
Harmonia: A High Throughput B+tree for GPUs
Zhaofeng Yan

Software School, Fudan University
Shanghai Key Laboratory of Data Science, Fudan

University
Shanghai Institute of Intelligent Electronics & Systems,

Shanghai
zfyan16@fudan.edu.cn

Yuzhe Lin
Software School, Fudan University

Shanghai Key Laboratory of Data Science, Fudan
University

yzlin14@fudan.edu.cn

Lu Peng
Division of Electrical and Computer Engineering

Louisiana State University
lpeng@lsu.edu

Weihua Zhang
Software School, Fudan University

Shanghai Key Laboratory of Data Science, Fudan
University

zhangweihua@fudan.edu.cn

Abstract
B+tree is one of the most important data structures and
has been widely used in different fields. With the increase
of concurrent queries and data-scale in storage, designing
an efficient B+tree structure has become critical. Due to
abundant computation resources, GPUs provide potential
opportunities to achieve high query throughput for B+tree.
However, prior methods cannot achieve satisfactory per-
formance results due to low resource utilization and poor
memory performance.
In this paper, we first identify the gaps between B+tree

and GPUs. Concurrent B+tree queries involve many global
memory accesses and different divergences, which mismatch
with GPU features. Based on this observation, we propose
Harmonia, a novel B+tree structure to bridge the gap. In
Harmonia, a B+tree structure is divided into a key region
and a child region. The key region stores the nodes with its
keys in a breadth-first order. The child region is organized
as a prefix-sum array, which only stores each node’s first
child index in the key region. Since the prefix-sum child
region is small and the children’s index can be retrieved
through index computations, most of it can be stored in on-
chip caches, which can achieve good cache locality. To make
it more efficient, Harmonia also includes two optimizations:
partially-sorted aggregation and narrowed thread-group tra-
versal, which can mitigate memory and warp divergence

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PPoPP ’19, February 16–20, 2019, Washington, DC, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6225-2/19/02. . . $15.00
https://doi.org/10.1145/3293883.3295704

and improve resource utilization. Evaluations on a TITAN
V GPU show that Harmonia can achieve up to 3.6 billion
queries per second, which is about 3.4X faster than that of
HB+Tree [39], a recent state-of-the-art GPU solution.

CCS Concepts • Information systems → Data struc-
tures; • Computer systems organization→ Parallel ar-
chitectures.

Keywords GPU, B+tree, High-throughput

1 Introduction
B+tree [10] is one of the most important data structures,
which has been widely used in different fields, such as web
indexing, database, data mining and file systems [23, 41]. In
the era of big data, the demand for high throughput process-
ing is increasing. For example, there are millions of searches
per second on Google while Alibaba processes 325,000 sale
orders per second [44]. Meanwhile, the data scale on server
storage is also expanding rapidly. For instance, Netflix es-
timated that there are 12 PetaByte data per day moved up-
wards to the data warehouse in stream processing system[2].
All these factors put tremendous pressures on applications
which use B+tree as index data structure.

Graphics Processing Units (GPUs) have become one of
the most popular many-core processors. Due to abundant
computation resources [26], GPUs have occupied about 80%
of the accelerator market share in the high-performance
computing (HPC) market [27], and have been widely used in
cloud computing environments. They also provide a poten-
tial opportunity to accelerate query throughput of B+tree.
Many previous works [6, 11, 21, 22, 39] have used GPUs to
accelerate the query performance of B+tree. However, those
designs have not achieved satisfactory results, due to low
resource utilization and poor memory performance.
In this paper, we perform a comprehensive analysis on

B+tree and GPUs, and identify several gaps between the

133

https://doi.org/10.1145/3293883.3295704

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Zhaofeng Yan, Yuzhe Lin, Lu Peng, and Weihua Zhang

characteristics of B+tree and the features of GPUs. For tradi-
tional B+tree, a query needs to traverse the tree from root to
leaf, which would involve many indirect memory accesses.
Moreover, two concurrent executed queries may have dif-
ferent tree traversal paths, which would lead to different
divergences when they are processed in a GPU warp simul-
taneously. All these characteristics of B+tree are mismatched
with the features of GPUs, which impede the query perfor-
mance of B+tree on GPUs.

Based on this observation, we propose Harmonia, a novel
B+tree structure, to bridge the gaps between B+tree and
GPUs. In Harmonia, the B+tree structure is partitioned into
two parts: a key region and a child region. The key region
stores the nodes with its keys in a breadth-first order. The
child region is organized as a prefix-sum array, which only
stores each node’s first child index in the key region. The
locations of other children can be obtained based on these
index number and the node size. With this compression,
most of the prefix-sum array can be stored in GPU caches.
Therefore, such a design matches GPUmemory hierarchy for
good cache locality and can avoid indirect memory accesses.
To further improve the query performance of Harmonia,

we propose two optimizations including partially-sorted ag-
gregation (PSA) and narrowed thread-group traversal (NTG).
For PSA, we sort the queries in a time window before issuing
them. Since adjacent sorted queries are more likely to share
the same tree traversal path, it increases the opportunity of
coalesced memory accesses when multiple adjacent queries
are processed in a warp. For NTG, we reduce the number of
threads for each query to avoid useless comparisons. When
the thread group for each query is narrowed, more queries
can be combined into a warp, which may increase warp di-
vergence. To mitigate the warp divergence problem brought
by query combinations, we design a model to decide how to
narrow the thread group for a query.

Experimental results showHarmonia can achieve a through-
put of up to 3.6 billion queries per second on a TITAN VGPU,
which is about 3.4X higher than that of HB+tree [39], a re-
cent state-of-the-art GPU solution. The main contributions
of our work can be summarized as follows:

• Analysis on the gaps between B+tree and GPUs.
• A novel B+tree structure which matches GPU memory
hierarchy well with good locality.

• Two optimizations to reduce divergences and improve
GPU computation resource utilization.

The rest of this paper is organized as follows. Section 2 intro-
duces the background and discusses our motivation. Section
3 gives out Harmonia structure and tree operations. Section
4 introduces two optimizations applied on Harmonia tree
structure. Section 5 shows the experimental results. Section
6 surveys the related work. Section 7 concludes the work.

2 Background and Motivation
This section first introduces the background. Then, the gaps
between GPUs and B+tree are discussed.

2.1 General-Purpose GPUs
Graphics Processing Units (GPUs) are one of the most pop-
ular many-core processors and have been widely used in
different fields, such as HPC and big data processing. A
typical GPU architecture is shown in Figure 1. There are
multiple stream multiprocessors (SMs) in a GPU. Each SM
has multiple CUDA cores with software configurable shared
memory (L1 cache) and read-only data cache. GPUs also
have several memory hierarchy layers shared by all SMs
including L2 cache, constant memory, texture memory, and
off-chip global memory. Among them, global memory is the
slowest one, which generally requires several hundred cycles
to access.

GPU

L2 Cache

Global Memory

Constant Memory

Texture Memory

Register File

Shared Memory(L1 Cache)

Read-Only Data Cache

…

SM 1
GPU

… …

SM n

Figure 1. An overview of Nvidia GPU Architecture

To utilize the computation resources in an SM, multiple
consecutive threads, e.g., 32 threads, are organized into a
warp. Each thread is executed on a CUDA core and the
threads in a warp are executed in a single instruction multi-
ple thread (SIMT) manner. Multiple warps compose a thread
block that can be dispatched to a specific SM. The warps
on the same SM are scheduled to hide long memory access
latency. The thread blocks further constitute a GPU kernel,
which is a parallel function that can be invoked by the pro-
grammer and executed on all the SMs in a GPU.
Since the instructions are issued and executed at a warp

granularity, executing different instructions among the threads
in a warp will bring warp divergence [1]. Moreover, memory
operations are also issued per warp. If a batch of memory
addresses requested by a warp fall within one GPU cache
line, which is called coalesced memory access [1, 20], they
can be served by single memory transaction. Therefore, the
coalesced memory access pattern can improve the memory

134

PPoPP ’19, February 16–20, 2019, Washington, DC, USA

load efficiency and throughput. Otherwise, multiple mem-
ory transactions will be required, which leads to memory
divergence [11, 47].
GPUs provide powerful computation resources and high

memory bandwidth. To fully utilize them, an application
should have the following characteristics.

Reducing globalmemory accesses. Globalmemory accesses
are performance bottlenecks for GPUs. Therefore, increasing
on-chip data locality and reducing global memory accesses
are critical to improving performance.

Avoiding warp divergence. When warp divergence hap-
pens, the threads in a warp execute different instructions.
Since the threads in a warp are executed in the SIMT mode,
they have to be partitioned into several sub-groups based
on the instructions. When the threads in a sub-group are
executed, the other threads have to wait, which leads to low
resource utilization.

Avoiding memory divergence. Memory divergence leads
to multiple memory transactions which impose long delays
on GPU applications. Therefore, avoiding memory diver-
gence is important for GPU performance.

2.2 Gaps between GPUs and B+tree
B+tree is a self-balanced tree [10] where the largest number
of children in one node is called fanout. Each internal node
can store no more than fanout-1 keys and fanout child refer-
ences. There are two kinds of B+tree organizations: regular
B+tree and implicit B+tree [29]. For regular B+tree, each
node in B+tree contains two types of information: key in-
formation and child reference information. Child references
are used to get the child locations. For implicit B+tree, the
tree is complete and only contains key information, which
is arranged in an array with the breadth-first order. Implicit
B+tree achieves the child locations using index computa-
tions. It has to restructure the entire tree for some update
operations, such as insert or delete. Since restructuring tree
structure is very time consuming, wemainly focus on regular
B+tree in this paper.
For B+tree, when a query is performed, it traverses the

tree from the root to a leaf level by level. At each tree level,
the query visits one node. It first compares with the keys held
by current node to find a child whose corresponding range
contains the target key. Then it accesses the child reference
to fetch the target child’s position as the next level node to
visit.

Because of high query throughput and the support of or-
der operations, such as range query, B+tree has been widely
used in different fields like web indexing, file systems, and
databases. Since search performance is more important for
lookup-intensive scenario, such as online analytical pro-
cessing (OLAP), decision support systems and data mining.
[15, 39, 45, 46], B+tree systems typically use batch update

instead of mixing search and update operations to achieve
high lookup performance. With data scale increasing, it has
become more and more critical that how to further improve
B+tree query performance.
It seems that GPU is a potential solution to accelerating

search performance of B+tree due to its powerful computa-
tion resources. However, prior GPU-based B+tree methods
cannot achieve satisfactory performance results. To under-
stand the underlying reasons, we perform a detailed analysis
and uncover three main sources of the performance gaps
between B+tree and GPUs.

Gap in Memory Access Requirement. Each B+tree query
needs to traverse the tree from root to leaf. This traversal
brings lots of indirect memory accesses, which is propor-
tional to tree height. For instance, if the height of a B+tree is
five, there are four indirect global memory accesses when
a query traverses the tree from root node to its target leaf
node. However, a large number of global memory accesses
in tree traversal would lead to poor memory performance
on GPUs.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Worst Queries Best

A
v
e
ra

g
e

 m
e
m

-t
ra

n
a

c
ti
o

n
s

3.25 3.16

1

Figure 2. Average memory transactions per warp

Gap in Memory Divergence. Since the target leaf node of
a query is generally random, multiple queries may traverse
the tree along different paths. When they are processed si-
multaneously, such as in a GPU warp, the memory accesses
are disordered, which would lead to memory divergence
and greatly impede the GPU performance. To illustrate it,
we collect the average number of memory transactions for
each warp when concurrent queries traverse B+tree. For a
height-4 and fanout-8 B+tree, each warp processes 4 queries
concurrently and the input query data are randomly gener-
ated based on uniform distribution. As shown in Figure 2, the
average number of memory transactions for each warp (il-
lustrated in the second bar) is 3.16, which is about 97% of
the worst case (3.25) shown in the first bar of Figure 2. For
the worst case, 4 queries access the root node in a coalesced
manner, so it just needs 1 memory transaction. For the other
levels, 4 queries access different nodes for the worst case, so
it requires 4 memory transactions for each level. Therefore,

135

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Zhaofeng Yan, Yuzhe Lin, Lu Peng, and Weihua Zhang

the memory divergence is very heavy for an unoptimized
GPU-based B+tree.

Gap in Query Divergence. Since the target leaf node of
a query is random, multiple queries may require different
amounts of comparison operations in each level traversal,
which would lead to query divergence. To illustrate this prob-
lem, we collect the comparison numbers of 100 queries in
each level based on the above experiment setting and com-
puted the average number, the largest one and the smallest
one. As shown in Figure 3, the comparison numbers of each
level for different queries have a large fluctuation although
average comparison number is close to 4. Therefore, process-
ing these queries simultaneously in a warp would lead to
warp divergence and memory divergence.

 0

 1

 2

 3

 4

 5

 6

1 2 3 4

A
v
e
ra

g
e
 q

u
e
ry

 c
o

m
p
a

ri
s
o
n
s

tree level

Figure 3. Query divergence

3 Harmonia Tree Structure
To make the characteristics of B+tree match the features of
GPUs, we propose a novel B+tree structure called Harmonia.
In this section, we first present Harmonia tree structure.
Then we introduce its operations.

3.1 Tree Structure Overview
In a traditional regular B+tree structure, a tree node con-
sists of keys and child references as shown in Figure 4(a).
A child reference is a pointer referring to the location of
the corresponding next level child. In this organization, the
size of each node is large. For example, the size of a node
is about 1KB for a 64-fanout tree. Since the target of each
query is random, it is difficult to utilize the GPU memory
hierarchy to explore different types of locality. Moreover, the
next child location is obtained through the reference pointer,
which will involve many indirect global memory accesses.
Therefore, the memory performance of traditional regular
B+tree is poor on GPUs.

To overcome these constraints and fit GPU memory hier-
archy better, the tree structure is partitioned into two parts
in Harmonia: a key region and a child region. The key region
is a one-dimensional array which holds the key information
of original B+tree nodes in a breadth-first order. The key

Regular B+ tree

… …
….….

….

……

4

0

2 3

1
1

5 6 7 8

(a) Regular B+tree structure

Key Key Key ….

4 6 7 9 … … … …1

0 1 2 3 4 5 6 7 8

…
…

…

Key Region

Child Region

Store in GPU Cache

Store in GPU Global Memory

Child

Prefix-Sum Array

Key Array

(b) Harmonia tree structure

Figure 4. Regular B+tree and Harmonia B+tree

region is organized in node granularity and the size of each
item (a node) is fixed ((fanout-1)*key size). The child region
is organized as a prefix-sum array. Each item in the array is
the node’s first child index in the key region, which equals to
the node number in the key region before its first child. For
example, the prefix-sum child array of the regular B+tree in
Figure 4(a) is [1, 4, 6, 7, 9...]. It means the first child index of
node 0 (root) is 1, and the first child index of node 1 is 4 and
so on. The children number in a node can be obtained by the
prefix-sum value of its successor node minus its prefix-sum
value. Moreover, the index of any child in the key region can
be obtained through simple index computation.

In this organization, the size of the prefix-sum child array
is small. For example, for a 64-fanout 4-level B+tree, the size
of its prefix-sum array at most is only about 16KB. Therefore,
most of the prefix-sum child array, even a very large B+tree,
can be saved in low-latency on-chip caches in GPU memory
hierarchy, such as constant memory, which can improve
memory locality.

In our current design, the top level of the prefix-sum child
array is stored in the constant memory 1, and the rest is
fetched into the read-only cache on each SM when they are
used. In this way, the prefix-sum array accesses will be more
efficient than the child references of regular B+tree.
1The constant memory on GPU is read-only and faster than global memory,
and it doesn’t need to reload after current kernel finish, but it has a limit
size (64KB in Nvidia Kepler) which is usually smaller than the prefix-sum
child array.

136

PPoPP ’19, February 16–20, 2019, Washington, DC, USA

3.2 Tree Operation
Based on the above design, we further describe how Harmo-
nia handles common B+tree operations in a batch update
scenario, including search, range query, update, insert and
delete. Batch update scenario is phase-based because updates
are relatively infrequent [28] and can be deferred [33, 40].
For example, it was reported that there is a high read/write
ratio (about 35:1) in TPC-H [28]. Therefore, in Harmonia’s
query phase, the GPU is used to accelerate query perfor-
mance. In the update phase, batched updates are processed
on CPUs; The B+tree on the GPU is synchronized after the
updates.

3.2.1 Search and Range Query
To traverse a B+tree, a query needs to search from the tree
root to the target leaf level by level. For each level of B+tree,
the query first compares with the keys in the current node (an
item of the key region) and finds the child whose correspond-
ing range contains the target key. Suppose the ith child is
the target child and current node index is node_idx . Since
the prefix-sum child array contains the first child’s index,
the ith child’s index can be computed through Equation 1
and the next level node can be obtained through accessing
the key region.

child_idx = PrefixSum[node_idx] + i − 1 (1)
For example, whenwe are at the root nodewhose node_idx

is 0 and try to visit its second child (i = 2), we will calculate
child_idx with Equation 1, so the child index of root in the
key region is 2. Therefore, we can get the next level node
based on its index (2) in the key region.

After the target leaf node is reached and the target key is
found, a query is finished. For a range query, it can use the
basic query operation to get the first target key in the range,
and scan the key region from the first target key to the last
target key in the query range. Since the key region is a con-
secutive array, range queries can achieve high performance.

3.2.2 Update, Insert and Delete
For an update (update an existing record’s value) opera-

tion, it is similar to a query. After the target key is acquired,
the value is updated. Compared with update, insert (insert a
new record) and delete (delete an existing record) are more
complex because they may change the tree structure. Since
insert and delete are a pair of inverse operations, we mainly
discuss the details of insert here.

For a single insert operation, it needs to retrieve the target
leaf node through a search operation. If the target leaf node
is not full, the record will be inserted into the target node.
When the target node is full, the target node needs to be
split and a new node will be created. Because the current
key region is organized in a consecutive way, when a new
node is created, the key region has to be reorganized. The

Algorithm 1 Syn For Tree Update
1: if Operations == updates without split or merge then
2: //Locking strategy of updates without split or merge
3: LOCK(coarse_lock)
4: global_count++
5: RELEASE(coarse_lock)
6:
7: LOCK(node.fine_lock)
8: operation_without_split_or_merge()
9: RELEASE(node.fine_lock)
10:
11: LOCK(coarse_lock)
12: global_count--
13: RELEASE(coarse_lock)
14: else
15: //Locking strategy of updates with split or merge
16: RETRY:
17: LOCK(coarse_lock)
18: if global_count == 0 then
19: operation_with_split_or_merge()
20: RELEASE(coarse_lock)
21: else
22: RELEASE(coarse_lock)
23: goto RETRY
24: end if
25: end if

nodes after the created node must be moved backward so
the new node can be inserted into the key region, while the
corresponding prefix-sum array items need to be updated
due to the change of key region item location.

When multiple updates are processed in a parallel manner,
thread safe must be guaranteed. In our current design, a
simple locking strategy with two grained lock is used.
If an operation leads to a change of tree structure like

split (in insert) or merge (in delete), a coarse-grained lock is
used to protect the entire tree. Otherwise, a fine-grained lock
is used to protect the particular target leaf node. Moreover,
there needs a mechanism, as shown in Algorithm 1, to avoid
conflicts between the coarse-grained lock and fine-grained
locks. To achieve this goal, a global counter is used to record
the number of in-process updates with fine-grained locks.
The coarse-grained lock is also used to protect global counter
accesses. When an operation needs to update the tree, it
needs to first get the coarse-grained lock in order to update
the global counter or check whether it is zero. If it is an
update without split or merge (Lines 3-13), it increases the
global counter by one after acquiring the coarse-grained
lock, then releases the coarse-grained lock. Then, it locks
the target leaf using the corresponding fine-grained lock.
After the operation is completed, the fine-grained lock is
released and the global counter is decreased by one with
the protection of the coarse-grained lock; If an operation

137

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Zhaofeng Yan, Yuzhe Lin, Lu Peng, and Weihua Zhang

leads to a split or merge (Lines 16-24), it needs to get the
coarse-grained lock and check whether the global counter is
zero. If so, it will finish its operations and release the lock.
Otherwise, it will release the lock first to avoid deadlock and
retry the step. Through such a design, the thread safety can
be guaranteed.
Although this design can process the update operations,

the memory movement of key region due to node splitting
or merging will involve an enormous overhead. To reduce
the overhead, the memory movements are performed after
a batch of update operations are finished. To support such
a design, Harmonia uses auxiliary nodes to update the tree
structure for node splitting. When an insert causes one node
to split, an auxiliary node is created and the node status is
marked as split. The auxiliary node contains the entire child
references, and the split is processed on the auxiliary node.
During the period of batch update, we need to first check
whether or not the leaf node status is split for an insert. If
it is, a new insert or update will use the information of its
auxiliary node. Otherwise, it will use the original node in
the key region.
After all update operations in a batch are done, the tree

structure might not follow the rules of Harmonia. Therefore,
we need to update the auxiliary node’s information into
Harmonia to maintain the tree structure of Harmonia. The
key region is extended first and some original items in the
key region are moved backward to make room for the newly
created nodes. And then put the auxiliary nodes in the right
location. Since the locations of all these data movements
can be known in advance, some of them can be processed in
parallel.
Movements after batch can improve update throughput

significantly and achieve comparable performancewith those
of the multi-thread traditional B+tree and the state of the art
GPU B+tree as the data shows in Section 5 (Figure 14).

4 Harmonia Optimizations
To reduce divergences and improve computation resource
utilization on GPUs, we further introduce two optimizations
for Harmonia including partially-sorted aggregation (PSA)
and narrowed thread-group traversal (NTG).

4.1 Partially-Sorted Aggregation (PSA)
When an application is executed on a GPU, the most efficient
memory access manner is coalesced. For B+tree, the targets
of multiple queries are generally random. When adjacent
queries are processed in a warp, it is difficult to achieve a
coalesced memory access because they would traverse the
tree along different paths. Figure 5 shows an example. Four
query targets are 2, 20, 35 and 1 individually. When they
traverse the tree and two adjacent queries are combined into
a warp, there is no coalesced memory access after they leave
the root node, as shown in Figure 6(a). Therefore, processing

target 20 35 12

Queries

… …

Figure 5. B+tree

these concurrent queries in a warp would lead to poor GPU
performance due to memory divergence. In this section, we
will propose a partially-sorted aggregation for bettermemory
performance.

4.1.1 Sorted Aggregation
If multiple queries have shared part of the traversal path, the
memory accesses can be coalesced when they are processed
in a warp. For instance, if the queries with target 1 and target
2 in Figure 5 are processed in a warp, there are coalesced
memory accesses for their first two level traversals.

For two concurrent queries, they will have more opportu-
nities to share a traversal path if they have closer targets. To
achieve this goal, a solution is to sort the queries in a time
window before they are issued. For the example in Figure 5,
the query target sequence becomes 1, 2, 20, and 35 after
sorting as Figure 7 shows. When two adjacent queries are
combined into a warp, the warp with the first two queries
will have coalesced memory accesses for their shared tra-
versal path as shown in Figure 6(b). Moreover, because the
queries in the same warp will go through the same path, it
can also mitigate warp divergence among them.

Although sorting queries can reduce memory divergence
and warp divergence, it brings additional sorting overhead.
To illustrate this problem, we evaluate the overhead using
GPU radix sort [12] to make a batch of queries sorted before
assigning them to the B+tree concurrent search kernel. As
the data in Figure 8 show, the kernel performance has about
22% improvement compared with that of the original one.
However, there is about 7% performance slowdown for the
total execution time. The reason behind this is that complete
sorting will generate more than 25% overhead.

4.1.2 Partially-Sorted Aggregation
To achieve a coalesced memory access, multiple memory
accesses in a warp only need to fall into the address space
of a cache line even they are unordered. As shown in Fig-
ure 6(c), although the query to target 2 is before the query to
target 1, we can still achieve coalesced memory accesses for
their shared path, which has the same effect with that of the
completely sorted queries as shown in Figure 6(b). Therefore,

138

PPoPP ’19, February 16–20, 2019, Washington, DC, USA

Global memory

Memory divergence

(a) Queries

Global memory

Cache line size

(b) Sorted queries

Global memory

Cache line size

(c) Partially-sorted queries

Figure 6. An example of memory access pattern for queries.

target 20 351 2

Queries

… …

Figure 7. Queries share traversal path

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Original

Sorted
PS Original

Sorted
PS Original

Sorted
PS Original

Sorted
PS

N
o

rm
a

liz
e

d
 t

im
e

log(Tree Size)

search time
sort time

26252423

Figure 8. Sorted queries (sorted) and partially-sorted
queries (PS) search time normalized to the search time of
original queries (original)

to achieve the goal of coalesced memory access, there is no
need to sort the queries within a group; a partial sorting
among groups can achieve the effect similar to the complete
sorting for coalescedmemory access. Moreover, bit-wise sort-
ing algorithms, such as radix sort, are the most commonly
used algorithms on GPUs because they can provide stable
performance for a large workload [12, 42]. For these bit-wise
sorting algorithms, the execution time is proportional to the
sorted bits. Therefore, partial sorting can also be used to
reduce the sorting overhead. As the data in the third bar
of Figure 8 shows, the sorting overhead is brought down
after partial sorting is applied and the search performance
is comparable to that of the completely sorted method. The

overall performance has about 10% improvement compared
with that of the original one.

For a partial sorting, the queries will be sorted based on
their most significantN bits. IfN is large, there is a high prob-
ability that the targets of sorted queries are closer. However,
it will lead to a higher sorting overhead. Here, we discuss
how to decide the PSA size to achieve a better trade-off be-
tween the number of coalesced memory accesses and the
sorting overhead. Suppose each key is represented by B bits,
the size of traversed B+tree is T and a cache line can save K
keys. In this condition, the key range is 2B and each existing
key in the tree can averagely cover the key range of 2B/T .
The keys in a cache line can cover the key range of 2B/T ∗K
and the bits to represent this range is log2(2B/T ∗ K) on av-
erage. If the memory requests of multiple queries in a warp
fall in the covering range of a cache line, no matter whether
they are sorted or not, they are coalesced memory accesses.
Therefore, it is unnecessary to sort the queries when their
target keys fall in the same cache line. Based on the above
analysis, the value of N can be calculated using Equation 2.
Note, our analysis is conservative because we suppose the
key value is full in its space. In reality, the key number is
smaller than its space size. Therefore, it is possible that the
targets exceeding the covering range of a cache line achieve
a coalesced memory access.

N = B − log2(
2B

T
∗ K) (2)

As an example, suppose the key is represented by 64
bits (B = 64), the tree size is 223 (T = 223) and the size
of a cache line is 128-byte, which can store 16 keys (K = 16).
Based on Equation 2, the value of N equals to 19. To verify its
efficiency, we collect average memory transactions per warp
for different partially-sorted bits and the normalized sorting
time for completely sorting. Experimental results show only
sorting 19 bits can achieve the similar optimization effort as
that of completely sorted. Moreover, its overhead is about
35% of the completely sorted method. The data also illustrate
that the design can achieve a better trade-off. We also evalu-
ate other tree sizes and find it can draw the same conclusion.
Due to the space constraint, the data are not given out here.

139

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Zhaofeng Yan, Yuzhe Lin, Lu Peng, and Weihua Zhang

4.2 Narrowed thread-group traversal (NTG)
Traditional methods [14, 21, 22, 39] generally use the fanout
number of threads to serve a query2. Based on our obser-
vation, it has insufficient resource utilization problem due
to many unnecessary comparisons. When a query traverse
the B+tree, the comparison goal in one tree level is to find a
child whose range contains the query target. In a sequential
comparison method, only the keys before the target child are
compared. However, in a fanout-based parallel comparison
manner, all the keys in a node are compared. Although the
fanout-based approach simplifies the design, it will lead to
computation resource waste because the comparisons with
the keys after the target child is useless. Figure 9(a) shows
an example. Suppose the tree fanout is 8 and the GPU warp
size is also 8. The fanout-based thread group will use the
whole warp to serve a query. So for the query which target
is 2, only the first 3 threads make the useful comparisons,
and the rest of comparisons are useless.

0 1 2 3 4 5 6 7Step 1

target: 2

useless useless

comparisonswarp thread

(a) Fanout-based thread group

0 1 2 3 0 1 2 3

4 5 6 7

Query Query

Divergence

target:2 target:6

Step 1

Step 2

warp thread

(b) Narrowed thread group

Figure 9. Example of different thread groups.

In many situations, lots of comparisons are not needed.
To illustrate it, we divide the key region into 4 parts evenly
for different fanout trees and collect the comparison distri-
bution in these four regions, which means the proportion
of queries falling within the four parts. As the data in Fig-
ure 10 show, for different tree fanouts, about 80% of queries
can find the target child through searching the front 50%
part of the key segment. The reasons behind it are two folds.
First, it is a high probability that a B+tree node is half full,
which means a query only needs to compare with a front half
fanout number of keys at most for these nodes. Second, data
2Due to the scale of data stored in the tree, the tree fanout is typically a
large number such as 64 or 128. If the fanout is larger than the GPU warp
size, all threads in a warp are used for a query.

distribution also influences it. Therefore, most comparisons
in the fanout-based method are useless, which leads to the
waste of computation resources.

 0

 10

 20

 30

 40

 50

8 16 32 64 128

P
e
rc

e
ta

g
e
 (

%
)

tree fanout

1/4 2/4 3/4 4/4

Figure 10. The proportion of queries accessing the different
node parts.

To avoid useless comparisons, the thread group for each
query should be narrowed. The more the thread group is
narrowed, the fewer useless comparisons are involved. After
the thread group for a query is narrowed, multiple groups
for different queries will be combined into a warp. Due to
the query divergence discussed in Section 2.2, the warp’s
traversal time for one tree level will be decided by the thread
group that will cost the most comparison operations, which
will hurt the performance. Figure 9(b) shows an example. If
we use 4 threads to serve a query. The useless comparisons
for target 2 will be reduced. However, since two queries are
combined into a warp, the threads for target 2 has to execute
two steps due to the query divergence brought by target 6,
although it only need one step.

Therefore, when the thread group for a query is narrowed,
the overhead involved by query divergence must be consid-
ered. To achieve a better trade-off, we propose a model to
decide how to narrow the thread group.
Assume the size of the thread group is GS , the number

of queries processed by one warp equals to warpsize/GS
(warpsize is a fixed number). And the throughput (TP) of
a warp for one tree level equals the number of queries per
warp divided by warp execution time T , which is shown in
Equation 3.

TP ≈
warpsize

GS ∗T
(3)

The warp execution time T is composed of two parts of
time: comparison time and memory access time. Because
GPU has a mechanism to hide memory access time by sched-
uling the warps on the same SM, and the PSA can also allevi-
ate the memory divergence in a warp, the influence of mem-
ory access time can be neglected in the throughput equation.
Since comparison time is proportional to the comparison

140

PPoPP ’19, February 16–20, 2019, Washington, DC, USA

execution step, warp execution time T is also positively re-
lated to S (the max comparison step that the warp needs to
execute.)
When we narrow the thread group, the waste of compu-

tation resources is reduced. However, the query divergence
will increase. To check whether narrowing thread group
can still get performance improvement, we compare the
warp throughput before narrowing (TPb) and after narrow-
ing (TPa) in Equation 4 and substitute the T with warp max
comparison steps S .G is the narrowing proportion each time.

TPa
TPb

∝
Sb ∗GSb
Sa ∗GSa

=
Sb
Sa

∗G (4)

The warp size is the multiple of 2, so the GS is gener-
ally reduced by 2 each time, which means we can consider
G as a constant. Therefore, to find the appropriate narrow
thread-group size, we only need to approximately check the
change ratio of S after narrowing the thread group in prac-
tice and decide whether there is a performance gain based
on Equation 4.

Because PSA increases the opportunity of queries sharing
a traversal path, major query divergence happens at the last
several levels tree traversal. So to decide the best NTG size,
we only need to have some simple profiling to know the
change ration of S for the last several levels after narrowing
thread group. That data can be collected on CPU easily. Here
we applied a static profiling method. Before processing the
data on GPUs, some data (for example, 1000 queries) are
used to collect the average warp execution steps for differ-
ent NTG sizes. Then, the best NTG size is decided based on
Equation 4. If its value is greater than 1, it means narrow-
ing the thread group can further improve performance. This
step is repeated until its value is smaller than 1. To verify
the accuracy of this model, we collect the performance data
of different NTG size for different tree fanouts including 8,
16, 32, 64 and 128 on different GPU (Tesla K80 and TITAN
V). Experimental results show the NTG size of this model
is basically consistent with the NTG size of the best perfor-
mance. For example. on Tesla K80, the NTG size for the best
performance is 2 for 64-fanout B+tree, and the NTG size for
the best performance is 4 threads for 128-fanout B+tree.

5 Evaluation
We implement Harmonia in CUDA and C++. To evaluate
the prototype performance, we try to answer the following
questions:

• Can Harmonia deliver better performance than the
state-of-art GPU-based B+tree?

• Does Harmonia solve the issues discussed in section
2.2?

• How does each design choice affect the performance?
• Can Harmonia achieve good update performance?

5.1 Experimental Setup
We conduct all experiments on a 28-core server (Intel Xeon
CPU E5-2680 v4 @ 2.40GHz) with a TITAN V GPU. Each
CPU core has a private 32KB L1 data cache, 32KB L1 instruc-
tion cache, 256KB L2 cache, and a shared 35MB L3 cache.
Harmonia implementation is compiled by GCC 5.4.0 and
CUDA 10 on Ubuntu 16.04 (kernel 4.15.0) using O3 optimiza-
tion option. We evaluate the performance of Harmonia using
a throughput metric.

HB+Tree [39] is a state-of-the-art CPU-GPU hybrid B+tree.
It supports search by using both CPU and GPU, and batch
update on CPU. For search performance evaluation, we com-
pare Harmonia with the GPU part of HB+Tree. For update
evaluation, we compare Harmonia with HB+tree.
For the input data sets in search evaluation, we choose

the most commonly used distributions in prior B+tree evalu-
ations [24, 39] (uniform distribution). The size of each data
set is 100 million in order to get stable performance. These
input data are queried on different tree sizes 3 including 223,
224, 225 and 226. For update evaluation, we do the evaluation
using a data set mixed by 5% inserts and 95% updates with a
batch size of 4096K.

5.2 Overall Evaluation
To see whether Harmonia can achieve better performance,
we conduct an experiment on Harmonia and the GPU part
of HB+tree [39].

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

23 24 25 26

T
h

ro
u

g
h

p
u

t
(b

ill
io

n
/s

)

log(tree size)

HB+ Harmonia

Figure 11. Overall query performance comparison.

As the data in Figure 11 show, the performance of Har-
monia can reach up to 3.6 billion queries per second. It out-
performs HB+tree under different tree sizes and input dis-
tributions. Its performance is about 3.4X faster than that of
HB+tree. The primary reason behind the performance im-
provement is that the design of Harmonia bridges the gaps
between traditional B+tree and GPUs well, which can reduce
global memory transactions and divergences. Moreover, it
3 the number of key-value pairs are inserted into the B+tree, and each key
is 64 bits.

141

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Zhaofeng Yan, Yuzhe Lin, Lu Peng, and Weihua Zhang

can also take full utilization of GPU computation resources
and memory hierarchy.

To see whether Harmonia solves the gap issues discussed
in Section 2.2, we use nvprof [3] to collect the three metrics:
the number of global memory transactions, memory diver-
gence, and warp coherence4 for HB+tree and Harmonia. The
profile data are shown in Figure 12.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Global mem-transactions

Memory divergence

Warp coherence

22%

66%

113%

N
o

rm
a

liz
e

d
 p

ro
fi
le

 d
a

ta

HB+tree Harmonia

Figure 12. Profile data normalized to those of HB+tree

As the data (global memory-transactions) in Figure 12
show, Harmonia only issues 22% global memory transac-
tions of HB+tree. This is because the size of prefix-sum child
array is small and most of it can be stored in on-chip GPU
caches. Therefore, the global memory transactions can be
significantly reduced. As the data (memory divergence and
warp coherence) in Figure 12 show, the memory divergence
of Harmonia is 34% less than that of HB+tree, and Harmonia
has 13% higher warp coherence (less warp divergence) than
HB+tree. Just as the Section 4.1 discussed, the design of PSA
can reducememory divergence andwarp divergence because
the adjacent sorted queries share more traversal paths, which
brings a higher possibility of coalesced memory accesses.

According to the profile data, Harmonia bridges the gaps
between B+tree and GPUs by effectively reducing the high
latency of global memory transactions, memory divergence
and warp divergence, which results in better performance
than the state-of-art GPU-based B+tree.

5.3 Impact of Different Design Choices
To understand the performance improvement from various
factors, we evaluate different design choices using uniform
distributions as input data set. The baseline refers to HB+tree.
We evaluate the Harmonia B+tree structure (Harmonia tree),
Harmonia B+tree structure with PSA, and the whole Harmo-
nia (Harmonia tree+PSA +NTG). The results are shown in
Figure 13.

First, the Harmonia tree structure gets about 1.4X speedup
due to better memory locality and fewer global memory
4Warp coherence metric means the proportion of the coherent step in the
warp execution period. It is anti-correlation with warp divergence.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

23 24 25 26

T
h

ro
u

g
h

p
u

t
(b

ill
io

n
/s

)

log (Tree size)

HB+ tree
Harmonia tree

Harmonia tree + PSA
Harmonia tree+PSA+NTG

Figure 13. Impact of different design choices

transactions. Second, only applied PSA can get about 2X
speedup because of the reduction of warp divergence and
memory divergence. Third, after PSA and NTG are applied,
Harmonia gets about 3.4X speedup because NTG reduces
the useless comparisons and takes full advantage of the com-
putation resources of GPUs.

5.4 Update Performance

 0

 10

 20

 30

 40

 50

23 24 25 26

T
h

ro
u

g
h

p
u

t
(m

ill
io

n
/s

)

log(tree size)

HB+ Harmonia

Figure 14. Update throughput

To analyze the update performance, we evaluate the Har-
monia update performance by comparing it with theHB+tree.
As the data in Figure 14 show, the update throughput per-
formance of Harmonia can achieve average 70% of HB+ tree.
This is because the batch process can avoid many unneces-
sary data movements. Since updates are relatively infrequent
in the batch update scenario as described in [28], the perfor-
mance of the proposed CPU-based batch update method is
acceptable.

6 Related Work
With the popularity of parallel hardware, such as multi-
core CPUs and GPUs, there have been many efforts to ac-
celerate B+tree search performance. Rao et al. propose a
cache line conscious B+tree structure, called CSS-tree [34],

142

PPoPP ’19, February 16–20, 2019, Washington, DC, USA

to achieve better cache performance. CSS-tree is further ex-
tended to CSB+-tree [35] to provide an efficient update. Prior
works [7, 8, 16] analyzed the influence of B+tree node size to
search performance. They find the cache performance can
be improved when the node size is larger than the cache line
size. Kim et al. propose FAST [24], a configurable binary tree
structure for multi-core systems. Its tree structure can be
defined based on CPU cache-line size, memory page size and
SIMD width. Besides, several works optimize the concurrent
B+tree performance on distribution system aim to improve
the concurrency and provide consistency [9, 48, 49].

GPUs have been widely used to improve application per-
formance in different fields, such as matrix manipulation [4,
25, 30–32, 37, 38, 43], Stencil [13, 17–19, 36] and so on. To
utilize the computation resources of GPUs, FAST [24] and
HB+ tree [39] utilize the heterogeneous platform to search
B+tree. HB+tree [39] also discusses several heterogeneous
collaboration modes to make CPU and GPU cooperation
more efficient such as CPU-GPU pipelining, double buffering.
Kaczmarski [21, 22] proposes a GPU-based B+tree, which
can update efficiently, and also discusses several methods
for single-key search or batch search on GPU. Since GPU
resides across the PCIe bus, Fix et al. [14] present a method
that reorganizes the original B+tree of database into a con-
tinuous layout before uploading onto GPU, and search the
B+tree using braided method parallelism. Daga et al. [11]
accelerate B+tree on an APU to reduce the cost of trans-
mission between GPU and CPU and overcome the irregular
memory representation of the tree. Awad et al. [5] design
a GPU B-Tree for batch update performance with a warp-
cooperative work-sharing strategy. In contrast, we design
a novel tree structure with two optimizations, which can
bridge the gaps between B+tree and GPUs to achieve high
query performance.

7 Conclusion
In this paper, through a comprehensive analysis of the char-
acteristics of B+tree and GPUs, we identify several gaps be-
tween B+tree and GPUs, such as the gap in memory access
requirements, memory divergence, and query divergence.
Based on this observation, we proposed a novel B+tree struc-
ture called Harmonia. In Harmonia, the B+tree structure is
divided into a key region and a prefix-sum child region. Due
to the small size of prefix-sum array, the Harmonia B+tree
structure can fully utilize the GPU memory hierarchy to
decrease the number of high latency memory accesses via
cache accesses on GPU chip. There are also two optimiza-
tions in Harmonia to alleviate the different divergences on
GPUs and improve the resource utilization: partially-sorted
aggregation and narrowed thread-group. As a result, Harmo-
nia performs average 3.4X speedup to HB+tree, a state-of-art
GPU-based B+tree.

Acknowledgments
We thank our shepherd, Eshcar Hillel, and the anonymous re-
viewers for their constructive comments. We also appreciate
Travis D LeCompte for suggestions to improve the paper. We
are grateful to support from the National Key Research and
Development Program of China (No. 2017YFB0202105), the
National Natural Science Foundation of China (No. 61672160)
and Shanghai Science and Technology Development Funds
(17511102200).

References
[1] 2018. CUDA C Programming Guide. https://docs.nvidia.com/cuda/

pdf/CUDA_C_Programming_Guide.pdf
[2] 2018. My data is bigger than your data! https://lintool.github.io/

my-data-is-bigger-than-your-data
[3] 2018. Profile User’s Guide. https://docs.nvidia.com/cuda/

profiler-users-guide/index.html
[4] Arash Ashari, Naser Sedaghati, John Eisenlohr, Srinivasan

Parthasarathy, and P Sadayappan. 2014. Fast sparse matrix-
vector multiplication on GPUs for graph applications. In Proceedings
of the international conference for high performance computing,
networking, storage and analysis. IEEE Press, 781–792.

[5] Muhammad A. Awad, Saman Ashkiani, Rob Johnson, Martín Farach-
Colton, and John D. Owens. 2019. Engineering a High-Performance
GPU B-Tree. In Proceedings of the 24th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP 2019).

[6] Peter Bakkum and Kevin Skadron. 2010. Accelerating SQL database
operations on a GPU with CUDA. In Proceedings of the 3rd Workshop
on General-Purpose Computation on Graphics Processing Units. ACM,
94–103.

[7] Shimin Chen, Phillip B Gibbons, and Todd C Mowry. 2001. Improving
index performance through prefetching. Vol. 30. ACM.

[8] Shimin Chen, Phillip B Gibbons, Todd C Mowry, and Gary Valentin.
2002. Fractal prefetching B+-trees: Optimizing both cache and disk
performance. In Proceedings of the 2002 ACM SIGMOD international
conference on Management of data. ACM, 157–168.

[9] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and Haibo Chen.
2016. Fast and general distributed transactions using RDMA and
HTM. In Proceedings of the Eleventh European Conference on Computer
Systems. ACM, 26.

[10] Douglas Comer. 1979. Ubiquitous B-Tree. Acm Computing Surveys 11,
2 (1979), 121–137.

[11] Mayank Daga and Mark Nutter. 2012. Exploiting Coarse-Grained
Parallelism in B+ Tree Searches on an APU. In 2012 SC Companion:
High Performance Computing, Networking Storage and Analysis. IEEE,
240–247. https://doi.org/10.1109/SC.Companion.2012.40

[12] Duane Merrill,NVIDIA Research Group. 2018. CUB Documentation.
https://nvlabs.github.io/cub/index.html#sec9

[13] Toshio Endo, Yuki Takasaki, and Satoshi Matsuoka. 2015. Realizing
extremely large-scale stencil applications on GPU supercomputers. In
Parallel and Distributed Systems (ICPADS), 2015 IEEE 21st International
Conference on. IEEE, 625–632.

[14] Jordan Fix, Andrew Wilkes, and Kevin Skadron. 2011. Accelerating
braided b+ tree searches on a gpu with cuda. Proceedings of the 2nd
Workshop on Applications for Multi and Many Core Processors: Analysis,
Implementation, and Performance (A4MMC) (2011), 1–11.

[15] Goetz Graefe et al. 2011. Modern B-tree techniques. Foundations and
Trends® in Databases 3, 4 (2011), 203–402.

[16] Richard A Hankins and Jignesh M Patel. 2003. Effect of node size on
the performance of cache-conscious B+-trees. In ACM SIGMETRICS
Performance Evaluation Review, Vol. 31. ACM, 283–294.

143

https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://lintool.github.io/my-data-is-bigger-than-your-data
https://lintool.github.io/my-data-is-bigger-than-your-data
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://doi.org/10.1109/SC.Companion.2012.40
https://nvlabs.github.io/cub/index.html#sec9

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Zhaofeng Yan, Yuzhe Lin, Lu Peng, and Weihua Zhang

[17] Justin Holewinski, Louis-Noël Pouchet, and Ponnuswamy Sadayappan.
2012. High-performance code generation for stencil computations
on GPU architectures. In Proceedings of the 26th ACM international
conference on Supercomputing. ACM, 311–320.

[18] Guanghao Jin, Toshio Endo, and Satoshi Matsuoka. 2013. A multi-
level optimization method for stencil computation on the domain that
is bigger than memory capacity of GPU. In Parallel and Distributed
Processing Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE
27th International. IEEE, 1080–1087.

[19] Guanghao Jin, Toshio Endo, and Satoshi Matsuoka. 2013. A parallel
optimization method for stencil computation on the domain that is big-
ger than memory capacity of GPUs. In Cluster Computing (CLUSTER),
2013 IEEE International Conference on. IEEE, 1–8.

[20] Ty McKercher John Cheng, Max Grossman. 2014. Professional CUDA
C Programming.

[21] Krzysztof Kaczmarski. 2011. Experimental B+-tree for GPU. ADBIS (2)
11 (2011).

[22] Krzysztof Kaczmarski. 2012. B+-tree optimized for GPGPU. In OTM
Confederated International Conferences. Springer, 843–854.

[23] Peter Kieseberg, Sebastian Schrittwieser, Lorcan Morgan, Martin Mu-
lazzani, Markus Huber, and Edgar Weippl. 2013. Using the structure of
b+-trees for enhancing logging mechanisms of databases. International
Journal of Web Information Systems 9, 1 (2013), 53–68.

[24] Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, An-
thony D Nguyen, Tim Kaldewey, Victor W Lee, Scott a Brandt, and
Pradeep Dubey. 2010. FAST : Fast Architecture Sensitive Tree Search
on Modern CPUs and GPUs. Sigmod ’10 (2010), 339–350.

[25] Jiajia Li, Xingjian Li, Guangming Tan, Mingyu Chen, and Ninghui Sun.
2012. An optimized large-scale hybrid DGEMM design for CPUs and
ATI GPUs. In Proceedings of the 26th ACM international conference on
Supercomputing. ACM, 377–386.

[26] Hang Liu and H Howie Huang. 2015. Enterprise: breadth-first graph
traversal on GPUs. In High Performance Computing, Networking, Stor-
age and Analysis, 2015 SC-International Conference for. IEEE, 1–12.

[27] Addison Snell Michael Feldman. 2015. Accelerated com-
puting: a tipping point for HPC. (2015). https://www.
nvidia.it/content/EMEAI/images/tesla/tesla-server-gpus/
accelerated-computing-at-a-tipping-point.pdf

[28] Microsoft Redmond and Microsoft Research Cambridge. 2009. DBMS
workloads in online services. http://www.tpc.org/tpctc/tpctc2009/
tpctc2009-10.pdf

[29] J Ian Munro and Hendra Suwanda. 1980. Implicit data structures for
fast search and update. J. Comput. System Sci. 21, 2 (1980), 236–250.

[30] Yusuke Nagasaka, Akira Nukada, and Satoshi Matsuoka. 2014. Cache-
aware sparse matrix formats for Kepler GPU. In Parallel and Distributed
Systems (ICPADS), 2014 20th IEEE International Conference on. IEEE,
281–288.

[31] Yusuke Nagasaka, Akira Nukada, and Satoshi Matsuoka. 2016. Adap-
tive multi-level blocking optimization for sparse matrix vector multi-
plication on GPU. Procedia Computer Science 80 (2016), 131–142.

[32] Yusuke Nagasaka, Akira Nukada, and Satoshi Matsuoka. 2017. High-
Performance andMemory-Saving Sparse General Matrix-Matrix Multi-
plication for NVIDIA Pascal GPU. In 2017 46th International Conference
on Parallel Processing (ICPP). IEEE, 101–110.

[33] Kerttu Pollari-Malmi, Eljas Soisalon-Soininen, and Tatu Ylonen. 1996.
Concurrency control in B-trees with batch updates. IEEE Transactions
on Knowledge and Data Engineering 8, 6 (1996), 975–984.

[34] Jun Rao and Kenneth A Ross. 1999. Cache conscious indexing for
decision-support in main memory. In VLDB, Vol. 99. Citeseer, 78–89.

[35] Jun Rao and Kenneth A Ross. 2000. Making B+-trees cache conscious
in main memory. In ACM SIGMOD Record, Vol. 29. ACM, 475–486.

[36] Prashant Singh Rawat, Fabrice Rastello, Aravind Sukumaran-Rajam,
Louis-Noël Pouchet, Atanas Rountev, and P Sadayappan. 2018. Register
optimizations for stencils on GPUs. In Proceedings of the 23rd ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming.
ACM, 168–182.

[37] Naser Sedaghati, Arash Ashari, Louis-Noël Pouchet, Srinivasan
Parthasarathy, and P Sadayappan. 2015. Characterizing dataset depen-
dence for sparse matrix-vector multiplication on GPUs. In Proceedings
of the 2nd workshop on parallel programming for analytics applications.
ACM, 17–24.

[38] Naser Sedaghati, TeMu, Louis-Noel Pouchet, Srinivasan Parthasarathy,
and P Sadayappan. 2015. Automatic selection of sparse matrix repre-
sentation on GPUs. In Proceedings of the 29th ACM on International
Conference on Supercomputing. ACM, 99–108.

[39] Amirhesam Shahvarani and Hans-Arno Jacobsen. 2016. A Hybrid B+-
tree as Solution for In-Memory Indexing on CPU-GPU Heterogeneous
Computing Platforms. Proceedings of the 2016 International Conference
on Management of Data - SIGMOD ’16 (2016), 1523–1538.

[40] Ben Shneiderman. 1976. Batched searching of sequential and tree
structured files. ACM Transactions on Database Systems (TODS) 1, 3
(1976), 268–275.

[41] V Srinivasan and Michael J Carey. 1993. Performance of B+ tree
concurrency control algorithms. The VLDB Journal 2, 4 (1993), 361–
406.

[42] Elias Stehle and Hans-Arno Jacobsen. 2017. A Memory Bandwidth-
Efficient Hybrid Radix Sort on GPUs. In Proceedings of the 2017 ACM
International Conference on Management of Data. ACM, 417–432.

[43] Guangming Tan, Linchuan Li, Sean Triechle, Everett Phillips, Yungang
Bao, and Ninghui Sun. 2011. Fast implementation of DGEMM on
Fermi GPU. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM, 35.

[44] Renne Chan Teresa Lam, Christy Li. 2017. Sales performance of Alibaba
in 2017 Single’s Day. (2017). https://www.fbicgroup.com/sites/default/
files/CREQ_04.pdf

[45] Alejandro Vaisman and Esteban Zimányi. 2011. Data warehouses: Next
challenges. In European Business Intelligence Summer School. Springer,
1–26.

[46] Panos Vassiliadis and Alkis Simitsis. 2009. Near real time ETL. In New
Trends in Data Warehousing and Data Analysis. Springer, 1–31.

[47] Bin Wang. 2015. Mitigating GPU Memory Divergence for Data-Intensive
Applications. Ph.D. Dissertation.

[48] Xin Wang, Weihua Zhang, Zhaoguo Wang, Ziyun Wei, Haibo Chen,
and Wenyun Zhao. 2017. Eunomia: Scaling concurrent search trees
under contention using htm. In Proceedings of the 22nd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. ACM,
385–399.

[49] Weihua Zhang, Xin Wang, Shiyu Ji, Ziyun Wei, Zhaoguo Wang, and
Haibo Chen. 2018. Eunomia: Scaling Concurrent Index Structures
Under Contention Using HTM. IEEE Transactions on Parallel and
Distributed Systems 29, 8 (2018), 1837–1850.

144

https://www.nvidia.it/content/EMEAI/images/tesla/tesla-server-gpus/accelerated-computing-at-a-tipping-point.pdf
https://www.nvidia.it/content/EMEAI/images/tesla/tesla-server-gpus/accelerated-computing-at-a-tipping-point.pdf
https://www.nvidia.it/content/EMEAI/images/tesla/tesla-server-gpus/accelerated-computing-at-a-tipping-point.pdf
http://www.tpc.org/tpctc/tpctc2009/tpctc2009-10.pdf
http://www.tpc.org/tpctc/tpctc2009/tpctc2009-10.pdf
https://www.fbicgroup.com/sites/default/files/CREQ_04.pdf
https://www.fbicgroup.com/sites/default/files/CREQ_04.pdf

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 General-Purpose GPUs
	2.2 Gaps between GPUs and B+tree

	3 Harmonia Tree Structure
	3.1 Tree Structure Overview
	3.2 Tree Operation

	4 Harmonia Optimizations
	4.1 Partially-Sorted Aggregation (PSA)
	4.2 Narrowed thread-group traversal (NTG)

	5 Evaluation
	5.1 Experimental Setup
	5.2 Overall Evaluation
	5.3 Impact of Different Design Choices
	5.4 Update Performance

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

