard) and large. The
small input set is provided by Mikolajczyk [40] that
contains 48 images and has been widely used in vari-
ous multimedia retrieval applications. The medium
data size is the Oxford Building dataset [41] with
thousands of images. For large size input, we collect
twenty thousands of images of various categories
from the Internet. Furthermore, users can generate
new input set with the provided automation tool.

� Multiple versions: We provide three versions for each
chosen algorithm: sequential version, multi-threaded
version and map-reduce version. All versions are
implemented in C/C++ under Linux environment.
The multi-threaded version is implemented based
on Linux POSIX API and map-reduce version is
based on Apache Hadoop MapReduce framework.
The parallelism granularity is at image-level in this
implementation.

� Automation tools: While evaluating their systems,
users may want to generate their own input data for
the algorithms and prefer adjusting the parameters
or thresholds in the algorithms. To ease the burden
on the users, we provide corresponding automation
tools for generating input data and adjusting param-
eters for the algorithms.

Putting it together, it is fairly flexible for the users to con-
struct an evaluation framework and satisfy their varied
needs in inputs, control parameters or execution environ-
ments. For example, the users can select different versions
of an algorithm for their preferred evaluations, such as the
parallel version for multi-core design or the Hadoop version
for large-scale datacenter environment. They can also adjust
parameters or generate their own input. Furthermore, with
the provided framework and interface, it is fairly easy for
the users to construct a real multimedia retrieval system to
evaluate the overall performance or a special-purpose mul-
timedia retrieval applications running in a different envi-
ronment. Even after the system is constructed, it is also
easier for the users to adjust parameters in the system with
the interface and the automation tools provided in our
framework. They can also choose to use these algorithms
with either higher performance or more accurate to replace
the one in the existing system.

Based on this framework, we have implemented an
image retrieval system, which is mainly based on SURF fea-
ture. The database scale has reached tens of millions images
and our image retrieval system can achieve a throughput of
about five-thousand image queries per second in the feature
matching stage on a multi-core server.

5.2 Experimental Methodology

In this section, we explain the methodologies used for our
architectural analysis including measurement metrics, tools
and experimental setup.

5.2.1 Measurement Metrics and Tools

For architectural characteristic analysis, we use Intel
VTune [42] which enables hardware-based sampling by

Fig. 2. Infrastructure for multimedia retrieval workloads.

LU ETAL.: PERFORMANCE ANALYSIS OF MULTIMEDIA RETRIEVALWORKLOADS RUNNING ON MULTICORES 3327

utilizing processor performance counters. We collect the fol-
lowing metrics through VTune: execution time breakdown,
L1 I-cache/L2 instruction misses, IPC (Instruction per
Cycle), MPC (Memory Access per Cycle), L2 cache hit rate
(data access) and off-chip bandwidth. For the execution
time breakdown, we classify the execution time into commit
cycle and stall cycle, which indicate whether at least one
instruction is committed or not during one cycle. We also
profile the memory cycles in order to expose the impact of
memory access in a program. Here the memory cycles are
computed as the sum of off-core requests outstanding cycles
and DTLB miss duration. We note that memory cycles com-
puted in this way is an approximate value because stalls
caused by memory accesses will be overlapped in the pipe-
line execution. This is also the reason that why we do not
take L1/L2 cache access time into consideration since we
assume that they are already entirely overlapped.

To gain more architectural insights at the chip level, we
further evaluate several factors, which will influence tran-
sistor resource allocation among different hardware compo-
nents, such as processor core and last level cache (LLC). In
our current evaluation, the factors include computation
intensity, LLC cache misses and load balance. To measure
computation intensity, we deploy a metric that indicates
how many instructions are committed over a byte of input
data, called Instructions per Byte (IPB).2 It measures the
computational resources needed when processing unit size
input. To collect the cache misses of LLC, Cachegrind in
Valgrind Tool Suite [43] is used to do cache profiling for
cache sensitivity analysis. It performs detailed simulation of
caches and identifies cache misses. We use Cachegrind to
get the number of last-level cache (LLC) misses per 1,000
instructions in different LLC size configurations. For load
balance, the Coefficient of Variations (CoV) of the execution
time among different threads is used to indicate the level of
load imbalance in the system.

5.2.2 Statistical Methods

We employ Principle Component Analysis (PCA) to calculate
the data variance through reducing high-dimensional data
into a low-dimensional form. Raw data are normalized
before PCA is applied to generate a low-dimensional for-
mat. To compare the similarity among the programs, Cluster
Analysis is employed to group the programs based on the
PCA data. The intuition is to cluster programs with similar
characteristics into the same category. In our current imple-
mentation, we use Matlab to perform PCA transformation
and SimPoint [44] to do K-means clustering.

5.2.3 Experimental Setup

Our experimental environment includes a 3.4 GHz 4-core
Intel i7 system with 8 GB main memory. Each core employs
4-wide out-of-order execution with a three-level cache hier-
archy. L1 and L2 cache are private to each core and their size
are 32 KB (split L1 I/D) and 256 KB respectively. LLC (L3)

reaches 8 MB which is shared among all cores. The system
runs Linux 2.6.32 kernel with GCC compiler (GNU C/C++
Compiler) 4.3.2 with -O2 option. For the load balance analy-
sis, we use a 1.87 GHz 16-core Intel Xeon system with 24 GB
1,333 MHz main memory to run the parallel version. The
input set for feature extraction applications, except HOG, is
provided by Mikolajczyk [40], which have been widely used
as a standard dataset to evaluate different feature extraction
algorithms. We use the INRIA Person Dataset [45] for HOG
since it specializes in human detection. For feature matching
and spatial verification algorithms, we use feature points
extracted from the Oxford Building dataset [41], which is
often adopted to evaluate retrieval systems.

6 CHARACTERISTIC ANALYSIS

In this section, we first compare themultimedia retrieval algo-
rithms with traditional multimedia benchmarks and study
the sensitivity to input size of these algorithms. Then we ana-
lyze the architectural characteristics of multimedia retrieval
algorithms at core level, chip level and out-of-chip level. Fur-
thermore, we give some insights into architecture design and
system evaluation for thesemultimedia retrieval algorithms.

6.1 Application Level Characteristics

In this section, we compare the architectural characteristics
of multimedia retrieval algorithms with traditional multi-
media benchmarks and study the sensitivity to input size.
The following evaluations are based on sequential version
of algorithms if not mentioned specifically.

6.1.1 Comparison to Traditional MM Benchmarks

First, we compare the similarity between the algorithms in
MMRBench and traditional multimedia applications. Since
only feature extraction algorithms use images or frames as the
input, we only compare themwith traditional ones. For tradi-
tional multimedia algorithms, we adopt programs in ALP-
Bench [11], which covers the traditional multimedia
algorithms, such as video and image processing applications.
We use 29 architecture-independent metrics used in [46],
which include instruction mix, branch information, depen-
dence distance, locality metrics, and generate the PCA data.
Based on the PCA data, we group the programs with cluster-
ing analysis. The clustering results are shown in Table 2.

As the data shows, the characteristics of feature extraction
algorithms are different from those of traditional multimedia
ones. SIFT, SURF, and HOG are clustered into different
groups from traditional multimedia programs. Furthermore,
almost all the programs in ALPBench are clustered into the
same group, which means that they have similar behavior
based on the overall architectural characteristics. To see

TABLE 2
Clustering Results

Cluster NO. Program

Cluster 0 MPGdec, Sphinx, FaceRec (Train)
FaceRec (Recognize), RayTrace, MSER

Cluster 1 MPGenc
Cluster 2 SIFT, HOG
Cluster 3 SURF

2. The notion of Instructions per Byte relates to the traditional Bytes
per Flop or Bytes/FLOP ratio in the High Performance Computing
(HPC) field. We generalize FLOPs to Instructions so that the less contri-
bution of floating-point operations in multimedia retrieval applications
(Sections 4 and 6) is taken into account.

3328 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2016

which characteristics lead to the difference, we further study
the characteristics of their branch, ILP and data locality.

Note that PCA results have decreasing variance, with the
first principle component (PC) containing the most informa-
tion and the last one containing the least information. Here
we retain top two PCs containingmore than 90 percent infor-
mation. In Fig. 3, PC1 measures taken branch information,
i.e., a more positive value along PC1 indicates higher branch
taken rate and PC2 reflects forward branch information, i.e.,
a more positive value along PC2 means higher forward
branch rate. For ILP data shown in Fig. 4, higher PC1 indi-
cates higher percentage of dependence distance between 2 to
8 while higher PC2 indicates higher percentage of depen-
dence distance equal to 1. Higher percentage of short depen-
dence distance may imply lower potential ILP in a program.
For locality data shown in Fig. 5, higher PC1 indicates lower
temporal locality. Lower PC2 indicates more benefit from
larger cache line size. We observe that SURF has notably dif-
ferent characteristics in branch and ILP when compared to
others. As the locality data shows, both SIFT and HOG are
positioned in higher PC1 far from than others, which means
they have much worse temporal data locality. Above three
characteristics are themajor factors that lead to the difference
between the characteristics of feature extraction algorithms
and those of traditional multimedia programs.

Insights: From the analysis above, we can conclude that
the feature extraction algorithms have different characteris-
tics from traditional multimedia benchmarks in many sig-
nificant architectural aspects.

6.1.2 Input Sensitivity Analysis

The input size has great influence on the execution time of
an application. When the application is used as the input of
a simulation, especial full-system multi-core simulation, a
large input may lead to too long simulation time to com-
plete. However, if architecture characteristics of an applica-
tion do not depend on the input size, a small input size
would be enough, which can save a lot of evaluation time.
To provide some advices on MMRBench-based evaluation,
we measure the input sensitivity in this section.

To evaluate the input sensitivity, we collect the 29-
dimensional architecture-independent metrics for all algo-
rithms in MMRBench under the input size from 1 to 20 MB.
We then analyze them through PCA and clustering. The
results are shown in Fig. 6 and Table 3. An application is
assigned as an invariant type if its metrics gathered under
different input sizes are clustered into the same group. A
sensitive type means these metrics are totally clustered into
different groups along with input changes. If the metrics of
several neighboring input sizes are grouped into the same
cluster, the application exhibits moderate change.

As the data shows, feature extraction algorithms exhibit
invariant behavior with different input size. This is because
they are image-based and process image one by one. Thus,
their characteristics will change little when input size scales
up. Besides, the other algorithms are sensitive to the input
size. Through checking the data, we find data locality con-
tribute the most of the changes. Especially for KD-
Tree (Query) and LSH (Query), they are most sensitive
because their irregular data access pattern will be greatly
influenced when the input size changes. For example, KD-
Tree (Query) searches each point through a large tree and
then randomly accesses a logged index array whose size is
equal to the number of points trained to build the tree.
When the input size increases, more part of the tree and the
index array will be accessed in a data-dependent way,
which leads to worse locality.

Insights: Based on our analysis, a small input size is suffi-
cient for feature extraction algorithms for evaluation. In con-
trast, the factors of input size should not be ignored when
using the other algorithms for evaluation.

6.2 Core Level Analysis

As the basic component, the complexity of a processor core
has a great influence on performance, power and chip size.
In this section, we analyze the core level characteristics
including pipeline execution efficiency, instruction fetch

Fig. 3. PCA space built from branch characteristics.

Fig. 4. PCA space built from ILP.

Fig. 5. PCA space built from data locality.

Fig. 6. Cluster result.

LU ETAL.: PERFORMANCE ANALYSIS OF MULTIMEDIA RETRIEVALWORKLOADS RUNNING ON MULTICORES 3329

efficiency, ILP and MLP, and the sensitivity of floating
pointing units.

6.2.1 Pipeline Execution Efficiency

The execution cycles of a pipeline can be classified into com-
mit cycles and stall ones. To check the pipeline efficiency,
we collect the data of the percentage of stall cycles out of
total execution cycles and the stall cycles caused by long
latency memory accesses.3 To make a comparison with tra-
ditional and cloud workloads, we also test PARSEC [17],
ALPBench [11] and Scale-Out workloads [9].

As the results in Fig. 7 show, multimedia retrieval work-
loads suffer from high stalls (near 40 percent). It is similar to
PARSEC and scale-out workloads but higher than traditional
multimedia workloads (ALPBench). We find that the stall
cycles occupy a higher percentage in MMRBench than tradi-
tional multimedia benchmarks, and memory stalls are not as
severe as other benchmark suites. Although some multime-
dia retrieval workloads (e.g., MSER) have even higher mem-
ory cycles, most of them (e.g., SIFT and RANSAC) are
mainly stalled due to computation process instead of mem-
ory operations.

Since branchmisprediction can cause costly pipeline flush,
we analyze the branch behavior of these multimedia retrieval
workloads with three prediction strategies. The strategies
include one-bit, two-bit saturating counter, and two-level
adaptive predictor. The two-level adaptive predictor records
the history of the last 8 occurrences of a branch (local history
table) and has a global history table of 256 entries.

The results are shown in Fig. 8. As the data shows, most of
multimedia retrieval algorithms have higher branch mispre-
diction rate (more than 20 percent) under simple prediction
strategy, such as one-bit and two-bit saturating counters, due

to their special workflow. A high misprediction rate also
exists in computation-intensive benchmarks like PARSEC
and traditional multimedia workloads like ALPBench. In
SURF, SIFT and HOG, a majority of computation happens in
generating descriptors, which consists of many multi-level
yet short loops (loop boundaries relate to the boundaries of
sub-blocks in an image). For MSER, KD-Tree, VOC-Tree and
RANSAC algorithms, there are a lot of data-dependent condi-
tional branches, such as path selection in tree traversal or con-
dition check of neighbor node status. These data-dependent
branches make it challenging to achieve a better branch pre-
diction. The only exception is LSH with low misprediction
rate in both training and query stage. This is because its main
loop traverses points sequentially and few conditional
branches take place. In contrast, the prediction accuracy
improves greatly with a two-level predictor. Yet, a further
improvement would be necessary, since many of them still
have over 10 percentmisprediction rate.

Insights: High branch misprediction rate indicates that
high stalls found in multimedia retrieval workloads are
caused by misprediction penalty besides long-latency mem-
ory access. To mitigate this issue, a core design should
embed sophisticated branch prediction mechanism, which
can predict complex branch patterns in these workloads
more efficiently.

6.2.2 Instruction Fetch Efficiency

Instruction fetch misses can also influence the efficiency of
pipeline execution. To investigate instruction fetch effi-
ciency, we collect the data of misses when fetching instruc-
tions from L1-I cache and L2 cache. As the results in Fig. 9
show, most of multimedia retrieval workloads have lower
L1 instruction miss rate than other three workloads. Even

TABLE 3
Input Sensitivity

Type Application

Invariant SURF, SIFT, MSER, HOG
Moderate KD-Tree(T), LSH(T), VOC-Tree(T)

VOC-Tree(Q), RANSAC
Sensitive KD-Tree(Q), LSH(Q)

Fig. 7. Execution time breakdown and memory stall cycles.

Fig. 8. Branch misprediction rate with one-bit, two-bit saturating counter,
and two-level adaptive predictor.

Fig. 9. Misses per K-instructions in L1-I cache and L2 cache.

3. As mentioned in section 5.2.1, these memory cycles are the results
of an approximate measurement and may be overlapped by pipeline
execution. Therefore, the memory cycles may be higher than the stalled
ones.

3330 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2016

the highest one (VOC-Tree(Q)) is still lower than the max
one in the PARSEC benchmark. All multimedia retrieval
workloads rarely suffered from L2 instruction misses,
which is very costly due to high latency when fetching
instructions from it. In contrast, especially for scale-out
workloads, their instruction working sets considerably
exceed the L1-I cache capacity, even exceed the L2 cache
capacity [9]. We note that this is mainly because most of the
execution logic in multimedia retrieval workloads locates in
several parts of core code sections, which fit well in L1
instruction cache.

Insights: The instruction working set of multimedia
retrieval workloads fit well in current modern processor
architecture, which is unlike some scale-out workloads [9].
It means we do not need to further increase the cache size to
capture the whole instruction working set, which can save
the on-chip real-estate and make the architecture design
more power efficient.

6.2.3 ILP and MLP

In order to perform more operations simultaneously per
cycle, modern processor architectures generally employ
out-of-order technique to execute independent instructions
in parallel. More than one instruction can be fetched,
decoded and committed in one cycle. This strategy can
speedup program’s execution theoretically as long as less
instruction dependency exists. In Fig. 10, we present the
IPC values of multimedia retrieval workloads as well as
those of PARSEC and ALPBench.

To evaluate the impact of memory stalls, we also provide
the IPC without memory stall cycles. We observe that

almost all multimedia retrieval workloads behave low IPC
value (near 1.0). Even the highest one (VOC-Tree(T)) is still
relatively low, with an IPC value 2.0 out of max value 4.0 (a
popular configuration in modern processors). Furthermore,
to exclude the memory stall cycles in the pipeline, we
deduct the memory stalls from the execution pipeline, and
then calculate IPC without memory stalls. The results show
that the IPC without memory stalls (2.7) is higher than the
IPC of the whole application; yet the average value is still
lower than PARSEC, ALPBench, and scale-out workloads.
This indicates that the instruction-level parallelism of multi-
media retrieval applications is lower than traditional bench-
marks, therefore the instruction issue window of pipeline
could be scaled down.

Similar to exploiting ILP, out-of-order execution also ena-
bles memory-level parallelism (MLP) by performing multi-
ple independent memory accesses in a time. This level of
parallelism is also important to many programs because it
can effectively hide long-latency memory accesses by over-
lapping them. To measure the potential MLP that a program
can reach, we count the total number of last-level cache
access and off-chip memory access (MPC) in these work-
loads. This is because LLC and off-chip memory access
have much longer latency which should be hidden by MLP.
The higher the MPC, the more beneficial the MLP can gain.
The results are shown in Fig. 11. As such data shows, most
of the multimedia retrieval workloads have lower MPC
than parallel, scale-out and traditional multimedia work-
loads. This implies that they have lower potential MLP. On
the other hand, we note that MSER and KD-Tree(Q/T) have
very high MPC, which indicates they are more likely to
achieve high MLP. There are two reasons for the high MPC
in KD-Tree training and query. First, both the training and
query phase of KD-Tree consist of large portions of frequent
and irregular tree traversal and node accesses. Both of those
operations would incur irregular and intensive memory
accesses. Second, in training phase, multiple randomized
trees are created by selecting the top N dimensions with the
greatest variance to construct a KD-Tree forest, which
makes the memory accesses more scattered than VocTree
searching which only contains a single tree.

On the other hand, the cache misses typically come into
bursts thus the overall MPC cannot reflect the potential bene-
fit that could be achieved by overlapping the memory
accesses. In order to evaluate the impact of memory-level par-
allelism, we calculate the memory stall cycles divided by the

Fig. 10. Instruction committed per cycle in program. In order to evaluate
the impact of memory stalls, we also provide the IPC without memory
stall cycles, as shown by the black column in the figure.

Fig. 11. Memory access per cycle in program.

Fig. 12. Memory stall cycles divided by the number of LLC misses. The
lower the value, the higher memory-level parallelism.

LU ETAL.: PERFORMANCE ANALYSIS OF MULTIMEDIA RETRIEVALWORKLOADS RUNNING ON MULTICORES 3331

number of LLC misses, as shown in Fig. 12. The lower the
ratio, themore latency is hidden bymemory-level parallelism.
The average value is comparatively high since the core fre-
quency is nearly three times as high as memory frequency.
From the results we can observe that the average value in
MMRBench is lower than those in PARSEC, ALPBench, and
scale-out workloads, which implies the LLC miss penalty of
multimedia retrieval algorithms can be effectively hidden by
memory-level parallelism.

Insights: Both of ILP and MLP techniques need hardware
support including large instruction window, multiple
decoders and execution units, large load-store queue and
reorder buffer. The above results show that multimedia
retrieval workloads have comparatively lower instruction-
level parallelism than traditional benchmarks. Therefore, the
instruction issue window of pipeline could be scaled down to
simplify the CPU core structure. The overall MLP is lower
than traditional benchmarks yet overlapping memory access
operations is still an effective technique to hide the cachemiss
penalty. Here we do not considermuch aboutMSER and KD-
Tree(T/Q) since they are not as popular as others in real appli-
cations asmentioned in Section 4.2.

6.2.4 Sensitivity of Floating Point Operation

Floating point operations (FLOPs) exist in various algo-
rithms. However, Floating Point Unit (FPU) is not only com-
plex but also power-hungry compared to fixed-point units.
Therefore, if FLOPs can be replaced by fixed-point opera-
tions, a hardware design can be simplified and more
power-efficient. To analyze FLOP sensitivity, we first collect
the percentage of FLOPs in each algorithm. As the data in
Fig. 13 shows, KD-Tree (Q) and VOC-Tree (Q) virtually do
not have any FLOPs, while others do. The result demon-
strates that MMRBench has lower FLOP percentage than
other benchmark suites like PARSEC and ALPBench, indi-
cating that the FLOP intensity of MMRBench is lower.

To evaluate the FLOPs sensitivity of these algorithms, we
convert all the FLOPs in each algorithm to fixed point oper-
ations: N bits are used to indicate the fraction part of the
original float point number, and (32-N) bits are used to indi-
cate the integral part. The differences between the results of
fixed point version and those of float point versions are then
used to evaluate the impact. We apply two metrics in the
evaluation. The first one is error rate (ER), which is the devi-
ation percentage between the outputs of two implementa-
tions of an algorithm. The second one is error impact
rate (EIR), which indicates the difference in the final match-
ing results between two implementations of an algorithm.

Note that matching points will have to be verified in the
Spatial Verification stage for the final results (Section 4).

We test different Ns and evaluate their impact. We only
present the best results (lowest error rate) with certain N as
shown in Table 4 for brevity. We observe that the deviation
of such a transformation is very small for these multimedia
retrieval algorithms and the largest error rate is less than
4 percent. Indeed, it is more important to obtain acceptable
final results than intermediate ones for multimedia retrieval
applications. Interestingly, there exists virtually no differ-
ence (zeros in Table 4) between these two implementations
in the EIR results. Therefore, the deviation from fixed-point
transformation can be mostly ignored for these applications.

The reason for the low FLOP sensitivity is that the calcu-
lation result of floating-point number of multimedia
retrieval algorithms is mostly used for approximate com-
parison. For example, in VocTree training and query, each
extracted feature is represented by a high-dimensional vec-
tor. A large portion of floating point operations are included
in the calculation of Euclidean distance between the feature
vector and descendent nodes of the current node. However,
the program only needs to find the descendent node with
the smallest distance, thus most floating-point results are
only intermediate and their precision has little impact on
the final result. Other algorithms in feature matching stage
also have similar characteristics. Therefore, the precision of
FLOPs in MMRBench has limited impact on the final match-
ing result. However, such characteristics do not exist in
applications where FLOP precision influences the validity
of final results to a large degree, such as the MPEG encoding
and decoding algorithms in ALPBench.

Insights: FPU ismore complex than fixed-point ALUwhen
considering area requirement and power consumption. In
many scientific-related applications, FPU is very important
since the precision of FLOPs is vital to their final results. In
multimedia retrieval workloads, the average percentage of
FLOPs is lower than other benchmarks, and more than half
of the algorithms have extremely low (<5 percent) percent-
age of FLOPs. Besides, the precision of FLOP has little impact
on the final result. Therefore, when designing hardware for
multimedia retrieval applications, FPUs can be partially
replaced by fixed-point units to achieve more cost efficiency
andmake the core structures even simpler.

6.3 Chip Level Analysis

To understand the characteristics of chip level, we analyze
different factors which will influence the resource allocation
among different hardware components, such as core and

Fig. 13. Floating-point instruction ratio.

TABLE 4
Floating-Point Operation Sensitivity

Application ER Best Fractional Bits EIR

SIFT 1.78% 22 0
SURF 2.28% 13 0
MSER 0% 0 0
HOG 0% 15 0
KD-Tree 3.44% 0 0
VOC-Tree 0% 0 0
LSH 0.01% 19 0
RANSAC 1.64% 7 0

3332 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2016

LLC. We first analyze computation intensity of these multi-
media retrieval workloads. Moreover, we also analyze the
cache behavior and the CoV of execution time among differ-
ent threads when the multi-threaded versions are executed.
Such analysis will provide some insights into what should be
paidmore attention to when designing a chip for those multi-
media retrieval algorithms. Note that, we do not show the
results of computation intensity and load balance for scale-
out workloads here. The major reason is most of scale-out
applications are service-oriented programs. It is difficult to
define input size and compare the CoV of execution time of
different threads for themwhen they process client requests.

6.3.1 Computation Intensity

To evaluate the computation intensity, We use IPB as the
metric as discussed in Section 5. The higher IPB, the more
computation resource an algorithm may need to process the
input. We collect the IPB results of each algorithm in
MMRBench and those in PARSEC and ALPBench. The data
in Fig. 14 shows that the average IPB of MMRBench is
higher, i.e., more computational intensive, than those of
PARSEC and ALPBench.

The reason behind such results is because these multime-
dia retrieval algorithms are designed to guarantee certain
retrieval accuracy. To achieve such a goal, some complex
transformations, such as resizing or cropping of the input
images or frames, are included in these algorithms. More-
over, they generally extract hundreds of feature points to
represent an image or a video frame. Each feature point will
be described as a multi-dimensional vector, e.g., 64 or 128.
In the feature matching stage, each point needs to traverse
to the backend database. The algorithms then determine
whether there are matching pints through computing the
distance (usually Euclidean distance).

Insights: These multimedia retrieval algorithms are facing
a great challenge in real-time analysis especially with the
explosion of image and video data in Cloud or Internet com-
puting environment. For example, only about three images
can be processed through the sequential version of SIFT or
SURF on an Intel i7 processor according to our experiment.
Thus, special accelerating scheme, such as more computa-
tional cores, should be explored for these multimedia
retrieval algorithms.

6.3.2 Cache Sensitivity

Fig. 15 shows the L2 hit rate in these workloads. We observe
that most of multimedia retrieval workloads have similar

behavior in L2 cache data accesses (hit rate >= 50%) when
compared to PARSEC and higher L2 hit rate than ALPBench
and scale-out workloads. This means modestly-sized L2
cache mitigates most of the L1 cache miss. Fig. 16 shows the
LLC misses per 1,000 instruction for these algorithms in dif-
ferent LLC sizes (from 1/32 to 32MB). Formost of these algo-
rithms, while the LLC size is increasing, the number of LLC
misses will start to decrease rapidly, and finally reach a rela-
tive stable level. Such a trend suggests the existence of work-
ing set. When the LLC changes from a size smaller than
working set to a size larger than working set, the number of
LLC misses will decrease a lot suddenly and will not
decrease significantly with a even larger LLC, since the LLC
has been already enough to accommodate the working set.
We can see most of these algorithms have relative small
working sets. When we shrink the LLC size to 1/8 MB, most
of these workloads still have low LLCmisses.

On the other hand, the LLC miss rate of KD-Tree(T/Q)
and MSER keeps decreasing with the expansion of LLC for
their dense and irregular memory accesses (as shown in
Fig. 11). Therefore, for such algorithms, larger cache size
will be beneficial. On the other hand, if the chip area is the
major consideration and KD-tree matching is not an essen-
tial part, we can use the design with modest LLC cache size.

Insights: Modern processor architecture employs deep
cache hierarchy to bring required data closer to core.
Higher L2 hit rate in multimedia retrieval workloads indi-
cates modestly-sized L2 cache (256 KB) plays a good role
in enhancing overall performance. On the other hand, a
larger LLC consumes more area (LLC is the largest struc-
ture on chip) and power, but gives little improvement to
most multimedia retrieval workloads due to their small
working set. Considering LLC is shared among cores,
small LLC size requirement means more cores can share
one LLC on a chip without side effect of high LLC miss. A
small LLC size also brings the benefit of short data access
latency.

6.3.3 Load Balance

Load balance is a very important issue for the performance
of parallel applications executed on a multi-core architec-
ture. To obtain insights into parallel optimization and sys-
tem design of these multimedia retrieval algorithms, we
evaluate their load balance characteristics based on the par-
allel version, which exploit the image-level parallelism in
these algorithms. Input images are evenly distributed
among threads during execution.

Fig. 14. Computation intensity over input size. IPB stands for Instructions
per Byte.

Fig. 15. L2 cache hit rate in program.

LU ETAL.: PERFORMANCE ANALYSIS OF MULTIMEDIA RETRIEVALWORKLOADS RUNNING ON MULTICORES 3333

We collect the execution time of each thread with differ-
ent thread counts, e.g., 4, 8 and 16. Each thread is executed
on a separate processor core to minimize the impact from
intra-core resource contention. We use Coefficient of Varia-
tions (CoV) of the execution time from individual threads to
indicate the level of load imbalance in the system. The
results are shown in Fig. 17. It shows that, except MSER and
HOG, all other algorithms show obvious imbalance (CoV
greater than 10 percent) among threads as number of cores
increases. As the data show, load imbalance in multimedia
retrieval algorithms is more severe than that of PARSEC
and ALPBench.

The reason behind such a result is that fundamental mul-
timedia retrieval algorithms are all feature point based. In
other words, the required computation in each thread is pro-
portional to the number of feature points processed by it.
Fig. 18 shows the number of feature points detected in each
image in our small image set. It is obvious that different
images have different point numbers. Some images have a
larger number of feature points, while the others have a
smaller one, which intuitively depends on the information in
the image. It indicates that the various number of feature
points at image level leads to different workloads for the

threads to work on, hence different execution time. More-
over, the imbalance workload also exists at block level. To
illustrate this problem, we evenly divide a 640 � 480 image
into 4 � 4 blocks and collect the number of feature points
detected in each block. The results are shown in Fig. 19. It
turns out the number of feature points detected in each block
is also different. Since the feature point count varies at both
image and block level, it is challenging to achieve a statically
balanced parallel design for these algorithms. Therefore,
when mapping these algorithms to parallel hardware, it
should paymore attention for dynamic load balance.

We expect approaches along the lines of Adaptive Mesh
Refinement (AMR) can help reduce load imbalance in this
context. System work and architectural support are also
interesting to investigate, when extending AMR or others
alike to multimedia retrieval applications. We sketch one
preliminary approach in the following.

As described above, the workloads are imbalanced at
both image and block level. Therefore, it is difficult to
exploit coarse-grained parallelism at these two levels to
achieve better parallel performance. Moreover, all the
three stages in multimedia retrieval applications are fea-
ture points based and the required computation of each

Fig. 16. Cache sensitivity.

Fig. 17. Variations of per-thread execution time as an indicator of load
imbalance. Fig. 18. Imbalance at image level.

3334 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2016

algorithm is proportional to the number of feature points
extracted from an input image. Therefore, we can exploit
a fine-grained feature point level parallelism and design
a scheduling scheme to allocate resource based on the
number of feature points in input images. Based on this
insight, we design a dynamic fine-grained pipeline paral-
lelism for these multimedia retrieval algorithms. We use
SURF and SIFT as a case study to verify the effectiveness
of this approach.

We first partition the algorithms into two stages. The
first stage is used to detect how many feature points in
an input image. The second is to describe each point
into a high-dimensional vector. After partitioning these
two algorithms into a two stage pipeline, the description
stage is further parallelized through exploiting the fea-
ture point level parallelism. The computation resource is
then dynamically allocated to match the feature point
counts in the images and achieve better load balance. To
illustrate the effectiveness of such a design, we compare
the results with those with image- and block-level paral-
lelism on a 16-core machine. As the data in Fig. 20 show,
such a fine-grained dynamic scheduler outperformance
the other two ones.

Insights: These multimedia retrieval algorithms face a
great challenge on load balance. Fine-grained parallelism at
feature point level should be exploited in multimedia
retrieval workloads. In addition, a certain amount of
dynamic control should be fused to allocate the resource
more efficiently when designing system and architecture,
such as hardware thread scheduling mechanism. Consider-
ing such inherent thread-level parallelism in these work-
loads, they would be well-suited by architectures offering
multiple cores on one chip.

6.4 Inter-Chip Level Analysis

Although the off-chip memory access latency has not been
improved a lot, the off-chip memory bandwidth has a great
progress. For example, the Intel core-i7 processor can achieve
peak bandwidth at 21 GB/s with two independent memory
channels. Architecture designers hope that such a large band-
width can help improve programs which have great pressure
on memory bus. We show the off-chipmemory bandwidth of
these workloads in Fig. 21. As the results show,most ofmulti-
media retrieval workloads have very low off-chip bandwidth
utilization compared to parallel, scale-out and traditional
multimedia workloads. We note the main reason is due to its
high computation intensity as mentioned in Section 6.3. Mul-
timedia retrieval workloads require more computation on
each data unit and also cause complex data dependencies.

Insights: Large memory bandwidth requires large area
memory controllers and high power consumption by multi-
ple memory bus. But our experiment shows that multime-
dia retrieval workloads do not need such a large off-chip
bandwidth. Thus we can reduce the number of memory
channel and make memory controllers simpler to make pro-
cessor more cost-effective.

6.5 Architectural Insights

We have analyzed the characteristics of these representative
multimedia retrieval workloads. Based on this analysis, we
summarize some insights to architecture design.

� Application level design: (1) Feature extraction algo-
rithms are different from traditional multimedia
benchmarks in many significant architectural
aspects; (2) A small input size is sufficient for feature
extraction algorithms for evaluation while the size of
input is still an important factor when evaluating
other algorithms.

� Core level design: (1) A small instruction cache is suffi-
cient for catching entire instruction working set and
sophisticated branch prediction mechanism is neces-
sary to deal with complex branch pattern in these
workloads; (2) The ILP and MLP is comparatively
low than traditional benchmarks, thus a simpler core
design could save the area and energy; (3) Floating-
point units can be partially replaced with fixed-point
units to make more cores on a die without losing per-
formance and accuracy.

� Chip level design: (1) A modestly sized L2 cache
acts efficiently in data fetching and we can reduce

Fig. 19. Imbalance at block level.

Fig. 20. Parallel performance on a 16-core machine with image-level par-
allelism (Image-level), block-level parallelism (Block-level) and our pro-
posed fine-grained adaptive scheduling (FG-scheduling).

Fig. 21. Off-chip memory bandwidth.

LU ETAL.: PERFORMANCE ANALYSIS OF MULTIMEDIA RETRIEVALWORKLOADS RUNNING ON MULTICORES 3335

last-level cache size to reduce area and power con-
sumptions; (2) Due to the abundant thread-level par-
allelism in these algorithms at image-level, sub-
block-level and feature-point-level, feature-point-
level parallelism is a critical optimization point for
them; (3) load imbalance is also a key issue to pay
attention to and fine-grained feature-point level par-
allelism can be exploited for great performance
improvement, together with dynamic resource
scheduling scheme or architectural support.

� Inter-chip level design: Off-chip memory bandwidth
can be scaled down since low bandwidth utilization
found in these workloads. This can further improve
the cost effectiveness of processors designed for mul-
timedia retrieval workloads.

7 CONCLUSIONS AND FUTURE WORK

We have assembled and designed a multimedia retrieval
benchmarking framework (MMRBench) for architecture
design and system evaluation. In MMRBench, we provide
multiple algorithm versions, supporting tools and a flexible
framework. The design makes it easier for an end user to gen-
erate customized benchmark suites, or even a completemulti-
media retrieval system, for various system requirements.

Furthermore, we analyze the architectural characteristics
of these algorithms and offer insights to architecture design
for multimedia retrieval applications, including core level,
chip level and inter-chip level. We also sketch approaches
to tackling some of the challenges.

Currently, many related algorithms are emerging, such
as deep learning algorithms. We plan to survey and extend
such algorithms in MMRBench in our future work. More-
over, we will also extend GPU version for these algorithms
in MMRBench.

ACKNOWLEDGMENTS

The authors are grateful to supports from the National High
Technology Research and Development Program of China
(No. 2015AA015303), and the National Natural Science
Foundation of China (No. 61370081). They would also like to
thank all their anonymous reviewers for valuable feedback
on the paper.Weihua Zhang is the corresponding author.

REFERENCES

[1] “Cisco visual networking index: Forecast and methodology, 2014-
2019,” 2015.

[2] (2015). 300+ hours of video uploaded to Youtube every minute.
[Online]. Available: http://www.reelseo.com/youtube-300-
hours/

[3] (2013). Facebook stores 240 billion photos and adds 350 million
more a day. [Online]. Available: http://www.businessinsider.
com/facebook-stores-240-billion-photos-2013- 1

[4] B. Yang, T. Mei, X.-S. Hua, L. Yang, S.-Q. Yang, and M. Li, “Online
video recommendation based on multimodal fusion and rele-
vance feedback,” in Proc. ACM Int. Conf. Image Video Retrieval,
2007, pp. 73–80.

[5] Y. Gao, J. Tang, R. Hong, Q. Dai, T.-S. Chua, and R. Jain, “W2GO:
A travel guidance system by automatic landmark ranking,” in
Proc. ACM Int. Conf. Multimedia, 2010, pp. 123–132.

[6] A. Joly, C. Frelicot, and O. Buisson, “Robust content-based video
copy identification in a large reference database,” in Proc. ACM
Int. Conf. Image Video Retrieval, 2003, pp. 511–516.

[7] H. Bay, T. Tuytelaars, and L. V. Gool, “SURF: Speeded up robust
features,” in Proc. Eur. Conf. Comput. Vis., 2006, pp. 404–417.

[8] J. Bauer, N. Sunderhauf, and P. Protzel, “Comparing several
implementations of two recently published feature detectors,” in
Proc. Int. Conf. Intell. Auton. Syst., 2007, pp. 143–148.

[9] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi,
“Clearing the clouds: A study of emerging scale-out workloads on
modern hardware,” in Proc. 17th Int. Conf. Archit. Support Program.
Languages Operating Syst., 2012, pp. 37–48.

[10] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The HiBench
benchmark suite: Characterization of the MapReduce-based data
analysis,” in Proc. IEEE Int. Conf. Data Eng., 2010, pp. 41–51.

[11] M. lap Li, R. Sasanka, S. V. Adve, Y. kuangChen, and E. Debes, “The
ALPBench benchmark suite for complex multimedia applications,”
in Proc. IEEE Int. Symp.Workload Characterization, 2005, pp. 34–45.

[12] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “MiBench: A free, commercially representative
embedded benchmark suite,” in Proc. IEEE Int. Workshop Workload
Characterization, 2001, pp. 3–14.

[13] V. J. Reddi, B. C. Lee, T. Chilimbi, and K. Vaid, “Web search using
mobile cores: Quantifying and mitigating the price of efficiency,”
in Proc. Int. Symp. Comput. Archit., 2010, pp. 314–325.

[14] Y. H. Wan, Q. L. Yuan, S. M. Ji, L. M. He, and Y. L. Wang, “A sur-
vey of the image copy detection,” in Proc. IEEE Conf. Cybern. Intell.
Syst., 2008, pp. 738–743.

[15] (2016). The Standard Performance Evaluation Corporation.
[Online]. Available: http://www.spec.org

[16] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological con-
siderations,” in Proc. Int. Symp. Comput. Archit., 1995, pp. 24–36.

[17] C. Bienia and K. Li, “PARSEC 2.0: A new benchmark suite for
chip-multiprocessors,” in Proc. Annu. Workshop Model., Benchmark-
ing Simul., Jun. 2009.

[18] (2016). Illinois Microarchitecture. [Online]. Available: http://
impact.crhc.illinois.edu/parboil.php

[19] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia,
S. Belongie, and M. B. Taylor, “SD-VBS: The San Diego vision
benchmark suite,” in Proc. IEEE Int. Symp. Workload Characteriza-
tion, 2009, pp. 55–64.

[20] J. Clemons, H. Zhu, S. Savarese, and T. Austin, “MEVBench: A
mobile computer vision benchmarking suite,” in Proc. IEEE Int.
Symp. Workload Characterization, 2011, pp. 91–102.

[21] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Ferret: A
toolkit for content-based similarity search of feature-rich data,” in
Proc. 1st ACM SIGOPS/EuroSys Eur. Conf. Comput. Syst., 2006,
pp. 317–330.

[22] N. Tuck and D. M. Tullsen, “Initial observations of the simulta-
neous multithreading pentium 4 processor,” in Proc. Parallel
Archit. Compilation Tech., 2003, p. 26.

[23] N. Hardavellas, I. Pandis, R. Johnson, N. G.Mancheril, A. Ailamaki,
and B. Falsafi, “Database servers on chip multiprocessors: Limita-
tions and opportunities,” in Proc. Int. Conf. Innovation Database Res.,
2007, pp. 79–87.

[24] D. Nan, X. Wei, J. Xu, X. Haoyu, and S. Zhenya, “CESMTuner: An
auto-tuning framework for the community earth system model,”
in Proc. IEEE Int. Conf. High Perform. Comput. Commun., 2014,
pp. 282–289.

[25] S. Xu, W. Xue, and H. X. Lin, “Performance modeling and optimi-
zation of sparse matrix-vector multiplication on NVIDIA CUDA
platform,” J. Supercomput., vol. 63, no. 3, pp. 710–721, 2013.

[26] W. Xue, C. Yang, H. Fu, X. Wang, Y. Xu, L. Gan, Y. Lu, and X. Zhu,
“Enabling and scaling a global shallow-water atmospheric model
on tianhe-2,” in Proc. IEEE 28th Int. Parallel Distrib. Process. Symp.,
2014, pp. 745–754.

[27] P. Ranganathan and N. Jouppi, “Enterprise IT trends and implica-
tions for architecture research,” in Proc. High-Perform. Comput.
Archit., 2005, pp. 253–256.

[28] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki,
“Toward dark silicon in servers,” in Proc. Int. Symp. Microarchitec-
ture, 2011, 6–15.

[29] T. Kgil, A. Saidi, N. Binkert, R. Dreslinski, S. Reinhardt, K. Flautner,
and T. Mudge, “PicoServer: Using 3D stacking technology to enable
a compact energy efficient chipmultiprocessor,” in Proc. Archit. Sup-
port Program. Languages Operating Syst., 2006, pp. 117–128.

[30] L. Zhao, R. Iyer, S. Makineni, J. Moses, R. Illikkal, and D. Newell,
“Performance, area and bandwidth implications on large-scale
CMP cache design,” in Proc. Workshop Chip Multiprocessor Memory
Syst. Interconnect, 2007.

3336 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2016

http://www.reelseo.com/youtube-300-hours/
http://www.reelseo.com/youtube-300-hours/
http://www.businessinsider.com/facebook-stores-240-billion-photos-2013- 1
http://www.businessinsider.com/facebook-stores-240-billion-photos-2013- 1

[31] C. Kozyrakis, A. Kansal, S. Sankar, and K. Vaid, “Server engineer-
ing insights for large-scale online services,” in Proc. Int. Symp.
Microarchitecture, 2010, pp. 8–19.

[32] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber,
J. Picorel, A. Adileh, D. Jevdjic, S. Idgunji, E. Ozer, and B. Falsafi,
“Scale-out processors,” in Proc. Int. Symp. Comput. Archit., 2012,
pp. 500–511.

[33] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[34] A. Vedaldi and B. Fulkerson, “VLFeat: An open and portable
library of computer vision algorithms,” in Proc. ACM Int. Conf.
Multimedia, 2010, pp. 1469–1472.

[35] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
2005, pp. 886–893.

[36] D. Nister and H. Stewenius, “Scalable recognition with a vocabu-
lary tree,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2006, pp.
2161–2168.

[37] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” in Proc. Int. Conf. Very Large Data Bases,
1999, pp. 518–529.

[38] M. Datar and P. Indyk, “Locality-sensitive hashing scheme based
on p-stable distributions,” in Proc. ACM Symp. Comput. Geom.,
2004, pp. 253–262.

[39] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis
and automated cartography,” Commun. ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[40] K. Mikolajczyk. (2007). Local feature evaluation dataset. [Online].
Available: http://www.robots.ox.ac.uk/vgg/research/affine/

[41] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object
retrieval with large vocabularies and fast spatial matching,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2007, pp. 1–8.

[42] (2016). Intel VTune amplifier XE performance profiler. [Online].
Available: http://software.intel.com/en-us/intel-vtune-ampli-
fier-xe

[43] (2015). Valgrind. [Online]. Available: http://valgrind.org/
[44] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,

“Automatically characterizing large scale program behavior,” in
Proc. Int. Conf. Archit. Support Program. Languages Operating Syst.,
2002, pp. 45–57.

[45] (2016). INRIA Person Dataset. [Online]. Available: http://pascal.
inrialpes.fr/data/human/

[46] A. Phansalkar, A. Joshi, and L. K. John, “Analysis of redundancy
and application balance in the spec cpu2006 benchmark suite,” in
Proc. 34th Int. Symp. Comput. Archit., 2007, pp. 412–423.

Yunping Lu is currently working toward the PhD
degree in the School of Computer Science at
Fudan University. Her research interests are in
compilers, computer architecture, parallelization
and systems software.

Xin Wang is currently working toward the gradu-
ate degree in the Software School of Fudan Uni-
versity and working in the Architecture Group of
Parallel Processing Institute. His work is related
to computer architecture, simulation, parallel
optimization and so on.

Weihua Zhang received the PhD degree in com-
puter science from Fudan University in 2007. He is
currently an associate professor of Parallel Proc-
essing Institute, Fudan University. His research
interests include compilers, computer architecture,
parallelization and systems software.

Haibo Chen received the BSc and PhD degrees
in computer science from Fudan University in
2004 and 2009, respectively. He is currently a
professor in School of Software, Shanghai Jiao
Tong University, doing research that improves the
performance and dependability of computer sys-
tems. He is a senior member of the IEEE and the
IEEE Computer Society.

Lu Peng received the PhD degree in computer
engineering from the University of Florida in
Spring 2005. He is currently an associate profes-
sor in the Electrical and Computer Engineering
Department, Louisiana State University. His
research focus on computer architecture, mem-
ory hierarchy system, reliability, power efficiency
and other issues in processor design.

Wenyun Zhao received the master’s degree
from Fudan University in 1989. He is a full profes-
sor of the School of Computer Science, Fudan
University. His current research interests include
software reuse, software product line, software
component, and architecture.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LU ETAL.: PERFORMANCE ANALYSIS OF MULTIMEDIA RETRIEVALWORKLOADS RUNNING ON MULTICORES 3337

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

