114

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO.2, MARCH/APRIL 2013

Predicting Architectural Vulnerability
on Multithreaded Processors under
Resource Contention and Sharing

Lide Duan, Lu Peng, Member, IEEE Computer Society, and Bin Li

Abstract—Architectural vulnerability factor (AVF) characterizes a processor’s vulnerability to soft errors. Interthread resource
contention and sharing on a multithreaded processor (e.g., SMT, CMP) shows nonuniform impact on a program’s AVF when it is
co-scheduled with different programs. However, measuring the AVF is extremely expensive in terms of hardware and computation.
This paper proposes a scalable two-level predictive mechanism capable of predicting a program’s AVF on a SMT/CMP architecture
from easily measured metrics. Essentially, the first-level model correlates the AVF in a contention-free environment with important
performance metrics and the processor configuration, while the second-level model captures the interthread resource contention
and sharing via processor structures’ occupancies. By utilizing the proposed scheme, we can accurately estimate any unseen
program’s soft error vulnerability under resource contention and sharing with any other program(s), on an arbitrarily configured

multithreaded processor. In practice, the proposed model can be used to find soft error resilient thread-to-core scheduling for

multithreaded processors.

Index Terms—Hardware reliability, modeling and prediction, modeling of computer architecture

1 INTRODUCTION

OFT errors have been significantly degrading the relia-

bility of current high-performance processors. They
occur mainly due to the electronic noises caused by
energetic nuclear particles (e.g., alpha particles, neutrons,
and pions) from the environment [50]. These particles may
invert the state of a logic device (from “0” to “1,” or from
“1” to “0”) when the resulted charge has been accumulated
to a sufficient amount, introducing soft errors (i.e., transient
faults) into the system. With the feature size and supply
voltage scaling down to extremely small values, current
processors become highly vulnerable to soft errors [17], [27],
[29], [30], [34], [40], [44], [47], [48]. In the past decades, many
companies have observed severe damage caused by soft
errors on large servers [50].

However, not all soft errors will affect the final output of
the program. For example, a bit flip in an invalid (empty)
reorder buffer (ROB) entry will not have any effect in the
program execution; similarly, overwriting a corrupted
register before its erroneous value can be used by other
instructions prevents the error propagation. Based on this
observation, architectural vulnerability factor (AVF) [28], [4]
was proposed to quantify the probability that a soft error

e L. Duan is with AMD, Inc., 3014 W. William Cannon Dr. Apt. 1823,
Austin, TX 78745. E-mail: lide.duan@amd.com.

e L. Peng is with the Division of Electrical and Computer Engineering,
School of Electrical Engineering and Computer Science, Louisiana State
University, Baton Rouge, LA 70803. E-mail: Ipeng@Isu.edu.

e B. Li is with the Department of Experimental Statistics, Louisiana State
University, Room 173, Martin D. Woodin Hall, Baton Rouge, LA 70803.
E-mail: bli@lsu.edu.

Manuscript received 7 Feb. 2012; revised 27 Aug. 2012; accepted 12 Nowv.
2012; published online 27 Nov. 2012.

For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-2012-02-0018.
Digital Object Identifier no. 10.1109/TDSC.2012.87.

1545-5971/13/$31.00 © 2013 IEEE

finally produces a visible error in the program output. A
higher AVF value indicates higher vulnerability to soft
errors, so the AVF is used by computer designers as an
important reliability metric at the architectural level. In this
paper, we characterize and predict the AVF when a
program’ runs under resource contention and sharing
with other program(s) on multithreaded processors, includ-
ing simultaneous multithreading (SMT) and chip-
multiprocessor (CMP) architectures.

Motivation. The AVF provides useful guidelines in
designing reliable processors, but its measurement is
extremely expensive in terms of hardware and computation.
To measure the AVF, one can use statistical fault injection
(SFI) [43], [24] or architecturally correct execution (ACE)
analysis [28]. The former requires a large number of
experiments that randomly inject errors into program
execution; while the latter needs to implement a postcommit
analysis window [28], [15] to identify the hardware bits that
are required for correct execution. Regardless, either of these
two methods results in costly overhead and significant
performance degradation.

The ACE analysis can be also applied to multithreaded
processors to measure the AVF. However, the measurement
is even more involved than in single-threaded processors
because multiple instruction streams from different threads
need to be traced. For multithreaded workloads with data
sharing, a system-wide, much bigger analysis window must
be implemented. Therefore, an accurate AVF prediction in
place of expensive AVF measurement can eliminate a great
amount of overheads.

1. In this paper, a program refers to a single-threaded program. We use
“program” and “thread” interchangeably. A multiprogrammed workload
refers to a program combination, and a multithreaded workload refers to a
program with multiple threads that have data sharing.

Published by the IEEE Computer Society

DUAN ET AL.: PREDICTING ARCHITECTURAL VULNERABILITY ON MULTITHREADED PROCESSORS UNDER RESOURCE CONTENTION...

115

= “m—ROB(SMT)
—+—ROB(CMP)
50 —a—1Q(SMT) A
—e-1Q(CMP)
40 A
é 20 4 e ° 2 e /t\ & ‘,X--0~-‘,. Py —— \e
L N
-
= v—%+ N/—g—.— —— H\m/xn.;,,_
20 < AN <
19 \/ v/
0 T - - T -
o°°\ (}'g\d @6\ \0@& K &@Q &£ A s @@ & ’béb) \@{b
@& x cpx & o 22 Ry &8 . <
o S x S o & § %
§ S s § ® g S $ §

Fig. 1. The AVF variations of gcc (SPEC 2000) when it is coscheduled with different benchmarks on SMT/CMP architectures.

Difficulties. Our previous work [11] predicted the AVF
for a single-threaded superscalar processor from its
performance metrics. In contrast, the work in this paper
extends the prediction to multithreaded architectures, thus
facing a variety of difficulties. First, interthread resource
contention and sharing significantly and nonuniformly
affect the AVFE.? Fig. 1 shows how the AVF of reorder
buffer (ROB) and issue queue (IQ) would vary when gcc
runs alone and against different benchmarks on a two-
way SMT and a dual-core CMP (which are based on the
same processor configuration for comparison purposes). In
the SMT processor, ROB is private to each thread, and IQ
is shared between threads. We can see that the impact is
relatively small in CMP, whose interthread contention
is mainly located in the shared cache but barely affects
processor structures’ AVFs. On the other hand, the
contention resulted from pipeline resource sharing in a
SMT processor significantly and nonuniformly affects the
AVFs when gcc is coscheduled with different benchmarks.
In addition, despite the strong variation, ROB AVF of SMT
is consistently lower than that when gcc runs alone, but 1Q
AVF may be higher (e.g., gcc + apsi) or lower (e.g., gcc +
crafty). This interesting observation introduces new issues
into AVF behavior (compared to contention-free super-
scalar’'s AVF [11]), indicating higher difficulty in accu-
rately predicting the multithreaded processor’s AVEF.

Second, the problem complexity and scope are signifi-
cantly enlarged in the context of multithreading. AVF
reflects soft error masking effect at both program level [37]
and machine level [38], so AVF prediction should take into
account both the application and the processor configura-
tion. Walcott et al. [41] performed the prediction across
SPEC CPU 2000 benchmarks on a fixed machine configura-
tion; our previous work [11] extended the prediction to be
across a very small set of configurations by changing only
four parameters. Nevertheless, both of these two works
were restricted to single-threaded processors with certain
simplifications. In contrast, this work intends to correlate
two important (but complex) problems: the processor
configuration being from a statistically large design space,

2. In this paper, AVF always refers to the AVF of hardware structure(s),
which can be private to some thread or shared between threads. Sometimes,
we use a thread’s (program’s) AVF to refer to the AVF of processor
structures that are private to the thread.

and the prediction effectiveness being across different
multiprogrammed and multithreaded workloads.

Consequently, the interthread contention and the inter-
action between software program and hardware config-
uration significantly increase the complexity of predictive
modeling. As a result, the approaches adopted in prior
studies [11], [41] fail in making accurate AVF prediction
for multithreaded processors (details can be referred to
Section 3.3). To tackle these difficulties, this paper
proposes a novel scheme by decoupling the prediction
into two levels.

Our proposal: two-level predictive modeling. In this work, we
propose a scalable two-level predictive mechanism capable
of accurately predicting key processor structures’ soft error
vulnerability on multithreaded processors under resource
contention and sharing. At the first level, a cross-program
model is trained to predict the contention-free AVF on a
single-threaded processor. The inputs to the first-level
model include a few important performance measurements
(e.g., structure occupancies, cache miss rates) from the
contention-free execution and the corresponding configura-
tion parameters. The output of the first-level model, along
with key processor structures” occupancies measured when
the program runs against other program(s) on a multi-
threaded processor, are inputted to the second-level model,
which finally predicts the program’s AVF under resource
contention and sharing with others.

Essentially, the first-level model uses key parameters and
simple performance measurements to characterize under-
lying hardware configuration and the software program,
respectively. This level takes into account the software-
hardware interaction, providing a contention-free baseline
to the second level. On top of it, the second-level model
captures the interthread resource contention and sharing via
examining multiprogrammed executions. By employing the
proposed two-level prediction, we are capable of accurately
predicting the AVF for an unseen program when it is
coscheduled with any other program(s) on an arbitrarily
configured SMT/CMP architecture.

Contributions. In summary, the main contributions of this
paper are as follows:

e Universal prediction of the AVF on single-threaded
processors. The first-level model accurately predicts
the contention-free AVF on any given processor

116 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO.2, MARCH/APRIL 2013

configuration from a design space. This model is
universal across different programs, and also vali-
dated for unseen programs not used in training.

e Universal prediction of the AVF under contention across
multiprogrammed workloads. The second-level model
takes the knowledge of the contention-free AVF
from the first-level model, performing an accurate
prediction of the AVF under resource contention
for any program combination in analysis. This
combined capability is extremely useful in the era
of multithreading.

o Analysis and dynamic prediction on multithreaded
workloads with data sharing. Section 6 investigates
the impact of memory allocation and program
parallelism on AVF and cumulative system vulner-
ability, performing a dynamic AVF prediction for
multithreaded workloads during runtime.

e A case study of soft error resilient thread-to-core
scheduling. By utilizing the proposed AVF prediction,
Section 7 presents a case study that identifies the
optimal thread-to-core assignment that minimizes
the AVF of a chip multithreaded (CMT) processor.

2 METHODOLOGY: BOOSTED REGRESSION TREES
(BRT)

A nonparametric tree-based predictive scheme named
boosted regression trees (BRT) serves as building blocks
to our two-level model. In this section, we introduce BRT
and its interpretations.

BRT [14] is an ensemble technique that employs two
algorithms: Regression trees from classification and regres-
sion trees (CART) [6] and Boosting that builds and
combines a collection of trees. CART is a recursive binary
splitting algorithm that partitions the input space into a set
of rectangles (i.e., the leaves of the tree); Boosting is an
enhancement to tree-based methods, iteratively fitting a
number of regression trees based on the training data and
gradually increasing the emphasis on the observations
modeled poorly by the current model.

The detailed BRT algorithm used in this paper is described
in Fig. 2. We consider a problem with n observations
{vi,Xi},i=1,2,...,n, where X; is a p-dimensional input
vector and y; is the response. Step 3 is the inner loop that
recursively constructs a binary tree; in particular, Step 3.4
splits a region (a node in the tree) into two subregions such
that the best fit (i.e., the minimal Mean Square Error) in the
current iteration can be achieved among all possible split
points. The tree construction terminates when its depth
reaches a certain number; in this work, we set the maximum
tree depth to 3, indicating that at most eight leaves will
be generated for each tree. The outer loop (Steps 2 to 4) is the
boosting procedure that combines a large number of tree
models to improve the prediction accuracy. In Step 3.3, I (.)
is an indicator function which returns 1 (otherwise 0) if its
argument is satisfied; v is a parameter between 0 and 1,
controlling the learning rate of the procedure. Empirical
results have shown that smaller values of v always lead
to better generalization errors [14], so we fix v at 0.01 in
this study.

BRT is inherently nonparametric and can well handle
mixed types of input variables. It does not make any

Boosted Regression Trees (BRT)
{

1. Initialize the prediction function fo (X,) =y, where Y isthe
average for {yi },i =1,2,..., n . Initialize the iteration index m
to 1.

2. Compute the current residuals:

=~ s i=Loon.

3. For each input variable j and each split point s (i.e. a possible
value) of j:

3.1. Partition the current space into two parts (X is any
data point in current space):

Pin(Js8)={X| X, <=s} and p, (j,5)={X| X, >s}

3.2. For each part, compute its constant fit:

Vi =argmin Y (r, —y),h=12.

Xi€Ppm
3.3. Update the fitted model:
fm(X): fmfl(X)-i_ szyhmI(X € phm)
h

3.4. Choose the j and s whose updated _fm (X) results
in the lowest Mean Square Error (MSE) for current data points.
Partition the current space into R, and R, with the chosen j and s,
and update the prediction function as in Step 3.3.

3.5. For each of R; and R, repeat Step 3 unless the
tree depth reaches a threshold or the improvement in the MSE is
smaller than a certain value.

4. Increment m by 1. Repeat Step 2 to 4 unless m reaches a
threshold.

}

Fig. 2. The BRT algorithm used in this paper.

assumption on the distribution of the input variable, thus
avoiding the transformations used in preprocessing the
training data. BRT is also capable of capturing complex
behavior using a relatively small number of inputs. This is
in contrast to some other multivariate nonlinear modeling
techniques, in which cases extensive inputs from the
analyst, analysis of interim results, and subsequent mod-
ifications of the method are required. Besides, BRT is
insensitive to outliers, and unaffected by monotone trans-
formations and different scales of input measurements.
Prior studies [14] have shown the superior performance of
BRT over traditional prediction techniques under various
types of data. Some other works [7], [46] provided insights
to the theoretical properties and practical aspects of
Boosting, such as the efficiency, convergence, and consis-
tency. Our prior work [22] quantitatively showed that BRT
is more stable than linear regression.

In addition to accurate prediction, BRT also provides
visualized model interpretations. The input variable impor-
tance measures the relative importance of an input variable
to the response via accumulating the number of times the
variable (dimension) is selected for splitting a region during
all the iterations. Every increment to this number is
weighted by the improvement in the MSE as a result of the
corresponding split. Furthermore, the partial dependence plot

DUAN ET AL.: PREDICTING ARCHITECTURAL VULNERABILITY ON MULTITHREADED PROCESSORS UNDER RESOURCE CONTENTION...

117

TABLE 1
The Inputs and Outputs of the Proposed Model at Different Levels

Model Level Inputs

Output

Level 1

7 contention-free performance metrics (IPC, L1 DCache miss rate,
L2 cache miss rate, the occupancies of ROB, LSQ, I1Q, and RF) +
9 configuration parameters (P, to Py in Table 3)

contention-free AVF

Level 2

contention-free AVF +
9 structure occupancies under contention (ROB, LSQ, 1Q, RF, I/D
TLBs, L1 1/D caches, and L2 cache)

AVF under contention

shows the effect of a subset of input variables on the
response after accounting for the average effect of all the
other input variables in the model. Given any subset x, of the
input variables indexed by s C {1,...,p}, the partial
dependence of f(x) is defined as F(xs) = Ex [f(x)], where
Ex ['] refers to the expectation over the joint distribution of
all the input variables with indices not in S. In practice, the
partial dependence can be estimated from the training data
by Fi(xs) = (1/n) 31, f(xs, x;\s), Where {x;;}| are the data
values of x;.

3 Two LeEVEL AVF PREDICTION

3.1 Description

The ultimate goal of this work is to predict the AVF of a
program in contention with other program(s) running
simultaneously on a multithreaded processor (e.g., SMT,
CMP) without AVF measurement mechanisms. We will
show that it can be predicted from the AVF when this
program runs alone with no contention, and a group of
important performance metrics reflecting the occupancy
rates® of key processor structures under contention. The
latter can be easily measured during program execution on
a SMT /CMP architecture, but the former cannot. Therefore,
we further predict the contention-free AVF for the under-
lying single-threaded processor. We organize the prediction
in a two-level model in this section.

At the first level, a universal model is trained to predict
the AVF in a contention-free single-threaded processor. We
first sample a group of training configurations from a huge
processor design space, simulating them for benchmarks in
the training set. The AVF and a few performance measure-
ments (e.g., IPC, cache miss rates, and structure occupan-
cies) are measured after simulation. The model at this level
is trained using these performance measurements and the
corresponding configuration parameters as the inputs and
the contention-free AVF as the response. Table 1 lists the
inputs and the output at each level of our model. Fig. 3
illustrates the training procedure for Level 1. For brevity,
only the inputs from a certain benchmark By are shown;
but this procedure is actually performed for all the n
training benchmarks.

For the second-level model involving interthread conten-
tion, Fig. 4 takes a benchmark combination (B;, B;) as an
example to illustrate its training procedure. The AVF of B;
from its single-threaded execution and a few processor
structure occupancies measured from the multiprogrammed

3. The occupancy rate of a processor structure is calculated as its
proportion of entries that are in use.

execution where B; competes with Bj serve as the inputs to
the model; while the AVF of B; in contention with B; is the
response to be predicted (see the third row of Table 1). We
provide training samples from different benchmark combi-
nations to make the second-level model universal across
different benchmark combinations. The performance me-
trics used at this level reflect the interthread contention and
sharing on multithreaded processors; in contrast, those at
the first level are measured from contention-free single-
threaded processors. Regardless, all of these performance
metrics are easy to be measured in either simulators or real
processors via performance counters.

By combining the two levels, we are able to predict the
AVF on a SMT/CMP architecture running any benchmark
combination. As shown in Fig. 5, to predict the AVF of a
benchmark By (in particular, Bx can be any unseen
benchmark not in the training set) running against another
benchmark, say B¢, on any given processor configuration,
we need to follow the below steps:

1. Run the single-threaded simulation for By on the
processor configuration in analysis; collect the
performance measurements after simulation.

/[Single-threaded
simulation for By
e { AVF of By
Single-threaded (no contention) }
simulation for By
{ Performance
measurements
{ Training configurations } of By }

BRT training for a universal
model for any benchmark

Fig. 3. The first level universal model training using BRT. Only the inputs
from a certain benchmark By are shown.

Single-threaded AVF of B;
simulation for By (no contention)
- BRT training
for a universal
Baseline config. model for any
Structure benchmark
Multi-threaded = ———occupancies—— combination
simulation for (B;, By) of B

AVF of B;

(under contention)

Fig. 4. The second level universal model training using BRT.

118 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO.2, MARCH/APRIL 2013

Performance

measurements of By
(1)
Single-threaded
simulation for By, (2) (4)

{one pass)
> Level 1

f Single-threaded _P“ﬁgﬂcﬁgi;,a.
Any benchmark — Config universal model Level2: ' progicted AVF of B,
By on any config parameters Universal | (in contention with By)
meodel for any ————»
benchmark
(3) combination
Multi-threaded Structure
i ion for (By, By)

(one pass) of By

Fig. 5. An overview of the two-level AVF prediction on a muilti-
threaded processor.

2. Give the above performance measurements and the
configuration parameters as inputs to the first-level
model; predict the contention-free AVF of By.

3. Run the multiprogrammed simulation for the bench-
mark combination (By, B;); measure key processor
structure occupancy rates under contention.

4. Provide the predicted contention-free AVF and the
measured structure occupancies as inputs to the
second-level model; finally predict the AVF of By
under resource contention with B;. Note that, to
make prediction for an unseen benchmark By, the
above approach only needs two passes of simula-
tion: one for By itself with no contention, and one for
Bk and its competitor with contention.

3.2 Reasoning

Fundamentally, two levels are utilized in our model because
a single-level model cannot well handle the high complexity
introduced by the issues targeted in this work. First, our
model explores the configuration design space: Using the
same model, we can make prediction for any arbitrarily
configured processor in a statistically large design space.
Second, our model is effective across different programs or
program combinations: we can make prediction for even
unseen programs using the same model. Third (and most
importantly), our model takes into account the contention
and sharing in multiprogrammed/multithreaded execu-
tions: We can make prediction for SMT/CMP-based
architectures. Consequently, the complex interactions
among these issues raise higher demands on the predictive
model whose functionality can no longer perform well
within a single level. Previously, one-level models were only
used to target a single aspect, either the design space [9], [10]
or across programs [41], [11]. Lee et al. [21] investigated both
the design space and the multiprogrammed contention, in
the performance domain though, also using a model with
two levels that are composed together.

As an example, we use register file (RF) to demonstrate
the necessity of the two levels in AVF prediction. We
trained a direct one-level model [11], [41] to predict the SMT
processor’s RF AVF. The same prediction technique as in
[11] was used since it demonstrated better performance
than linear regression used in [41]; the inputs to this model
are the various performance measurements when different
threads are run simultaneously. For a fair comparison, the
training and test sets (described in Section 4.1) are the same
for these two approaches. Fig. 6 compares the prediction
accuracy between these two models in terms of R-Square

®WPrior one-level scheme 26%
15% oOur two-level scheme
0.79 0.95 6% 0.83 9%
[0.26 |
R2 (Training set) Mean % Eror R2 (Test set) Mean % Error
(Training set) (Test set)

Fig. 6. Comparison between the prior one-level scheme and the
proposed two-level scheme. Higher R-Square (R2) and lower mean
percent error are better.

(higher is better with 1 as the maximum) and mean
percentage error (lower is better with 0 percent as the
minimum). We can see that the one-level scheme shows
more than two times higher error rates than the two-level
scheme. Especially, for the test set, the mean percentage
error reaches a very high value (26 percent) while the
R-Square is unacceptably low (0.26). Therefore, two levels
are necessary in making accurate predictions for complex
scenarios. Decoupling the prediction into two levels reduces
the model complexity at each level, also improving
prediction accuracy.

Taking a closer look at the above example, we highlight
the importance of contention-free AVF for the RF. Program-
level behavior plays an important role in the RF AVF: For
instance, those registers occupied by the dynamic dead
code have valid but unACE bits. These are reflected in the
contention-free AVF, which serves as the baseline in our
two-level model to later interact with the contention inputs.
However, the one-level scheme did not precisely generate
this information, thus performing poorly in making the
final prediction as a whole. In Section 4.3, we will (Fig. 8)
show the quantitative importance of the contention-free
AVF inputted at the second level.

3.3 Discussions

Other than eliminating the measurement overheads, the
biggest advantage of our AVF prediction is its effectiveness
across multiprogrammed workloads. In other words, once
the model is trained, it can be applied to different program
combinations on multithreaded processors. This is in
contrast to traditional application-specific design space
studies that build a separate model for each workload. As
the multiprogrammed workloads have combinatorial
growth in the number of possible program combinations,
our “universal” predictive approach can save a great
amount of training costs, thus being extremely useful in
the era of multithreading.

On the other hand, in order to make prediction for a
program under contention, our model needs the corre-
sponding contention-free execution of the same program.
This is easily available when the program is repeatable
(e.g., when using known benchmarks). However, in a real
system, re-executing an arbitrary application with no
contention may be impractical. In such cases, we can still
make prediction for certain structures after simplifying the
model. From Section 4, we will see that for queue-based

DUAN ET AL.: PREDICTING ARCHITECTURAL VULNERABILITY ON MULTITHREADED PROCESSORS UNDER RESOURCE CONTENTION... 119

structures such as ROB, LSQ, and IQ, the AVF under
contention largely depends on the performance measure-
ments under contention; contention-free AVF has very little
impact in these cases. Therefore, for these structures we can
remove the first-level model and retrain the second-level
model only using the occupancies. The resulted simplified
model, which does not need contention-free execution
anymore, can still make accurate predictions for those
queues. A similar example can be referred to Section 6.2.

4 |MPACT OF MULTIPROGRAMMED RESOURCE
CONTENTION ON AVF

4.1 Experimental Setup

We implement the AVF measurements [28], [4], [15] in
M-Sim3.0 [31] to model the soft error vulnerability of key
processor structures. In M-Sim’s SMT model, each hard-
ware thread has its own ROB and load store queue (LSQ),
but other structures including IQ, functional units (FU), and
Physical RF are shared among threads. Basically, an
ICOUNT fetcher [39] fetches instructions for each thread,
storing them in the corresponding ROB/LSQ after decode
and rename; each thread dispatches instructions in a round-
robin manner from its own ROB into a shared IQ in
contention with other threads; the interthread contention
exists in the remaining pipeline stages until commit. On the
other hand, the CMP model creates a separate core along
with the private L1 I/D caches for each thread, but the
L2 unified cache is shared among cores.

In this work, we measure and study the AVF of the
following five structures: ROB, LSQ, IQ, FU, and Physical
RFE. To measure the AVF, all the committed instructions
need to go through a 40K-entry postcommit analysis
window that determines the type of the instruction. The
major types include:

1. first-level dynamically dead, whose result is not
used by any younger instruction;

2. transitively dynamically dead, whose result is only
used by instructions that are also dynamically dead;

3. ACE, whose bits are critical for correct execution;

TABLE 2
Benchmarks Used in Multiprogrammed Workloads
IPC L2 Cache Training Benchmarks Test
Miss Rate Benchmarks
>1.0 <30% gcc(135), sphinx3(12), apsi(382), calculix(200),
eon(201), gzip(372), h264ref(272), namd(45),
hmmer(342), mesa(322), perlbmk(5), vortex(570)
8ap(324), gromacs(285), sjeng(498),
06bzip2(633), fma3d(150)
<1.0 >30% mcf(142), art(23), swim(234), lu- milc(85),
cas(597), equake(408), vpr(292), mgrid(236)
ammp(283), astar(449), 1bm(69)
>1.0 >30% wupwise(95), libquantum(200), facerec(208)
applu(281)
<1.0 <30% galgel(415), crafty(113), bzip2(152), parser(270),
gobmk(217) twolf(176)

The number of fast-forwarded instructions (unit: 100 M) is shown after
the benchmark name.

4. unknown; and

5. NOP and prefetch instructions, and so on.

This information is then used to calculate the AVF. For FU,
we also take into account the logic-masking effect in
the operands, e.g., a multiply instruction with one source
operand being zero can tolerate errors in other source
operands. Furthermore, we use physical memory addresses
and physical register numbers to track the data dependen-
cies. This is critical for accurate AVF measurement of
multithreaded programs that have data sharing. Overall, the
program-level impact [37], [38] on the AVF has been taken
into account in this work.

Thirty-eight benchmarks from SPEC CPU 2000 and 2006
suites are evaluated. For the other SPEC 2000/2006 bench-
marks not included here, we could not compile them into
Alpha binaries runnable in the M-Sim simulator. We will first
study two-way SMT and dual-core CMP, and then discuss
model scalability to more than two threads. All the bench-
marks are simulated on our single-threaded baseline config-
uration first (whose parameters are shown in bold in Table 3),
and then categorized in Table 2 according to the measured
IPC and L2 cache miss rates. We use SimPoint toolkit [32] to

TABLE 3
Processor Configuration Design Space Composed of Parameters P; to Py
Parameter Selected Values # Options
P: Processor width 2,4,8 5
1/1-associated with processor width 2
Integer ALUs / # FP 2/ 2/, 4/4-associated witi processor width 4
ALUs 4/4, 8/8-associated with processor width 8
P> ROB size 72,84,96,108, 120, 132, 144, 156, 168 9
P3 LSQ size 24, 32, 40, 48, 56, 64 6
Py 1Q size 32,40, 48,56, 64,72 6
Ps L11/D cache size 16, 32, 64, 128 KB (64B block, 4-way) 4
L1 cache latency 1, 2,3, 4 cycles (vary with L1 cache size)
Ps L2 cache size 512, 1024, 2048, 4096 KB (64B block) 4
L2 cache latency 12,14, 16, 18 cycles (vary with L2 cache size)
Py L2 cache assoc. 4,8 2
bimod(1024), bimod(2048), gshare(10-bit L1 width, 1024 L2 en-
Ps Branch predictor tries), gshare(11-bit L1 width, 2048 L2 entries), combined(1024), 6
combined (2048)
Py BTB 512/4,512/8,1024/4,1024/8 4

The values shown in bold are used in our baseline setting.

120 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO.2, MARCH/APRIL 2013

ROB AVF

dl1_cache_occupancy
il1_cache_occupancy
ul2_cache_occupancy |
dtlb_occupancy |
itly_occupancy [
iq_occupancy J
rob_avf (no contention) _
lsq_occupancy
rob_occupancy

reg_file_occupancy

0 10 20 30 40 50 60 70
Vaniable Importance(%)

Fig. 7. Input variable importance of ROB AVF in SMT processors.

derive a representative 100-million instruction phase for
detailed simulation for each benchmark; the number of fast
forwarded instructions is shown after the benchmark name
in this table. In order to capture different CPU/memory
behavior, we randomly choose some benchmarks from each
of the four categories for test (the fourth column of Table 2).
Consequently, the 435 two-threaded combinations generated
from the 30 training benchmarks (i.e., C3, = 435) will be used
as the training samples; the trained predictor will be tested
with the other 268 combinations, in which cases at least one
benchmark is from the test set (i.e., C2 + 30 x 8 = 268).

In this section, we will discuss the second-level model
first because we are more interested in the AVF under
contention. All the training data used in this section are
directly measured from the baseline configuration. In
Section 5, this model will be combined with the first-level
model to demonstrate the effectiveness of the entire two-
level predictive mechanism.

4.2 Impact on SMT Private Structures

ROB and LSQ are private to each thread in our SMT model,
only containing instructions from a single thread, no matter
whether the thread runs alone or competes with another
thread. However, the interthread contention from the
shared pipeline resources strongly affects their AVF. We
discuss the ROB AVF as an example in this section. Fig. 7
demonstrates the input variable importance derived from
the ROB AVF predictor. Interestingly, we can see that the
ROB AVF largely depends on the thread’s RF occupancy
(rather than the occupancy of ROB itself). RF plays an
important role in the ROB AVF because in a multiway SMT
processor the physical registers available for each thread
are limited. The processing of the instructions in the
pipeline is thereby more sensitive to the RF usage, and so
is the AVF. In addition, we observe that the ROB AVF of a
program shows strong variation when it competes with
different programs, but is consistently lower than that
when the program runs alone (as exemplified in Fig. 1).
This is because the shared resource contention reduces the
thread’s RF occupancy to different extents in different
benchmark combinations.

4.3 Impact on SMT Shared Structures

The other three SMT structures: 1Q, FU, and RF are shared
among different threads. For example, the instructions from
both threads coexist in the IQ of a two-way SMT processor,

Register File AVF

dl1_cache_occupancy_1 !
dl1_cache_occupancy 0 :l
itlh_occupancy_0 :
Isq_occupancy_1 |
ig_occupancy_1
reg_file_occupancy_1 7
rob_occupancy_1 [|
iq_occupancy_0 [

reg_file_avf_0 {no contention) | |
reg_file_avf_1 (no contention) |

0 10 20 30 40
Variable Importance(%)

Fig. 8. Input variable importance of RF AVF in SMT processors.

1 1 L . ' ‘ ‘
404 7
—_
&
=
S ---
£ 30 TR _
Q =T=o
[= h
8 h
8 o
£ 204 | I 1 k _
g \
‘ \
s \
< = || ‘
o | I —*= i :
2 10 ‘ [! [! .
o | 26 2 f / :) |
b o . S
g P [T f [
— — -
[I - ‘ '
T T T y y ! :
5 10 15 o 2 * ®

reg_file_avf_1 (no contention) (%)

Fig. 9. Partial dependence plot of RF AVF on the two most important
input variables in SMT processors.

simultaneously affecting the IQ AVEFE. Consequently, we
need to provide the predictor with inputs from both threads
during training. In this section, each of the two programs in
a benchmark combination is simulated for 100 million
instructions. We suffix the input variables from the faster
thread (i.e., the one finishes earlier) with “0,” and those from
the slower thread with “1.” For instance, “iq_occupancy_0”
refers to the average IQ occupancy rate of the faster thread.

Fig. 8 shows the 10 most important inputs to the RF AVF.
As shown, both threads simultaneously affect the soft error
vulnerability of a shared structure. In the case of RF, the
AVFs when the two threads execute independently with no
contention have the highest importance. This actually
indicates the necessity of our two-level model because it
internally quantifies these important variables. Fig. 9 depicts
the partial dependence of the RF AVF on the two contention-
free AVFs. As shown, the RF AVF increases with respect to
the increase of the slower thread’s AVF and the decrease of
the faster thread’s. This indicates that the RF AVF would
increase if one thread dominates the RF. In this case, more
dependencies exist among registers (since they are from the
same thread), and the RF thereby contains more ACE bits
that are vulnerable to soft errors. Note that the dominance in
RF by one thread is an artifact of our experimental setup
where the faster thread simply terminates execution after
finishing 100M instructions. However, the observation and
reasoning derived from the dominance still remains true.
Furthermore, different than SMT private structures, the AVF
of a shared structure can be higher or lower than the
corresponding contention-free AVF (e.g., IQ AVF in Fig. 1).
The shared structure accommodates both threads, so there is

DUAN ET AL.: PREDICTING ARCHITECTURAL VULNERABILITY ON MULTITHREADED PROCESSORS UNDER RESOURCE CONTENTION...

Core AVF (under contention) (%)
15 20 25 30 35 40 45 50

10 20 30 40

core_avf (no contention) (%)

50

Fig. 10. Partial dependence plot of CMP core AVF on its most
important input.

always a certain portion of the structure that is occupied by a
different thread and demonstrates different AVF behavior
than that when only one thread is run.

4.4 Impact on CMPs

In our dual-core CMP model, the two cores compete with
each other via the shared L2 cache. Therefore, all the five
processor structures in consideration are private to each
core. We generally follow the same approach as above to
train the predictors. The core AVF is the ratio between the
number of the entire core’s ACE bits and the core size. It can
be calculated by summing up the individual components’
AVFs weighted by the corresponding structures’ sizes. We
focus on the core AVF in the CMP study.

From our experiments, we find that the AVF of a CMP
core running a certain benchmark varies in a very small
range when different benchmarks execute on the other core.
In other words, the shared cache contention has relatively
little impact on a CMP core’s soft error vulnerability. This is
in contrast to the situation in an SMT processor where the
AVF shows significant variation. Fig. 10 verifies the above

121

finding by showing that the core AVF under contention is
highly correlated with the core AVF with no contention.

5 Two-LEVEL AVF PREDICTION FOR
MULTIPROGRAMMED WORKLOADS

The model obtained in Section 4 assumes the awareness of
the program’s AVF on a single-threaded processor with no
contention. This contention-free AVF is also predicted in
our model at the first level. This section first validates the
first-level model, and then combines the two levels to
demonstrate accurate predictions.

5.1 Single-Threaded Universal Model Validation
We tune several important parameters to form a large
processor design space (Table 3) for the first-level model.
The values used in the baseline configuration (i.e., the one
based on which we trained the second-level model above)
are shown in bold. The design space size is 1,244,160, from
which we randomly and uniformly simulate 400 points for
each of the benchmarks. After simulation, a few important
but easily measured performance metrics are collected.
We use 300 configurations of the 30 training benchmarks
(the third column of Table 2) to train the model, which
is then tested with the other 100 configurations of the
30 training benchmarks and all 400 configurations of the
eight test benchmarks.

Fig. 11 shows the prediction results for the core AVF.
We use percentage error (i.e., |predicted value — true
value | /true value * 100 percent) to report the prediction
accuracy. Fig. 11 is a boxplot showing the distribution of
percentage errors for different benchmarks. In a boxplot,
the upper and lower boundaries of the central gray box
correspond to the upper and lower quartiles of all the
errors; the highlighted horizontal line within the box is at
the median; the vertical dotted line drawn from the box
boundaries extend to the border lines for outliers. The top

30

o]
o

e
o
L

Percentage Error (%)
= o

G. —:—: '
51 P i
|:H|:H —LQ —{
S /8 o
D_ T T —_ -
1 T | S R B | T T 1T 7
UM E E QY L @x on oN TS "
Qx&om&“—’mgmocamgﬁ.gm
D g oy EQ 5 08 05y @ E s
= O £ E T E wo E n =
=% N =] =l 0
o = =% '5, =]

ﬂHQEHmjaHHHMmﬁﬂQPFHHHHHHE

o ' ']
o ! | a
g

astar - --

T T T 7T T T T 1T 7 T T 1T 7
L s o EGJE:S—}\N_\:x-cxuuuL‘*_—
o = = = = [
§>E3 S 3895 REZEEEDE @2
= c [L [=} =
z s §§°502ggc8 EQQ
o 2 I Q —
S
2

J\ J

!

30 training benchmarks: each has 100 configurations for prediction

!

8 test benchmarks: each has 400
configurations for prediction

Fig. 11. Prediction accuracy (core AVF) of the first-level model. This model predicts 100 configurations for each of the 30 benchmarks in the training
set (left) and 400 configurations for each of the eight benchmarks in the test set (right).

122 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO.2, MARCH/APRIL 2013

80

£ @
= =

Percentage Error (%)

P
=
-

ROB LsQ 1Q FU RF CMP_Core

Fig. 12. Prediction accuracy from two-level prediction.

border line is Q3+ 1.5*IQR and the bottom one is
Q1 — 1.5*IQR, where Q1 and Q3 are the first and third
quartiles and IQR is the interquartile range Q3-Q1. Any
observation outside that range is considered as an outlier,
and denoted by a circle. From this figure, we can see that
the BRT-based universal model is very accurate for all
benchmarks, achieving a 2.94 percent error rate, on
average. Note that only one single model is constructed
here and tested across different benchmarks.

5.2 Combining the Two Levels

Upon obtaining the models at both levels, we are able to
combine them to perform the entire prediction. Fig. 12
demonstrates the prediction accuracy in terms of percen-
tage errors from the two-level prediction. It achieves high
accuracy with median percentage errors of 2.64, 4.80, 3.76,
5.21, 11.56, and 14.03 percent for the five structures in SMT
processors and the core AVF of CMPs, respectively. Note
that the simulation results of the eight test benchmarks (the
fourth column of Table 2) are not used in model training at
either level, validating the applicability of our predictive
scheme to unseen programs. Besides, the two-level pre-
dictive model can work for both homogeneous and
heterogeneous multithreaded processors as long as the
contention-related performance metrics can be measured. In
reality, this can be easily satisfied since hardware perfor-
mance counters for key processor structures are already
available in most commercial processors.

5.3 Model Scalability

Our predictive mechanism is scalable to more than two
threads. Additional training to the predictor may be
needed for some structures. To discuss the scalability
issue, we further perform a set of 4-threaded (on four-way
SMT and quad-core CMP) and 8-threaded (on eight-way
SMT and eight-core CMP) multiprogrammed simulations.
For 4-threaded workloads, we evaluate the 70 combina-
tions generated from the eight test benchmarks (i.e.,
C’§ = 70); for 8-threaded workloads, we randomly choose
45 combinations from all the benchmarks. In addition to
more hardware threads, the size of physical RF in four-
way SMT processors is doubled compared to the two-way
ones; while in eight-way SMT, more parameters are
reasonably enlarged.

As an example, Fig. 13 shows the prediction results for
ROB/LSQ AVFs in SMT processors and the core AVF in

& @
E =
-

Percentage Error (%)

=

(8) P2(8) P3(8) P1(4) P2(4) P1(8) P2(8) P8) P14) P2(4) P1(8) P2(8) PH8)

L J\ J\ J
Y Y ¥

ROB (SMT)

LSQ (SMT) Core (CMP)

Fig. 13. Prediction accuracy when scaling to 4 and 8 threads.

CMP. For each of them, three predictors are trained: P1 is
the one from Section 4 (only trained with 2-threaded
samples); P2 is trained with both 2-threaded and 4-threaded
samples (we put 25 percent 4-threaded simulation results in
the training set); P3 is trained with 2-threaded, 4-threaded,
and 8-threaded samples (similarly, 25 percent 8-threaded
simulation results are used in training). We evaluate the
4-threaded test samples with P1 and P2, and the 8-threaded
test samples with all three predictors, respectively.
For instance, P2(4) indicates the prediction accuracy for
4-threaded test samples using P2. As a result, there are five
bars shown for each structure in this figure.

For ROB AVF, we observe a big improvement in the
prediction accuracy using the predictors with additional
training (i.e., P2 and P3). In Section 4, we illustrated that the
RF occupancy significantly affects ROB AVF in 2-threaded
SMT processors. However, in the 4-threaded case, since the
RF has been enlarged in our simulations, it is no longer the
bottleneck. Therefore, the ROB occupancy becomes the most
influential factor. P1 did not capture this behavior very well,
thus performing poorly in 4-threaded and 8-threaded
predictions. In contrast, in the case of CMP core AVF, even
P1 can make very accurate predictions when scaling to more
threads. This is because the correlation between AVF and
input variables does not change drastically in CMPs with
more than two cores. To summarize, the predictors may
need more training when scaling to more threads, but the
proposed approach itself is scalable.

6 ANALYSIS ON MULTITHREADED WORKLOADS

Multithreaded workloads partition the computation work
among multiple software threads, exploring thread-level
parallelism. The multiple threads generated from the same
program not only experience contention in pipeline
resources, but also show constructive behavior in memory
hierarchy due to data sharing. However, the impact of data
sharing on soft error vulnerability is still largely unexplored
for multithreaded workloads. This section first analyzes the
impact of memory allocation and program parallelism in
multithreaded programs, and then conducts the dynamic
AVF prediction for them.

All experiments in this section are run using the M5
simulator [3], which is capable of simulating multithreaded
benchmarks. We implement the AVF measurements for

DUAN ET AL.: PREDICTING ARCHITECTURAL VULNERABILITY ON MULTITHREADED PROCESSORS UNDER RESOURCE CONTENTION...

Some Performance Measurements of the Four SPLASH2 Programs

TABLE 4

LU (Contig.) LU (Noncontig.) Ocean (Contig.) Ocean (Noncontig.)
Execution Time (ticks) 3.16E+011 5.50E+011 5.15E+011 7.74E+011
L1D Cache Miss Rate 1.5% 14.0% 22.5% 23.6%
Branch Misses Per 1K Insts. 9.75 10.49 1.11 6.48

123

ROB, Load Queue, Store Queue, and IQ for multicores with
Alpha 21264-like CPUs. A set of multithreaded benchmarks
from SPLASH2 [45] suite are evaluated.

6.1 Impact of Multithreaded Implementation

A different implementation of the same algorithm or a
different solution to the same problem could make a big
difference for a multithreaded program’s performance as
well as its soft error vulnerability. In this section, we
examine two pairs of SPLASH2 benchmarks (LU and Ocean)
to investigate the impact resulted from different memory
usages (contiguous versus noncontiguous). The LU kernel
factorizes a dense matrix into the product of a lower
triangular matrix and an upper triangular matrix; the Ocean
application studies large-scale ocean movements based on
eddy and boundary currents. For each of these two
benchmarks, there are contiguous and noncontiguous
versions that allocate data differently in the memory. The
contiguous version arranges contiguous data in the memory
of each thread, thus improving data locality and having
better performance.

Table 4 shows some performance measurements for
the four programs in analysis. As expected, the contiguous
LU and Ocean have shorter execution time than their
noncontiguous counterparts. However, the left panel of
Fig. 14 demonstrates that the core AVF of the noncontiguous
implementation can be higher (in LU) or lower (in Ocean)
than the contiguous one. Noncontiguous LU stores the 2D
matrix in a 2D array, which results in a noncontiguous
memory fragment for each block in this matrix. Conse-
quently, the L1 data cache miss rate (Table 4) increases to 14
percent for noncontiguous LU compared to 1.5 percent for
its contiguous version. Because of the high cache miss rate, a
large number of instructions congest the pipeline, resulting
in higher utilization of pipeline resources and higher AVF.
On the other hand, the cache miss rate does not show
significant difference for Ocean; however, noncontiguous
Ocean encounters much more branch mispredictions (6.48

35

versus 1.11 per 1K instructions). A higher branch mispre-
diction rate slows down the program execution, but also
lowers the AVF because the squashed instructions are not
vulnerable to soft errors. Hence, from these two examples,
we can see that merely optimizing the performance for
multithreaded programs may degrade the soft error relia-
bility.

While increasing the number of concurrent threads
usually reduces the execution time, it has nondeterministic
impact on the core AVF. This can be seen from the left panel
of Fig. 14 where the 1-, 2-, and 4-threaded results are shown.
Note that the values shown in this panel are the average
AVF of different cores due to core homogeneity. On the
other hand, system vulnerability [35], [1] has been proposed
to characterize the cumulative soft error vulnerability over
time for multicores (while the AVF reflects the per-cycle
average soft error rate). Suppose the AVF of core i in an
n-core processor is AVF; (0< = i<n), the processor’s system
vulnerability is (Z;”;Ol AVE;) * ExecutionTime. The right
panel of Fig. 14 shows this measurement for the four
programs with different numbers of threads. We can see
that increasing the number of threads usually increases the
cumulative system vulnerability. In particular, there is an
apparent increase between 2-threaded and 4-threaded runs.
This is because the reduction in the execution time due to
more threads cannot overcome the increase in the AVF
summation of all cores.

6.2 Dynamic AVF Prediction

Since the multithreaded program’s AVF significantly varies
in different situations, an effective AVF prediction across
programs and different numbers of threads is useful and
necessary. In this section, we dynamically predict multi-
threaded workloads” AVF from processor structure occu-
pancies and data cache coherency states. This prediction is
performed during program runtime.

Eight benchmarks (cholesky, fft, radix, barnes, ocean.contig-
uous, ocean.noncontiguous, water nsquared, and water spatial)

P
o

oitic

[
=

oitic

B2t
mdtdc

M
h

]
=

Avg. Core AVF (%)

LU Contig

LU Noncontig Ocean.Contig Ocean.Noncontig

= o
'

o
'

System Vulnerability (1*E+12)

LU.Contig LU.Noncaontig Ocean.Contig Ocean.Moncontig

Fig. 14. The average core AVF (left) and cumulative System Vulnerability (right) of the four SPLASH2 programs running with one, two, and four

threads on single-, dual-, and quad-core processors, respectively.

124 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO.2, MARCH/APRIL 2013

w b oo @
& ©o &6 &

(%)
(-]

Percentage Error (%)

[

!

radix.4

waterspatial. 4

cholesky.2

fit.2

radix.2

barnes.2

oceancontig.2

oceannoncontig.2

waternsquared.2

waterspatial.2
cholesky.8 Il i
barnes.8 |‘ -

oceancontig .8

waternsquared.8

waterspatial.8 1 I

Fig. 15. AVF prediction accuracy of SPLASH2 programs. The number at
the end of a program name indicates the number of threads enabled.

in SPLASH?2 suite are simulated with two, four, and eight
threads enabled on dual-core, quad-core, and eight-core
processors, respectively. All cores in our CMP model have
private L1 I/D caches and share a unified L2 cache. The
data coherencies among different L1 caches are maintained
using a MOESI snooping protocol. We dump the measure-
ments every 500K cycles (called a phase) after program
initialization, collecting about 100 phases from each
program simulation. Since different cores’” AVFs are very
similar in the same program phase during runtime, we use
the measurements from core 0 to represent the system in the
following predictor training and testing.

In addition to structure occupancies and cache misses (as
used in the above two-level predictor), we also include data
cache coherency states as part of the predictor inputs to
characterize the interthread data sharing. Specifically, the
percentage of data cache blocks that are in each of the five
states (i.e., “MOESI”) is calculated. We train the predictor
using the 4-threaded runs of six benchmarks, and test it with
the other two; furthermore, the trained predictor is also
validated with the 2-threaded and 8-threaded phases of all
eight benchmarks (except a few 8-threaded simulations not
runnable in M5). The prediction results are shown in Fig. 15.
We can see that most predictions have median percentage
errors lower than 10 percent. Therefore, our predictor’s
effectiveness is demonstrated across different workloads,
architectures, and phases. Fig. 16 quantifies the input variable
importance of this predictor. As shown, while IQ occupancy
is the most influential factor, three coherency states
(dcache.MODIFIED, dache. OWNED, and dcache.SHARED)
also appear among the top 10 most important factors to the
core AVF of multithreaded programs.

Core AVF (Splash2)

icache.misses
deache. INVALID |
deache misses |
robOccupancy [
dcache SHARED
sqOccupancy [
L2cache.misses [
dcache OWNED ||
dcache MODIFIED [T
cPl
regFileOccupancy [0
IqOccupancy]
dtib.misses |
iqOccupancy

0 10 20 30 40 50 60
Variable Importance(%)

Fig. 16. Input variable importance of the predictor for SPLASH2
multithreaded programs.

galgel
28.4/28.0
241/23.8
=
25.71225 Ibm
gcce 27.0/27.0
236/216
15.2/15.2
sphinx3

Fig. 17. An example of identifying the optimal thread-to-core scheduling
on a two-way two-core CMT processor. The optimal scheduling is shown
in solid lines.

7 CASE StuDY: SOFT ERROR RESILIENT
THREAD-TO-CORE SCHEDULING

This section presents a case study that identifies the
optimal solution for soft error resilient thread-to-core
scheduling on a chip multithreaded (CMT) processor [36].
A CMT processor provides a combination of SMT and
CMP. Programs coscheduled on the same core (via SMT)
compete for the shared pipeline resources, while different
cores compete for the shared memory hierarchy. Therefore,
different thread-to-core schedules may result in completely
different behavior in performance, power, and also AVF.
Suppose each of the n cores in a CMT processor can
support k simultaneous hardware threads, our goal is to
assign the n xk programs to different cores of this CMT
processor in a way that minimizes the overall AVF.

Fig. 17 is a graphic representation of the problem when
n=2 and k=2. In this completely connected graph,
vertices represent the programs to be scheduled, and the
edge weight between two vertices is the core AVF when the
two programs are coscheduled on the same core. Therefore,
finding the optimal program-to-core assignment (when
k = 2) that minimizes the system AVF is identical to solving
the minimum-weight perfect matching problem* in this graph.
Jiang et al. [18] proposed a polynomial-time algorithm to
solve this problem when k equals 2 (n can be larger than 2).
They also proved that this problem became NP-complete
when k is greater than 2.

Consequently, as long as all the core AVF values (i.e., the
weights of all the edges) are known when different program
combinations are coscheduled, we can easily identify the
optimal thread-to-core assignment using Jiang et al.’s
methodology. The two-level AVF prediction proposed in
this paper provides an efficient approach to obtain these
AVEF values. In Fig. 17, the two values shown on each edge
are the measured/predicted core AVF when the corre-
sponding two programs execute on the same core. As
shown, both measured and predicted values make the same
correct decision: in this example, the optimal schedule is the
assignment of (gcc, sphinx3) on one core and (galgel, Ibm) on
the other core. We can see that a suboptimal schedule, such
as (gcc, Ibm) with (galgel, sphinx3), can enlarge the system
AVEF by over 34 percent.

4. A matching in a graph is a set of edges without common vertices. A
perfect matching is a matching that covers all vertices of the graph.

DUAN ET AL.: PREDICTING ARCHITECTURAL VULNERABILITY ON MULTITHREADED PROCESSORS UNDER RESOURCE CONTENTION... 125

<
K,\H—ﬁ SN SPET A S 40 P 2o g - ¢—¢-y\->‘,,4,‘ -
" | |

\

40 |X BTN X K g R ST il T A A
b - ¢

—+—Ibm_gcc / galgel_sphinx3
—=—|bm_galgel / gcc_sphinx3
Ibm_sphinx3 / galgel_gcc
0+ =x=50S
1 6 1

System AVF

16 pil 75 3 36
Intervals

Fig. 18. The runtime AVF behavior of different schedules. The SOS
curve indicates the online AVF variation when the “SOS” job scheduler
is utilized.

Finally, to apply the above scheduling approach during
program runtime, one can utilize Snavely et al.’s [33].
“Sample-Optimize-Symbios” (SOS) job scheduler. SOS first
runs each possible schedule for a short phase (i.e.,
“Sample”), selects the one with the highest goodness level
(i.e., “Optimize”), and then runs the selected schedule for a
number of intervals (i.e., “Symbios”). SOS periodically
repeats the above procedure to choose the optimal schedule
adapting to program runtime behavior. Fig. 18 shows the
runtime AVF of different schedules constructed from the
previous four benchmarks. When SOS is applied, it
simulates each of the three schedules for one interval,
during which it collects the performance inputs and
predicts the AVFE. After the sample phase, SOS sticks to
the schedule with the lowest AVF for the next 10 intervals,
and then reenters the sample phase. From this figure, we
can see that SOS is very effective in identifying runtime
optimal schedules.

8 RELATED WORK

The concept of AVF was originally proposed in [28], and
Biswas et al. [4] extended it to address-based structures. A
common approach to calculate the AVF is via ACE analysis
[28] which provides a tight lower bound [5] on the soft error
reliability of various processor structures. A unified frame-
work named Sim-SODA [15] to study the superscalar
processor’s AVF was released. Soundararajan et al. [34]
described a simple infrastructure to estimate an upper
bound of the ROB AVF. Zhang et al. [47] characterized the
AVF on SMT architectures by examining the impact from
workloads, fetch policies, etc. On the other hand, Statistical
Fault Injection (SFI) [43], [24] provides another approach to
calculate the AVF. The comparison between these two
methods have been made [42], [5]. Recently, Sridharan et al.
proposed program vulnerability factor (PVF) [37] and
hardware vulnerability factor (HVF) [38] to describe
architecture-independent program vulnerability and soft-
ware-independent hardware vulnerability to soft errors.
Several prior publications studied online AVF predic-
tion. Fu et al. [16] observed a fuzzy correlation between
the AVF and a few common performance metrics. Walcott
et al. [41] extended the input metrics set and used linear
regression to reexamine this correlation. They performed a
very accurate prediction, proving the existence of the
correlation between the AVF and various performance
metrics. Our prior work [11], [12], [22] further generalized
this correlation to be across workloads, execution phases,
and processor configurations. Alternatively, Li et al. [23]

developed an online algorithm to estimate processor
structures” vulnerability using a modified error injection
and propagation scheme [24]. For the correlation between
the AVF and configuration parameters, Cho et al. [9], [10]
predicted the dynamics of power, CPI, and the AVF using
a combination of wavelets and neural networks. In
contrast, the first-level model in this work is universal
across different programs, taking performance measure-
ments as part of the inputs. Another work of ours [13]
utilized a rule search strategy to generate selective rules
on design parameters that optimize cross-program soft
error reliability.

Regarding the investigation of the interthread contention
on multicore architectures, Lee et al. [21] proposed a
composable performance regression (CPR) scheme to
predict the performance of a benchmark combination on a
multiprocessor from configuration parameters; Chandra
et al. [8] predicted the impact of contention on the shared
cache using three performance models. Our work differs
from theirs in the following ways: 1) We study and predict
the soft error vulnerability of processor structures; 2) we
also evaluate the SMT structures where the interthread
contention shows more significant impact; and 3) the
statistical technique used in our work provides useful
model interpretations. Moreover, by varying the numbers
of cores and application threads, Soundararajan et al. [35]
concluded that the configurations optimizing soft error
reliability of different multithreaded applications are not
straightforward. Zhang and Li [48] proposed useful
schemes to manage multicore’s soft error reliability.

9 CONCLUSIONS

In this paper, we propose a two-level predictive mechanism
to accurately predict the soft error vulnerability of multi-
threaded processors under resource contention and sharing.
The first-level model correlates the AVF in a contention-free
environment with important performance metrics and the
underlying processor configuration; the second-level model
takes as inputs the output of the first-level model and a few
performance measures under resource contention from
multithreaded processors. The proposed scheme is scalable
to architectures with more than two threads. Furthermore, a
different multithreaded implementation (e.g., in memory
allocation and program parallelism) has significant impact
on multithreaded workloads’ soft error reliability. In
general, increasing the number of parallel threads increases
the cumulative system vulnerability. Collectively, this work
provides useful mechanisms and guidelines to achieve soft
error resilient multithreaded processor designs.

ACKNOWLEDGMENTS

This work was supported in part by a US National
Science Foundation (NSF) grant CCF-1017961, the Louisi-
ana Board of Regents grant NASA/LEQSF (2005-2010)-
LaSPACE and NASA grant number NNGO05GH22H,
NASA(2011)-DART-46, LQESF(2011)-PFUND-238 and the
Chevron Innovative Research Support (CIRS) Fund. The
authors acknowledge the computing resources provided
by the Louisiana Optical Network Initiative (LONI) HPC
team. Finally, the authors appreciate invaluable comments
from anonymous reviewers.

126

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO.2, MARCH/APRIL 2013

REFERENCES

(1]

(2]

(3]
(4

(5]

(o]

[

8]

]

(10]

(11]

[12]

(13]

[14]

[15]

[1o]

(171

(18]

[19]

[20]

(21]

(22]

H. Asadi, V. Sridharan, M. Tahoori, and D. Kaeli, “Balancing
Performance and Reliability in the Memory Hierarchy,” Proc. Int’l
Symp. Performance Analysis of Systems and Software (ISPASS), 2005.
T. Austin, “DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design,” Proc. Int’l Symp. Microarchitecture
(MICRO), 1999.

N. Binkert et al., “The M5 simulator: Modeling networked
systems,” IEEE Micro, vol. 26, no. 4, pp. 52-60, July/ Aug 2006.
A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. Mukherjee, and
R. Rangan, “Computing Architectural Vulnerability Factors for
Address-Based Structures,” Proc. 32nd Ann. Int'l Symp. Computer
Architecture (ISCA), 2005.

A. Biswas, P. Racunas,]. Emer, and S. Mukherjee, “Computing
Accurate AVFs Using ACE Analysis on Performance Models: A
Rebuttal,” Computer Architecture Letters, vol. 7, no. 1, pp. 21-24, Jan.
2008.

L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and
Regression Trees. Wadsworth Int’l Group, 1984.

P. Bithlmann, “Boosting for High-Dimensional Linear Models,”
Ann. of Statistics, vol. 34, pp. 559-583, 2006.

D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting Inter-
Thread Cache Contention on a Chip Multi-Processor Architec-
ture,” Proc. 11th Int’l Symp. High-Performance Computer Architecture
(HPCA), 2005.

C. Cho, W. Zhang, and T. Li, “Informed Microarchitecture Design
Space Exploration Using Workload Dynamics,” Proc. IEEE/ACM
40th Ann. Int’l Symp. Microarchitecture (MICRO), 2007.

C. Cho, W. Zhang, and T. Li, “Modeling and Analyzing the
Effect of Microarchitecture Design Space Parameters on Micro-
processor Soft Error Vulnerability,” Proc. Int’l Symp. Modeling,
Analysis, and Simulation of Computer and Telecomm. Systems
(MASCOTS), 2008.

L. Duan, B. Li, and L. Peng, “Versatile Prediction and Fast
Estimation of Architectural Vulnerability Factor from Processor
Performance Metrics,” Proc. 15th Int’l Conf. High-Performance
Computer Architecture (HPCA), 2009.

L. Duan, L. Peng, and B. Li, “Two-Level Soft Error Vulnerability
Prediction on SMT/CMP Architectures,” Proc. IEEE Int’l Symp.
Workload Characterization (IISWC), 2011.

L. Duan, Y. Zhang, B. Li, and L. Peng, “Universal Rules Guided
Design Parameter Selection for Soft Error Resilient Processors,”
Proc. Int’l Symp. Performance Analysis of Systems and Software
(ISPASS), 2011.

J. Friedman, “Greedy Function Approximation: A Gradient
Boosting Machine,” The Ann. of Statistics, vol. 29, pp. 1189-1232,
2001.

X. Fu, T. Li, and J. Fortes, “Sim-SODA: A Unified Framework for
Architectural Level Software Reliability Analysis,” Proc. Workshop
Modeling, Benchmarking and Simulation, 2006.

X. Fu, J. Poe, T. Li, and J. Fortes, “Characterizing Microarchitec-
ture Soft Error Vulnerability Phase Behavior,” Proc. IEEE 14th Int’l
Symp. Modeling, Analysis, and Simulation of Computer and Telecomm.
Systems (MASCOTS), 2006.

M. Gomaa, C. Scarbrough, T. Vijaykumar, and I. Pomeranz,
“Transient-Fault Recovery for Chip Multiprocessors,” Proc. 30th
Ann. Int’l Symp. Computer Architecture (ISCA), 2003.

Y. Jiang, X. Shen, C. Jie, and R. Tripathi, “Analysis and
Approximation of Optimal Co-Scheduling on Chip Multiproces-
sors,” Proc. 17th Int’l Conf. Parallel Architectures and Compilation
Techniques (PACT), 2008.

E. Ipek, S. McKee, B. de Supinski, M. Schulz, and R. Caruana,
“Efficiently Exploring Architectural Design Spaces via Predictive
Modeling,” Proc. 12th Int’l Conf. Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2006.

B. Lee and D. Brooks, “Accurate and Efficient Regression
Modeling for Microarchitectural Performance and Power Predic-
tion,” Proc. 12th Int’l Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2006.

B. Lee, J. Collins, H. Wang, and D. Brooks, “CPR: Composable
Performance Regression for Scalable Multiprocessor Models,”
Proc. IEEE/ACM 41st Ann. Int’l Symp. Microarchitecture (MICRO),
2008.

B. Li, L. Duan, and L. Peng, “Efficient Microarchitectural
Vulnerabilities Prediction Using Boosted Regression Trees and
Patient Rule Inductions,” IEEE Trans. Computers, vol. 59, no. 5,
pp- 593-607, May 2010.

(23]

(24]

(23]

(26]

(27]

(28]

[29]

(30]

(31]

[32]

(33]

(34]

(35]

[30]

[37]

[38]

(39]

(40]

[41]

[42]

(43]

(44]

(43]

X. Li, S. Adve, P. Bose, and J. Rivers, “Online Estimation of
Architectural Vulnerability Factor for Soft Errors,” Proc. Int'l
Symp. Computer Architecture (ISCA), 2008.

X. Li, S. Adve, P. Bose, and]. Rivers, “SoftArch: An Architecture-
Level Tool for Modeling and Analyzing Soft Errors,” Proc. Int’l
Conf. Dependable Systems and Networks (DSN), 2005.

Y. Li, B. Lee, D. Brooks, Z. Hu, and K. Skadron, “CMP Design
Space Exploration Subject to Physical Constraints,” Proc. Int’l
Symp. High-Performance Computer Architecture (HPCA), 2006.

M. Monchiero et al.,, “Design Space Exploration for Multicore
Architectures: Power/Performance/Thermal View,” Proc. 20th
Ann. Int’l Conf. Supercomputing (ICS), 2006.

S. Mukherjee, M. Kontz, and S. Reinhardt, “Detailed Design and
Evaluation of Redundant Multithreading Alternatives,” Proc. Int’l
Symp. Computer Architecture (ISCA), 2002.

S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin, “A
Systematic Methodology to Compute the Architectural Vulner-
ability Factors for a High-Performance Microprocessor,” Proc.
IEEE/ACM 36th Ann. Int’l Symp. Microarchitecture (MICRO), 2003.
S. Reinhardt and S. Mukherjee, “Transient Fault Detection via
Simultaneous Multithreading,” Proc. Int'l Symp. Computer Archi-
tecture (ISCA), 2000.

E. Rotenberg, “AR-SMT: A Microarchitectural Approach to Fault
Tolerance in Microprocessor,” Proc. 29th Ann. Int’l Symp. Fault-
Tolerant Computing (FTCS), 1999.

J. Sharkey, D. Ponomarev, and K. Ghose, “M-SIM: A Flexible,
Multithreaded Architectural Simulation Environment,” Technical
Report CS-TR-05-DP01, Dept. of Computer Science, SUNY at
Binghamton, Oct. 2005.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Auto-
matically Characterizing Large Scale Program Behaviors,” Proc.
10th Int’l Conf. Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2002.

A. Snavely and D. Tullsen, “Symbiotic Jobscheduling for a
Simultaneous Multithreading Processor,” Proc. Ninth Int’l Conf.
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2000.

N. Soundararajan, A. Parashar, and A. Sivasubramaniam, “Me-
chanisms for Bounding Vulnerabilities of Processor Structures,”
Proc. Int’l Symp. Computer Architecture (ISCA), 2007.

N. Soundararajan, A. Sivasubramaniam, and V. Narayanan,
“Characterizing the Soft Error Vulnerability of Multicores Run-
ning Multithreaded Applications,” Proc. ACM SIGMETRICS Int'l
Conf. Measurement and Modeling of Computer Systems, 2010.

L. Spracklen and S. Abraham, “Chip Multithreading: Opportu-
nities and Challenges,” Proc. Int’l Symp. High-Performance Compu-
ter Architecture (HPCA), 2005.

V. Sridharan and D. Kaeli, “Eliminating Microarchitectural
Dependency from Architecture Vulnerability,” Proc. Int'l Symp.
High-Performance Computer Architecture (HPCA), 2009.

V. Sridharan and D. Kaeli, “Using Hardware Vulnerability Factors
to Enhance AVF Analysis,” Proc. Int’l Symp. Computer Architecture
(ISCA), 2010.

D. Tullsen, S. Eggers,]J. Emer, H. Levy, J. Lo, and R. Stamm,
“Exploiting Choice: Instruction Fetch and Issue on an Implemen-
table Simultaneous Multithreading Processor,” Proc. Int'l Symp.
Computer Architecture (ISCA), 1996.

T. Vijaykumar, I. Pomeranz, and K. Cheng, “Transient-Fault
Recovery Using Simultaneous Multithreading,” Proc. 23rd Int’l
Symp. Computer Architecture (ISCA), 2002.

K. Walcott, G. Humphreys, and S. Gurumurthi, “Dynamic
Prediction of Architectural Vulnerability from Microarchitectural
State,” Proc. Int'l Symp. Computer Architecture (ISCA), 2007.

N. Wang, A. Mahesri, and S. Patel, “Examining ACE Analysis
Reliability Estimates Using Fault-Injection,” Proc. Int'l Symp.
Computer Architecture (ISCA), 2007.

N. Wang, J. Quek, T. Rafacz, and S. Patel, “Characterizing the
Effects of Transient Faults on a High-Performance Processor
Pipeline,” Proc. Int’l Conf. Dependable Systems and Networks (DSN),
2004.

C. Weaver, J. Emer, S. Mukherjee, and S. Reinhardt, “Techniques
to Reduce the Soft Error Rate of a High-Performance Micro-
processor,” Proc. Int’l Symp. Computer Architecture (ISCA), 2004.
S.C. Woo et al,, “The SPLASH-2 Programs: Characterizing and
Methodological Considerations,” Proc. Int’l Symp. Computer
Architecture (ISCA), 1995.

DUAN ET AL.: PREDICTING ARCHITECTURAL VULNERABILITY ON MULTITHREADED PROCESSORS UNDER RESOURCE CONTENTION... 127

[46] T. Zhang and B. Yu, “Boosting with early stopping: Convergence
and Consistency,” Ann. of Statistics, vol. 33, pp. 1538-1579, 2005.

[47] W. Zhang, X. Fu, T. Li, and]. Fortes, “An Analysis of
Microarchitecture Vulnerability to Soft Errors on Simultaneous
Multithreaded Architectures,” Proc. IEEE Int’l Symp. Performance
Analysis of Systems and Software (ISPASS), 2007.

[48] W. Zhang and T. Li, “Managing Multi-Core Soft-Error Reliability
through Utility-Driven Cross Domain Optimization,” Proc. Int’l
Conf. Application-Specific Systems, Architectures and Processors
(ASAP), 2008.

[49] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing
Shared Resource Contention in Multicore Processors via Schedul-
ing,” Proc. Int’l Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2010.

[50] J. Ziegler et al., “IBM Experiments in Soft Fails in Computer
Electronics (1978-1994),” IBM |. Research and Development, vol. 40,
no. 1, pp. 3-18, 1996.

Lide Duan received the BS degree in computer
science and engineering from Shanghai Jiao
Tong University, China, and the PhD degree in
electrical and computer engineering from
Louisiana State University. He is currently a
senior design engineer for AMD’s x86 core
architectures. His research interests include
computer architecture, soft error reliability
analysis and prediction, and application-level
error propagation prediction. He received a
Graduate Fellowship from the Louisiana Optical Network Initiative
(LONI) and the Dissertation Year Fellowship from the Louisiana State
University Graduate School while working on his PhD degree.

Lu Peng received the bachelor's and master’s
degrees in computer science and engineering
from Shanghai Jiao Tong University, China, and
the PhD degree in computer engineering from
the University of Florida, Gainesville, in April
2005. He is currently an associate professor with
the Division of Electrical and Computer Engi-
neering at Louisiana State University. His
research focuses on memory hierarchy systems,

* reliability, power efficiency, and other issues in
CPU design. He also has interest in network processors. He received an
ORAU Ralph E. Powe Junior Faculty Enhancement Award in 2007 and a
Best Paper Award from the IEEE International Conference on Computer
Design in 2001. He is a member of the ACM and the IEEE Computer
Society.

Bin Li received the bachelor's degree in
biophysics from Fudan University, China, the
master’s degree in biometrics in August 2002,
and the PhD degree in statistics in August
2006 from the Ohio State University. He is an
associate professor with the Experimental
Statistics Department at Louisiana State
University. His research interests include sta-
tistical learning and data mining, statistical
modeling on massive and complex data, and
Baye3|an statistics. He received the Ransom Marian Whitney
Research Award in 2006 and a Student Paper Competition Award
from the American Statistical Association on Bayesian Statistical
Science in 2005. He is a member of the Institute of Mathematical
Statistics and the American Statistical Association.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

