
Efficient MART-Aided Modeling for Microarchitecture  
Design Space Exploration and Performance Prediction 

 
Bin Li 

Department of Experimental Statistics  
Louisiana State University 
Baton Rouge, LA 70803 

bli@lsu.edu 

Lu Peng 
Electrical & Computer Engineering 

Louisiana State University 
Baton Rouge, LA 70803 

lpeng@lsu.edu 

Balachandran Ramadass 
Electrical & Computer Engineering 

Louisiana State University 
Baton Rouge, LA 70803 
bramad2@lsu.edu 

 
ABSTRACT 
Computer architects usually evaluate new designs by cycle-
accurate processor simulation. This approach provides detailed 
insight into processor performance, power consumption and com-
plexity. However, only configurations in a subspace can be simu-
lated in practice due to long simulation time and limited resource, 
leading to suboptimal conclusions which might not be applied in a 
larger design space. In this paper, we propose an automated per-
formance prediction approach which employs state-of-the-art 
techniques from experiment design, machine learning and data 
mining. Our method not only produces highly accurate estima-
tions for unsampled points in the design space, but also provides 
interpretation tools that help investigators to understand perform-
ance bottlenecks. According to our experiments, by sampling only 
0.02% of the full design space with about 15 millions points, the 
median percentage errors, based on 5000 independent test points, 
range from 0.32% to 3.12% in 12 benchmarks. Even for the 
worst-case performance, the percentage errors are within 7% for 
10 out of 12 benchmarks. In addition, the proposed model can 
also help architects to find important design parameters and per-
formance bottlenecks.   

Categories and Subject Descriptors 
C.4 [PERFORMANCE OF SYSTEMS] - Measurement tech-
niques; Modeling techniques. 

General Terms 
Measurement, Performance, Design, Experimentation. 

Keywords 
Design Space Exploration; Performance Prediction; MART-
Aided Models. 

1. INTRODUCTION 
Computer architects usually evaluate new designs by employing 
cycle-accurate processor simulators which provide detailed in-
sight into processor performance, power consumption and com-
plexity. A huge design space is composed by the product of the 
choices of many microarchitectural design parameters such proc-
essor frequency, issue width, cache size/latency, branch predictor 
settings, etc. To achieve an optimal processor design, a wide con-

figuration spectrum of the design space has to be tested before 
making a final decision. However, only configurations in a sub-
space can be simulated in practice due to long simulation time and 
limited resource, leading to suboptimal conclusions which might 
not be applied in the whole design space. In addition, more pa-
rameters brought by chip-multiprocessors make this problem 
more urgent [2][3]. 
 
In this paper, we propose to use the state-of-the-art tree-based 
predictive modeling method combining with advanced sampling 
techniques from statistics and machine learning to explore the 
microarchitectural design space and predict the processor per-
formance. This bridges the gap between simulation requirements 
and simulation time/resource costs. The proposed method in-
cludes the following four components: (1) the maximin space-
filling sampling method that selects the initial design representa-
tives from among a large amount of design alternatives; (2) the 
state-of-the-art predictive modeling method Multiple Additive 
Regression Trees (MART) [1] that builds a nonparametric model 
with exceptional accuracy while remaining remarkably robust; (3) 
an active learning method that selects the most informative design 
points needed to improve the prediction accuracy sequentially; (4) 
interpretation tools for MART-fitted models that shows the im-
portance and partial dependence of design parameters. 
 
According to our experiments on 12 SPEC benchmarks, by sam-
pling 3000 points drawn from a microarchitecture design space 
with nearly 15 million configurations (sampled up to 0.02 percent 
of the full design space) for each program, we can summarize the 
following results: 
1. Performance Prediction: Application-specific models pre-

dict performance, based on 5000 independent sampled de-
sign points, with median percentage error ranges from 0.32% 
to 3.12% (average percentage error ranges from 0.41% to 
4.18%).  

2. Worst-Case Performance: the worst percentage errors are 
within 7% for 10 out of 12 benchmarks. The largest worst 
case percentage error of our proposed method is 22.55% for 
art. This is still much better than that of linear regression 
model which has a worst case percentage error 87.69%.  

3. Model Interpretation: The proposed model shows that sev-
eral design factors are more important than others: 
Fetch/Issue/Commit width and the number of ALU units, L2 
cache size and branch predictor types and sizes. It also finds 
a performance bottleneck resulting from a relative small 
number of LSQ entries. 
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2. METHODOLOGY 
In experiment design, the distance-based space-filling sampling 
methods are popular, especially, when we believe that interesting 
features of the true model are just as likely to be in one part of the 
experimental region as another. Among them, the maximin dis-
tance design is commonly used. However, since some of the ar-
chitectural design parameters are nominal (no intrinsic ordering 
structure) and the others are discrete (having a small number of 
values), we use the following defined distance before applying the 
maximin distance criterion. Let  be the weight for the jth 

design parameter. 
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( )AI  is an indicator function, equal to one when A holds, other-
wise zero. Note that the weight for each design parameter is equal 
to its information entropy with uniform probability for each of its 
possible values. 
 
In our method, a small number of initial design points are selected 
based on the Maximin distance criterion (maximize the shortest 
distance among selected points). The processor performance is 
measured via benchmark simulations on the selected design 
points. Then, MART is applied 20 times on the sampled points 
with random perturbation. The reason to use MART, an ensemble 
of trees, is the following: (1) trees are inherently nonparametric 
and can handle mixed-type of input variables naturally, i.e. no 
assumptions are made regarding the underlying distribution of 
values of the input variables, as well as categorical predictors with 
either ordinal or non-ordinal structure; (2) trees are adept at cap-
turing non-additive behavior, i.e. complex interactions among 
predictors are routinely and automatically handled with relatively 
little input required from the analyst; (3) MART improves the 
prediction performance from a single tree by using an ensemble 
of trees.  
 
Adaptive sampling, also known as active learning in machine 
learning literature, involves sequential sampling schemes that use 
information gleaned from previous observations to guide the sam-
pling process. Studies have shown that adaptively selecting sam-
ples in order to learn a target function can outperform conven-
tional sampling schemes. In our method, for each of the MART-
fitted model, it predicts the rest of the points in the design space. 
Sort these points according to the coefficient of variance (CoV, 
the ratio of standard deviation to mean) for the model prediction. 
Selected the points with maximal CoV (under minimal pairwise-
distance constrain) and measure their performance. Repeat the 
underlined adaptive sampling process above until some stopping 
criterion is met (e.g. time limit and user pre-specified number of 
iterations).    

3. EXPERIMENTAL RESULTS 
We modified sim-outorder, the out-of-order pipelined simulator in 
SimpleScalar, to be an eight-stage Alpha-21264 like pipeline. 
Twelve (eight integer and four floating point) CPU and memory 
intensive programs from SPEC2000 were selected. To show the 
typical behavior, we skipped a number of instructions for each 

SPEC program based on a previous work [4]. Then we collected 
the number of execution cycles for the next 100 million instruc-
tions. The total design space for each workload is about 15 mil-
lion configurations composed of the cross product of 13 design 
parameter choices. For each workload, 500 initial design points 
are sampled based on the maximin distance criterion described in 
Section 2. Then another 500 points are sampled according to the 
adaptive sampling scheme described in Section 2. Repeat the 
sampling process until 3000 design points were sampled for each 
benchmark. Notice that for 3000 points, we only explored ap-
proximately 0.02% of the total 15 million points in the design 
space. An independent test set which consists of 5000 points is 
used to evaluate the prediction performance of fitted models. The 
following table shows the average percentage errors (PE) on 
twelve benchmarks with roughly 0.0067%, 0.0133% and 0.02% 
space sampled. The mean PE ranges from 0.41% to 4.18% for the 
12 benchmarks. For the worst-case performance, the percentage 
errors are within 7% for 10 out of 12 benchmarks. The results 
indicate that our model achieves highly accurate prediction and 
robustness under the worst-case situation. 

Table 1: Summary of performance prediction error with specified 
error and percentage of full space sampled. Max PE is the maxi-
mum percentage error among the 5000 test points. 
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art 6.299 42.79 4.633 24.95 4.179 22.55 
bzip 0.734 4.496 0.460 3.328 0.406 3.165 

crafty 1.623 13.10 1.018 7.171 0.865 5.529 
equake 2.654 18.69 2.260 15.77 2.130 15.04 
fma3d 0.912 5.426 0.704 3.362 0.625 2.964 

gcc 0.740 4.044 0.491 3.024 0.426 2.256 
mcf 0.668 4.988 0.501 4.217 0.456 4.236 

parser 0.831 4.905 0.515 3.649 0.420 2.305 
swim 1.442 9.588 0.905 5.937 0.659 4.627 
twolf 1.826 10.35 1.380 7.533 1.227 6.315 
vortex 1.359 13.07 0.925 7.112 0.800 6.885 

vpr 0.983 6.929 0.616 4.533 0.529 4.323 
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