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Abstract— We present a comprehensive study on the perfor-
mance and power consumption of a recent ATI GPU. By em-
ploying a rigorous statistical model to analyze execution beha-
viors of representative general-purpose GPU (GPGPU) appli-
cations, we conduct insightful investigations on the target GPU 
architecture. Our results demonstrate that the GPU execution 
throughput and the power dissipation are dependent on differ-
ent architectural variables. Furthermore, we design a set of 
micro-benchmarks to study the power consumption features of 
different function units on the GPU. Based on those results, we 
derive instructive principles that can guide the design of pow-
er-efficient high performance computing systems. 
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I.  INTRODUCTION 
Due to the emergence of Terascale and Petascale compu-

ting, people begin to concentrate on developing powerful and 
efficient systems to accelerate the solving of these problems. 
Among the current platforms, supercomputers consisting of 
numerous modern graphics processing units (GPUs) are ob-
taining substantial attention. In recent years, with the devel-
opment of massive parallel programming language including 
CUDA [5] and OpenCL [6], high performance GPUs are 
widely used to settle large scale computation problems from 
different domains. By appropriately parallelizing the execu-
tion, GPU-based implementations are able to reduce the 
processing time by up to thousands of times compared to the 
sequential counterparts. 

However, unlike traditional CPUs which have been stu-
died by researchers for long time, the fast evolving GPUs are 
still considered as mysterious innovations by general us-
ers/developers. For example, where potential bottlenecks for 
a GPU execution may exist and what kinds of data structures 
might harm the performance are not quite clear. For pro-
grammers from areas including biology, physics, and 
finance, it is of great importance for them to quickly identify 
bottlenecks of their programs and boost the application per-
formance accordingly. This requires a systematic investiga-
tion on typical GPU architectures, from which several easily 
adopted guidelines for performance tuning can be extracted. 
Although researchers have made initial attempts to address 
these unknowns [12][21][22], most of the problems still re-
main open. 

On the other hand, as the performance of GPUs keeps ris-
ing, the increasing power consumption caused by the high 
clock frequency and massive processing elements integrated 

on the device is becoming an important concern. For in-
stance, the peak power of an Nvidia GTX 280 can achieve 
236 watts [3] while a typical multi-core CPU usually con-
sumes less than 150 watts power [4]. Since the high power 
consumption easily translates to an increase of the device 
temperature, the expensive cost on the system cooling tends 
to compensate all the benefits gained from the performance 
improvement. As a consequence, it is highly necessary to 
reduce the GPU power consumption during the operations. 

In the past decade, high power consumptions have been 
considered as a major constraint in CPU design and several 
strategies are accordingly proposed to trim the power budget. 
Nevertheless, compared to studies on the CPU power con-
sumption, researches on GPU power are still at an early 
stage. To date, most of previous works on this issue [13][16] 
focus on predicting power consumption from observable 
characteristics of the target device, because current commer-
cial GPUs do not provide convenient approaches such as 
hardware sensors for dynamic power monitoring. However, 
rather than purely making accurate predictions, extracting 
architectural discoveries which can benefit the design of low-
power systems is a more promising topic. This makes an in-
depth study on GPU power consumptions and the underlying 
architectural behaviors quite demanding. 

Traditional studies on CPUs demonstrate that the perfor-
mance and power consumption are largely dependent on the 
execution behaviors. We believe that this also applies to the 
GPU platforms. In this work, in order to precisely capture the 
relationship between the execution characteristics and the 
responses (i.e., performance and power), we employ a rigor-
ous statistical model to facilitate our analysis. We aim at 
conducting a comprehensive investigation on the GPU per-
formance and its power consumption, and more importantly, 
deriving instructive guidance that can be used by both the 
software designers and hardware architects to construct more 
power-efficient high performance systems.  

While Nvidia GPUs with the CUDA framework are 
heavily studied in prior work, ATI GPUs which also serve as 
important components in many high performance computing 
systems have received relatively little attention. In addition, 
although sharing several common design concepts, ATI 
GPUs and Nvidia GPUs differ from each other on some im-
portant architectural characters. We believe that studying 
ATI GPUs will provide us new insights. Therefore, we con-
duct our studies on a recent ATI GPU by running a set of 
OpenCL programs. In general, the main contributions of this 
work are the following: 
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• Performance analysis and important variables 
characterization. We build a statistical model to 
bridge the gap between execution behaviors and the 
corresponding GPU performance. By doing this, we 
are able to quickly identify the most influential fac-
tors to the execution throughputs of the target GPU. 

• Power modeling and investigations. We also build 
a model to correlate the GPU power consumption 
and the architectural behaviors. Based on the model-
ing results, we design a set of micro-benchmarks to 
uncover the distinct power consumption features of 
different function units within a VLIW processor on 
the target GPU.   

• Extraction of instructive principles. According to 
the statistical analysis, we summarize instructive 
guidelines that are beneficial to both of software de-
velopers and hardware engineers to improve the ap-
plication performance while reducing the power 
consumption of modern GPUs.  

The remainder of this paper is organized as follows. Sec-
tion II generally introduces the target GPU architecture and 
the OpenCL programming language. Section III elaborates 
the methodology of our study. In section IV, we analyze that 
how program behaviors impact the GPU performance and 
power consumptions in detail. After that, we present our 
investigation on the power consumption patterns of the 
VLIW processors of the GPU. The guidelines for perfor-
mance improvement and power savings are also introduced 
in that section. We list the related work in section V and fi-
nally draw the conclusion in section VI. 

II. BACKGROUND 

A. Target GPU Architecture 
The target GPU used in this work is an ATI Radeon HD 

5870 codenamed Cypress [7]. As an important product ad-
dressing high performance computing, this GPU is delicately 

designed to accelerate solving large scale computation prob-
lems from different areas. 

Figure 1 illustrates a simplified architecture of the Rade-
on HD 5870. In general, it is composed of 20 Single-
Instruction-Multiple-Data (SIMD) computation engines and 
the underlying memory hierarchy. The array of SIMD en-
gines works as the heart of the entire chip because most of 
the computations are conducted in this component. Each 
SIMD engine is able to work independently, whereas the 
global data share provides a mechanism for the communica-
tion between individual engines. The GPU also contains an 
Ultra-Threaded Dispatch Processor, which is responsible for 
managing a large number of in-flight threads and assigning 
them to available computing units. The memory subsystem 
of the device includes an L2 cache and the global memory. 

An SIMD engine is a powerful processor. As can be seen 
from the upper portion of Figure 2, each SIMD core contains 
16 thread processors (TP) and 32KB local data share. The 
local data share is designed for the synchronization and data 
communication between the tasks assigned to the same 
SIMD core. More accurately, in the OpenCL context, only 
the work-items within a work-group can be synchronized. 
Accesses to the local data share are much faster than to the 
global memory. In principle, an SIMD is similar to a stream 
multiprocessor (SM) on an Nvidia GPU while the local data 
share is equivalent to the share memory on an SM. Besides, 
each SIMD includes a texture unit with 8KB L1 cache. 

Unlike the typical design of Nvidia products, ATI GPUs 
adopt the VLIW structure. We demonstrate this in the lower 
part of Figure 2 by visualizing the internal architecture of a 
thread processor. Each TP is a VLIW processor. It includes 
five processing elements, four of which are ALUs while the 
remaining one is a special function unit. In each cycle, data-
independent operations assigned to these processing ele-
ments constitute a VLIW bundle and are simultaneously 
executed. Note that the released documents [7] from ATI 
refer the four ALUs as x, y, z, w and the special function unit 
as t. In later sections of this paper, we use the term ALUs 
and x/y/z/w interchangeably. Similarly, the term special func-
tion unit and t unit refer to the same component. 

B. OpenCL Programming Language 
The Open Computing Language (OpenCL) is a pro-

gramming framework developed for parallel application [6]. 
It emphasizes the feature of portability. In specific, an 

 
Figure 1. Architectural overview of an ATI Radeon HD5870 GPU 

 
Figure 2. The architecture of an SIMD engine and  

a VLIW thread processor 
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OpenCL program can be compiled and run on any device 
that is compliant with the OpenCL specification. Similar to 
the CUDA language developed by Nvidia, OpenCL is also 
widely used in the general-purpose GPU computing realm. 

A function executed on an OpenCL device is termed a 
kernel. The basic component of a running kernel is called a 
work-item which is comparable to a thread from the CUDA 
terminology. Several work-items form a work-group and a 
kernel usually launches an amount of work-groups, in order 
to achieve the optimal performance. Multiple work-groups 
can reside on the same SIMD engine and share the resources. 
Specific to the GPU used in this study, each SIMD supports 
up to eight work-groups [8]. However, this number may be 
reduced due to the resource constraint. For instance, in the 
event that each work-item requires a large amount of regis-
ters, the actual number of work-groups allocated to an SIMD 
may be far fewer than the limit. 

When a kernel is executed on an ATI GPU, each work-
group is further divided into multiple wavefronts. The size of 
a wavefront is varying across different series of ATI GPUs. 
In a Radeon HD 5870, each wavefront is composed of 64 

work-items [8]. During a kernel execution, the latencies due 
to events including global memory accesses can be hidden 
from switching among the resident wavefronts on the same 
SIMD. 

III. METHODOLOGY 

A. Experimental Setup 
We conduct all of our studies on a system equipped with 

an ATI Radeon HD5870 GPU. The computer is running a 
Windows 7 operating system with Microsoft Visual Studio 
2010 installed. The ATI Stream Profiler 2.1 [1] is integrated 
into the Visual Studio and is able to profile OpenCL kernels 
executed on the GPU. Table I lists the names and general 
descriptions of the counters collected by the profiler. We run 
the OpenCL benchmarks provided by the ATI Stream SDK 
[2] for our analysis. All the used applications are shown in 
Table II. 

Kernel configurations such as the work-group size can 
significantly impact the program execution performance, as 
well as the power dissipation [14]. Taking this into consider-
ation, we run each kernel with different configurations and 
collect the results from the profiler respectively. On average, 
each kernel is tested with about three configurations, leading 
to a total of 78 different measurements. The number of con-
figurations tested for each kernel is also listed in Table II. 
Note that we do not set the configurations for each kernel in 
a uniform way since the kernels have distinct inherent fea-
tures and resource requirements. All the kernels used in this 
study launch more than 100 work-groups, in order to make 
the tasks evenly distributed among the SIMD engines. 

TABLE I.  PROFILER COUNTERS EXPLANATION 

Counter Description 
LDSSize The size of local data share used by a work-group 

GPR The number of general purpose registers used by a 
work-item 

ScratchRegs The number of scratch registers used by a work-
item 

FCStacks The size of flow control stack 
Wavefronts The number of launched wavefronts 

ALUInsts The number of ALU instructions executed per 
work-item 

FetchInsts The number of fetch instructions from the global 
memory executed per work-item 

WriteInsts The number of write instructions to the global 
memory executed per work-item 

LDSFetchInsts The number of fetch instructions from the local 
data share executed per work-item 

LDSWriteInsts The number of write instructions to the local data 
share executed per work-item 

ALUBusy The percentage of kernel time executing ALU 
instructions 

ALUFetchRatio The ratio of ALU to Fetch instructions 
ALUPacking The packing efficiency of the five-way VLIW 

FetchSize The size of the data fetched from the global memo-
ry 

CacheHit The data cache hit ratio 

FetchUnitBusy The percentage of kernel time the fetch unit is 
active 

FetchUnitStalled The percentage of kernel time the fetch unit is 
stalled 

WriteUnitStalled The percentage of kernel time the write unit is 
stalled 

CompletePath The size of data written to the global memory 
through the CompletePath 

FastPath The size of data written to the global memory 
through the FastPath 

PathUtilization 
The percentage of data written through FastPath or 

CompletePath compared to the total size trans-
ferred by the bus 

ALUStalled The percentage of kernel time the ALU is stalled 

LDSBankConfict The percentage of kernel time the local data share 
is stalled by bank conflicts 

TABLE II.  BENCHMARKS USED IN THE STUDY 

#Cfgs Application Name Kernel Name 
3 AESEncryptDecrypt AESDecrypt 
3 BitonicSort bitonicSort 
3 BlackScholes blackScholes 
5 DCT DCT 
3 DwtHaar1D dwtHaar1D 
3 

EigenValue 
calNumEigenValueInterval 

3 recalculateEigenIntervals 
5 FastWalshTransform fastWalshTransform 
3 FFT kfft 
1 FloydWarshall floydWarshallPass 
6 Histogram histogram256 
3 HistogramAtomics histogramKernel 
4 Mandelbrot mandelbrot_vector 
3 MatrixMultiplication mmmKernel_local 
3 MatrixTranspose matrixTranspose 
3 MonteCarloAsian calPriceVega 
5 PrefixSum prefixSum 
3 QuasiRandomSequence QuasiRandomSequence 
3 RadixSort permute 
2 Reduction reduce 
4 ScanLargeArrays blockAddition 
3 SimpleConvolution simpleConvolution 
2 

SimpleImage 
image3dCopy 

2 image2dCopy 

151



The power consumption of a GPU under load can be de-
coupled into the idle power Pi_gpu and the runtime power 
Pr_gpu. To estimate the GPU idle power, we first use a 
YOKOGAWA WT210 Digital Power Meter to measure the 
overall system power consumption Pidle_sys when the GPU is 
added on. We then record the power Pidle_sys_ng by removing 
the GPU from the system. No application is running during 
these two measurements; therefore, the difference between 
them (i.e., Pidle_sys – Pidle_sys_ng) denotes the GPU idle power. 
When the GPU is executing an OpenCL kernel, we measure 
the system power Prun_sys and accordingly calculate the GPU 
runtime power as Prun_sys – Pidle_sys. By summing up Pi_gpu and 
Pr_gpu, we obtain the power consumption of the target GPU 
under stress. Note that Pi_gpu is a constant while Pr_gpu is va-
rying across different measurements. For the sake of high 
accuracy, we measure the power consumption of each kernel 
multiple times and use their average for later analysis. 

B. Statistical Model 
Advanced statistical tools are widely used to analyze the 

relationship between a specific response and several influen-
tial variables in computer architecture area. Especially when 
the number of input variables is huge, the employment of 
statistical models provides an approach to quickly and accu-
rately capture the pivot of the problem. Therefore, in order to 
correlate the execution characteristics and the performance 
(and the power dissipation) of the GPU, we engage a rigor-
ous statistics tool, i.e., Random Forest [10], to facilitate our 
study. 

Random Forest is an ensemble model consisting of sev-
eral regression trees [11], each of which is constructed as 
follows: (1) take a bootstrap sample from the original train-
ing instance space; and (2) build a regression tree based on 
the sampled data. At each split, the candidate set of variables 
is a random subset of all the variables. The response is esti-
mated to be the average of predictions from all the trees in-
volved in the forest. 

Random Forest provides two useful interpretation tools to 
our study. The first one is the relative variable importance 
characterization. The influence of a variable is calculated by 
the number of times it is selected for splitting, weighted by 
the squared improvement to the model after splitting, and 
then average over all trees. The relative variable importance 
is then scaled to make the sum add up to 100, with a larger 
value indicating a stronger influence on the output variable. 
The second tool is the partial dependence plot, which helps 
us to visualize the variation of the response with a subset of 
variables changing after accounting for the average effects of 
all other input variables. 

The accuracy of the built model is evaluated by leave-
one-out cross-validation (LOOCV) [17]. This strategy re-
peatedly selects a single observation from the original sam-
ple as the validation sample while using the remaining ob-
servations as the training data. Furthermore, we use the R-
Square metric to mathematically assess the goodness of fit of 
our model. This metric, often called the coefficient of deter-
mination, is a widely used measure in the statistical learning 
area to represent the proportion of variations accounted by a 
trained model. Simply speaking, it reflects the percentage of 

the outcomes that are likely to be predicted by the model. In 
general, a large R-Square value is an indicator of the high 
accuracy of a trained model. 

C. Overview of the Methdology and Data Process 
Our studies are generally composed of three steps. First, 

for each of the kernels chosen for the study, we collect its 
performance profile and power consumption. Second, we 
feed the obtained data into Random Forest to build a model 
connecting the response (i.e., performance and power con-
sumption, respectively) and the execution behaviors. This 
includes characterizing the relative importance for all va-
riables and plotting the partial dependence. Note that the raw 
data reported by the profiler need preprocess before being 
used for the statistical analysis. In specific, the counters pro-
viding measurements in cumulative fashion, such as 
ALUInsts and FetchInsts, are divided by the kernel time to 
approximate the corresponding intensity within a unit time. 
Metrics including ALUBusy reflect the GPU behaviors on 
average during an execution and thus can be directly in-
cluded for the model training. For the performance analysis, 
we use millions of instructions per second (MIPS) as the 
metric, where the total number of executed instructions is 
obtained by summing up the amount of each type of instruc-
tion listed in Table I. Another issue is that counters that hard-
ly change across different profiles are eliminated from the 
training inputs, in order to make the model more robust. Fi-
nally, we derive insightful principles from the modeling re-
sults, in order to steer the program optimization and potential 
hardware upswing. 

IV. RESULT ANALYSIS 

A. Performance Analysis 
As we mentioned earlier, the performance of typical ATI 

GPUs has not been well investigated by prior studies. How-
ever, for a programmer running parallel programs on an ATI 
GPU, it is of great importance to realize that where the po-
tential performance bottleneck may exist. This justifies that a 
detailed study on the GPU performance and the underlying 
architectural behaviors is highly demanding. In this section, 
we perform an in-depth analysis on this problem by employ-
ing the Random Forest technique described in section III.B. 

The established model for the GPU performance analysis 
achieves an R-square value of 79.7% with a median absolute 
error of 13.1%, indicating a relatively high accuracy. This 
makes the deductions based upon this model fairly convinci-
ble. Recall that the employed statistical tool provides two 
interpretation tools for the analysis. The first one is the rela-
tive factor importance characterization. We illustrate the 
variable importance to the GPU performance in Figure 3. As 
can be observed, ALUBusy, which denotes the percentage of 
GPU execution time spent on ALU instructions, is identified 
as the dominant factor to the GPU performance. This does 
not go beyond our expectation. For general-purpose compu-
tations on a GPU, the tasks are majorly executed on the in-
teger/floating point units within the SIMD engines. Higher 
utilizations on those computing elements mean that more 
instructions are executed during a time period, referring to 
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higher execution throughput. The second most important 
variable is the average ratio of the ALU instructions to the 
global memory fetch instructions. Fetch operations from the 
global memory have a long latency in order of hundreds of 
cycles. Although such latencies can usually be hidden by 
switching among the available wavefronts on an SIMD en-
gine, a kernel demonstrating an extremely small ALUFet-
chRatio may not be benefited from such parallelism. In the 
worst case, no wavefronts are ready to be resumed when the 
running one is stalled by a long-latency memory access since 
all of candidates are waiting for the requested data for com-
putations. In this scenario, the executions are forced to suffer 
from the memory latencies and the performance is inevitably 
degraded. ALUPacking stands as the third most significant 
variable. Differing from ALUBusy and ALUFetchRatio, this 
factor is a specific metric used to evaluate the VLIW execu-
tions. In practice, it is not likely that all of the n slots of an n-
way VLIW processor can be fully utilized in each cycle. This 
is because that only the data-independent instructions can be 
grouped together and be executed in a vector-like fashion, 
whereas the compiler may fail to always find sufficient in-
structions to form a compact bundle. On average, if m out of 
all n slots have been filled with valid instructions in an n-
way VLIW processor, the packing ratio is m/n. From the 
perspective of performance improvement, we always attempt 
to increase the packing efficiency of a VLIW execution, in 
order to deliver higher throughput. The followed three in-
fluential factors are FetchSize, GPR, and FastPath, respec-
tively. The variable FetchSize denotes the size of data 
fetched from the global memory during a time period. In 
general, this metric should be avoided reaching high values 
when optimizing the performance. Kernels which intensively 
access the global memory tend to decrease the ALU utiliza-
tion and accordingly degrade the performance, especially in 
cases when few wavefronts reside on an SIMD engine. The 
reason of this is similar to our analysis made on ALUFet-
chRatio. Actually, if considering these two variables in con-
junction, we can infer a general theorem that the more com-
putations on every fetched byte are operated, the higher per-
formance it can be expected. The amount of general-purpose 
registers allocated to a work-item also contributes to the 
overall performance. Accesses to the registers take less time 

than accessing any other components in the memory subsys-
tem does. As a result, if all intermediate values of a computa-
tion are stored in general-purpose registers instead of being 
shuffled to the global memory, a kernel should be able to 
finish its task more quickly. The counter following GPR is 
FastPath. The FastPath is an optimized channel for data 
communications in the ATI hardware. This path delivers a 
much faster transfer speed than its counterpart which is 
called the CompletePath. Therefore, increasing the utilization 
of the FastPath is effective to improve the performance. 
More discusses about these two paths will be given shortly. 
The counters ranking afterwards are not playing important 
roles to impact the GPU performance, so we omit the analy-
sis to those variables. 

The second tool offered by Random Forest is the partial 
dependence plots, providing us visualized interpretations to 
observe the relation between individual variables and the 
GPU performance. We show the plots for the six most im-
portant factors in Figure 4. The vertical axis of each plot is 
scaled for better comparison. As can be observed, the top 
three influential variables are all positively related to the 
GPU performance. Additionally, compared to the counters 
ranked behind, the variations of these three variables tend to 
result in much fiercer change on the overall performance. 
This indicates that they are the most influential factors. The 
counters GPR and FastPath also show positive relationship 
to the performance while FetchSize demonstrating a negative 
one. Generally speaking, the trends of these curves testify 
our analysis described above. 

Essentially, it is straightforward to understand the signi-
ficance of counters including ALUBusy, ALUFetchRatio, and 
FetchSize, because the inference derived from these variables 
are close to what have been revealed from traditional CPU 
studies. Nevertheless, the FastPath is a special hardware on 
ATI GPUs and thus deserves further analysis. As shown in 
Figure 5, this path and its counterpart (i.e., the Complete-
Path) are two special data communication channels located 
between the write combine cache and the memory channel. 
While offering much higher transfer speed, the FastPath, 
however, has a constraint that it only supports basic opera-
tions such as non-atomic writes with 32-bit types [8], whe-
reas the CompletePath supports more operations including 

Figure 3. Relative variable importance for GPU performance 

 
Figure 4. Partial dependence plots for the six most important variables to 

GPU performance 
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atomic writes and stores with sub-32-bit types. Therefore, if 
communications via the CompletePath are replaced by using 
the FastPath everywhere possible, the overall performance 
can be remarkably improved. We implement two simple 
kernels to confirm this idea and visualize the key points in 
Figure 6. In the first kernel, each work-item loads the neces-
sary datum from the global memory and conduct computa-
tion based on the fetched data. The data type of the computa-
tion result is set to short (16-bit long), which is identical to 
the type of the output array. In this scenario, the computing 
result of each work-item will be stored into the global memo-
ry via the CompletePath, because the write operation is con-
ducted on a 16-bit variable. As shown in Figure 6, such an 
execution usually corresponds to a MEM_RAT_STORE in-
struction in the ATI ISA. On contrary, if we slightly modify 
the kernel by concatenating two short results into an int one 
(32-bit long) and change the data type of the output array in 
accordance, the storage will be more efficiently performed 
through the FastPath (i.e., using 
MEM_RAT_CACHELESS_STORE). Therefore, the second 
kernel greatly outperforms the first one. In specific, we ob-
serve that the kernel execution time can be decreased by up 
to 23% after the improvement. Note that with this modifica-
tion, a necessary post-process on the output data may be in-
troduced if the ensuing computations need inputs of short 

type. This overhead may compensate the benefit of a faster 
kernel execution. However, since the GPU computation 
takes most portion of entire application and dominates the 
execution time for many GPGPU problems, such modifica-
tion is still worthwhile. Putting all of these together, we 
summarize the techniques for performance optimization 
from three aspects: 

• For software developers, they should amend the al-
gorithms or application work-flows to efficiently 
utilize the data fetched from the global memory. 
That is to say, every byte loaded from the global 
memory should be maximally reused for computa-
tion.  

• Programmers should also define the variables with 
the most suitable data type in order to favor the 
FastPath transfer.   

• Hardware architects can upgrade the platforms by 
increasing the sizes of the constrained resources 
such as the general-purpose registers and by en-
hancing the special hardware including the FastPath 
for advanced operations support. 

B. Power Analysis 
Apart from the performance, the rising power consump-

tion of a modern GPU is another concern that deserves in-
vestigation in detail. We elaborate the relationship between 
the GPU power dissipations and the architectural behaviors 
in this section. 

The built model for the GPU power is quite accurate. 
Mathematically speaking, the R-square of the model is 
88.9% and the median absolute error is 4.34%, indicating 
that almost 90% of the outcomes can be predicted by this 
model with high accuracy. This gives us confidence of the 
following analyses. 

In order to gain an overall insight into the relation be-
tween the kernel execution behaviors and the corresponding 
power dissipations, we first identify the importance of differ-
ent factors. This is illustrated in Figure 7. As can be seen, 
ALUPacking is the most decisive variables, indicating that it 
inclines to impose more significant impact on the GPU pow-
er consumption than any other factors do. This makes sense 
if we take into account the VLIW architecture of ATI GPUs. 

16 TP
LDS

L1$

Cross Bar

L2$

Memory Channel

Write 
Cache

CompletePath
Atomics

…….

…….

 
Figure 5. The memory system including the FastPath and CompletePath 

 
Figure 6. An example of kernel improvement for better using the FastPath 
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A larger packing ratio implies that more processing units in a 
vector processor are utilized for computation; and more 
power will be consumed as a consequence. For the bench-
marks used in this study, some of them such as histogram are 
executed with fairly high packing efficiency (i.e., ALUPack-
ing greater than 80%), making them more power-hungry 
compared to others. The number of ALU and global memory 
fetch instructions (ALUInsts and FetchInsts) are respectively 
positioned at the second and the third place in the ranking. 
This is also reasonable. Recall our data process method de-
scribed in section III. The ALUInsts and FetchInsts actually 
represent the average intensity of ALU computations and 
global memory accesses. Obviously, the larger these two 
variables are, the higher power consumption will be, because 
high execution intensity indicates that the corresponding unit 
is active most of the time during an execution. The FetchU-
nitBusy and ALUBusy are identified as the fourth and fifth 
important factors. These two variables denote the utilizations 
of fetch units and ALUs, so they have similar implications as 
those of ALUInsts and FetchInsts. Variables ranked after 
ALUBusy slightly contribute to the total power consumption, 
so we do not discuss them in detail. 

We show the partial dependence for the top six important 
variables in Figure 8. The vertical axis of each plot is scaled 
from 115 watts to 140 watts. As shown in the figure, the 
GPU power consumption shows an ascending trend with the 
increase of each of the five most important variables; how-
ever in the sixth plot, we notice that the GPU power remains 
almost a constant regardless of the change on ALUFetchRa-
tio. This suggests that GPU power consumptions are not 
quite aware of the ratio between the ALU computations and 
the memory accesses. In fact, as long as the execution inten-
sities of these two operations stay at high values, the GPU 
power tends to be fairly large. 

C. A Case Study on the Power Consumption 
Based on the analyses made in previous section, we are 

able to extract guidelines to reduce the GPU power con-
sumption as we have done for the performance improve-
ment; however before doing that, we are going to take a fur-
ther step to investigate the power consumption patterns and 

then summarize principles based on the new findings. Our 
model identifies the VLIW packing ratio as the most impor-
tant variable to the power consumption of the target GPU. 
More interestingly, if taking a closer look at the partial de-
pendence between GPU power and the ALUPacking (i.e., the 
first plot in Figure 8), we notice a steep ascend on the curve 
when the packing ratio reaches around 80%. Since a thread 
processor on the ATI HD5870 GPU works as a five-way 
VLIW processor, an 80% packing ratio means that there are 
four valid operations in each VLIW bundle on average. Put it 
another way, only four out of five units in a thread processor 
are utilized. On the other hand, the five-way VLIW proces-
sor actually consists of four ALUs (i.e., x/y/z/w units) and a 
special function unit (i.e., t unit).  Considering all of these in 
conjunction, it is natural to raise a question that whether the 
power step-up encountered at 80% packing ratio is intro-
duced by the difference between the function units. Further-
more, if the answer is positive, we are also interested in ex-
ploiting the potential opportunities for GPU power reduction 
from this specific aspect. In this section, we aim at uncover-
ing this mystery using a set of micro-benchmarks. 

Intuitively, we consider that the four ALUs are designed 
in a uniform way and thus consume the same power. How-
ever, the special function unit is an uncertain component. 
The released documents from ATI [7] mention that the t unit 
is designed to execute complex operations such as trigono-
metric, exponential, and logarithmic functions, as well as 
regular integer and floating point operations. Therefore, this 
unit is highly probable to require more power compared to 
the four ALUs due to its complexity. To confirm our as-
sumption, we run a group of micro-benchmarks with differ-
ent packing ratios and compare their power consumptions. 

Figure 9 demonstrates the structure of our micro-
benchmarks. The one shown on the left is the kernel source 
code and the one on the right is the assembly-level code. For 
simplicity, we only list the key part of the kernel, which is a 
for loop. Since the execution of the for loop dominates the 
kernel time, the average packing ratio of the kernel approx-
imately equals to that of the loop. Therefore, our work is 
equivalent to tuning the packing ratio of the loop body. To 
achieve this goal, we first define two vector type variables 
(i.e., float4 d1, d2). In the ATI OpenCL context, each ele-

 
Figure 7. Relative variable importance for power consumption 

 
Figure 8. Partial dependence plots for the six most important variables to 

power consumption 
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ment of a vector such as s0 of d1 can be involved in a regular 
scalar operation. Specific to the example code, the four ele-
ments of d1 and d2 are assigned to different computations 
which are independent from each other. By doing this, the 
x/y/z/w units are utilized, resulting in an 80% packing ratio. 
In order to achieve a 100% packing ratio (i.e., the case 
shown in Figure 9), we define another vector variable and 
use it in a computation that has no data dependency with the 
previous four operations. By default, the compiler will assign 
this operation to the t unit to maximize the performance. This 
is highlighted by the red circles in Figure 9. Note that in the 
assembly code, the instructions under the same numerical 
label (i.e., 5 and 6 marked in bold) are grouped into a single 
bundle and are executed together. Adjusting the packing 
ratio to 60%, 40% and 20% is also straightforward with this 
framework. For instance, if we only keep the operations on 
s0, s1, and s2 while eliminating the calculations of s3, the 
resultant packing ratio is around 60%, as there are only three 
data independent instructions available in each cycle. 

We measure the power consumptions of these kernels 
and illustrate the results in Figure 10. Note that the profiling 
results of the kernels show that the ALUPacking is the only 
varying parameter while all other counters remain un-
changed. Therefore, we can safely conclude that the differ-
ence across the power consumptions should be caused by the 
changes of the packing ratio; or in other word, by the em-
ployment of different processing elements. In addition, the 

assembly-codes show that the t unit is not involved in com-
putations when the packing ratio varies from 20% to 80%. 
We thereby infer from the linear segment of the curve that 
the x/y/z/w units within a thread processor consume identical 
power. The slope abruptly becomes steeper when the ratio 
exceeds 80%, implying that the t unit is likely to require 
higher power to conduct an operation. Actually, from the 
curve, it is easy to derive that, the special function unit ap-
proximately consumes twice more power than an ALU to 
drive an execution.  

Previous studies demonstrate that executing distinct types 
of operations on a processor may result in different power 
consumptions; therefore, we also compare the power when 
different calculations are included in the kernel. We first 
modify the kernel which has an 80% packing ratio by replac-
ing all the floating point additions in the loop with multipli-
cations. By doing this, we aim at measuring the power dissi-
pations when the ALUs (i.e., x/y/z/w) are busy on running 
multiplications. Our second goal is to further investigate the 
special function unit. Specifically, we record the power con-
sumptions when the t unit is conducting multiplications or 
floating point to integer conversions. The results of these two 
experiments are demonstrated in Figure 11. As can be ob-
served, executing multiplications on the four ALUs con-
sumes identical power as running addition instructions does; 
besides, the special function unit consumes the same power 
no matter it is assigned an addition, a multiplication, or a 
conversion operation. Note that the small discrepancy be-
tween the power values shown in Figure 11 should be caused 
by the measurement errors.   

Based on these observations, it is straightforward to con-
sider that decreasing the usage of the special function unit 
may help to reduce the energy consumption because the t 
unit is more power-consuming than other ALUs. To study 
this issue, we design a reduction benchmark to compare the 
executions when the packing ratio is set to 80% and 100%, 
respectively. The kernel structure is similar to the micro-
benchmark shown in Figure 9, as it is convenient to control 
the packing ratio in this circumstance. Recall that for the 
kernel with 80% packing ratio, the t unit will not be utilized 
for computation. The results are shown in Figure 12. As ex-
pected, encapsulating four computations into a bundle can 

 
Figure 9. An example code for the VLIW packing ratio tuning. The one 

on the left is the kernel source code, while the one on the right is the 
assembly-level code. The red circles indicate that the five-way VLIW are 

fully utilized, corresponding to a 100% packing ratio 

 
Figure 10. Power consumption variation with ALUPacking changing 
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decrease the power consumption, but suffering from a per-
formance degradation. However, the energy consumptions in 
these two cases are almost identical. Considering that the 
special function unit still consumes static power even if no 
operations are assigned to it, we can expect more power and 
energy savings with real four-way VLIW processors.   

According to our analysis, the principles for GPU power 
and energy reduction can be summarized as follows: 

• Software developers can adjust the execution order 
of the expressions within an application kernel, in 
order to decrease the packing ratio and reduce the 
power consumption. Especially, for kernels which 
largely use the special function unit to conduct 
ALU operations, excluding the t unit from computa-
tion may result in remarkable power savings. How-
ever, this adjustment should be carefully conducted 
because inappropriate modification may lead to un-
acceptable performance degradation. 

• Hardware engineers should optimize the VLIW 
processors to lower down the power consumption 
of the special function unit. Our experiments dem-
onstrate that the t unit consumes more power even 
if it is executing a simple floating point addition. 
This cost-inefficient design deserves further optimi-
zation for better efficiency. 

V. RELATED WORK 
In recent years, several researchers have authored out-

standing studies on the GPU performance modeling. Hong et 
al. [12] introduce an analytical model with memory-level and 
thread-level parallelism awareness to investigate the GPU 
performance. Their model can be used to derive the perfor-
mance of a CUDA kernel by carefully analyzing the execu-
tion overlap of memory warps and computation warps. 
Baghsorkhi et al. [9] propose to use the work flow graph to 
estimate the execution time of a GPU kernel. In [21], Wong 
et al. present using a set of micro-benchmarks to explore the 
internal architecture of a widely used Nvidia GPU. More 
recently, Zhang and Owens [22] use a similar micro-
benchmark based approach to quantitatively analyze the 
GPU performance. Our work majorly differs from these stu-
dies in that we employ a statistical tool to accurately identify 

the most influential variables to the GPU performance, in-
stead of deriving all conclusions based on micro-benchmark 
executions or analytical models.  

On the other hand, literature on the GPU power analysis 
can also be found in prior studies. Hong and Kim [13] pro-
pose an integrated GPU power and performance analysis 
model which can be applied without performance measure-
ments. By combining an analytical timing model and an em-
pirical power model, they accurately predict the power con-
sumptions of GPU workloads based on only the instruction 
mix information. Using performance counters to predict the 
GPU power is another feasible approach. Ma et al. [15]  
present a scheme to analyze the power consumption of a 
GPU when the device is running typical OpenGL programs. 
In [16], Nagasaka et al. introduce a statistical model to pre-
cisely estimate the power consumption of GPGPU kernels 
running on an Nvidia GTX 285.  

Efforts are also made to explicitly improve the energy ef-
ficiency of GPU applications. Huang et al. [14] evaluate the 
performance, energy consumption and energy efficiency of 
commercial GPUs running scientific computing benchmarks. 
They demonstrate that the energy consumption of a hybrid 
CPU+GPU environment is significantly less than that of 
traditional CPU implementations. In [19], Rofouei et al. 
present a similar conclusion that a GPU is more energy effi-
cient compared to a CPU when the performance improve-
ment is above a certain bound. Ren et al. [18] consider even 
more complicated scenarios in their study. The authors im-
plement different versions of matrix multiplication kernels, 
running them on different platforms (i.e., CPU, CPU+GPU, 
CPU+GPUs) and comparing the respective performance and 
energy consumptions. Their experiment results show that 
when the CPU is given an appropriate share of workload, the 
best energy efficiency can be delivered.  

Studies on typical ATI GPUs are even fewer. Taylor and 
Li [20] develop a micro-benchmark suite for ATI GPUs. By 
running the micro-benchmarks on different series of ATI 
products, they discover the major performance bottlenecks 
on those devices. However, power consumption is not taken 
into account in their work. 

To the best of our knowledge, this study is the first one to 
systematically analyze the performance and power consump-
tion of a typical ATI GPU at the architectural level. Our 
work respectively identifies the most important variables that 
impact GPU performance and power consumptions; addi-
tionally, we give suggestions that can be easily understood 
by both software engineers and hardware architects to optim-
ize the system efficiency.  

VI. CONCLUSION 
In this paper, we present a comprehensive study on the 

performance and power consumptions of a recent ATI GPU. 
By employing a rigorous statistical model to analyze the 
execution behaviors of representative general-purpose GPU 
(GPGPU) applications, we conduct insightful investigations 
on the target GPU architecture. Our results demonstrate that 
the GPU execution performance and the power dissipation 
are dependent on different architectural variables. Further-
more, we design a set of micro-benchmarks to study the 

 
Figure 12. Execution comparison of the reduction benchmark when the 

special function unit is used/not used  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

time power energy

Re
la

ti
ve

 V
al

ue
with SFU
w/o SFU

157



power consumption features of different function units on the 
GPU. Based on those results, we derive instructive principles 
that can guide the design of power-efficient high perfor-
mance computing systems. 

ACKNOWLEDGMENT 
This work is supported in part by an NSF grant CCF-

1017961, the Louisiana Board of Regents grant NASA / 
LEQSF (2005-2010)-LaSPACE and NASA grant number 
NNG05GH22H, LEQSF (2006-09)-RD-A-10, NSF (2009)-
PFUND-136, LEQSF (2011)-PFUND-238 and the Louisiana 
State University Research Council. Ying Zhang is holding a 
Flagship Graduate Fellowship from the LSU graduate 
school. We acknowledge the computing resources provided 
by the Louisiana Optical Network Initiative (LONI) HPC 
team. Finally, we appreciate invaluable comments from ano-
nymous reviewers which help us finalize the paper. 

 

REFERENCES 
[1] AMD Corparation. AMD Stream Profiler. 

http://developer.amd.com/gpu/amdappprofiler/pages/default.aspx. 
[2] AMD Corparation. AMD Stream SDK. 

http://developer.amd.com/gpu/amdappsdk/pages/default.aspx. 
[3] Nvidia Corparation. Geforce GTX 280. 

http://www.nvidia.com/object/product_geforce_gtx_280_us.html. 
[4] Intel Corparation. Intel Core i7-920 Processor. 

http://ark.intel.com/product.aspx?id=37147. 
[5] Nvidia Corparation. What is CUDA? 

http://www.nvidia.com/object/what_is_cuda_new.html. 
[6] OpenCL – The open standard for parallel programming of 

heterogeneous systems. http://www.khronos.org/opencl. 
[7] AMD Corparation. ATI Radeon HD5000 Series: In inside view. June 

2010. 
[8] AMD Corparation. ATI stream computing OpenCL programming 

guide. June 2010. 
[9] S. Baghosorkhi, M. Delahaye, S. Patel, W.Gropp and W. Hwu, “An 

adaptive performance modeling tool for GPU architectures”, in 
Proceedings of 15th ACM Symposium on Principles and Practice of 
Parallel Programming (PPoPP), January 2010. 

[10] L. Breiman. Random forests. In Machine Learning, 45, pp. 5-32, 
2001. 

[11] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification 
and regression trees. Chapman and Hall/CRC, January 1984. 

[12] S. Hong and H. Kim, “An analytical model for a GPU architecture 
with memory-level and thread-level parallelism awareness,” in 
Proceedings of 36th Annual International Symposium on Computer 
Architecture (ISCA), June 2009. 

[13] S. Hong and H. Kim, “An integrated gpu power and performance 
model,” in Proceedings of 37th Annual International Symposium on 
Computer Architecture (ISCA), June 2010. 

[14] S. Huang, S. Xiao and W. Feng, “On the energy efficiency of 
graphics processing units for scientific computing,” in Proceedings of 
5th IEEE Workshop on High-Performance, Power-Aware Computing 
(in conjunction with the 23rd International Parallel & Distributed 
Processing Symposium), June 2009. 

[15] X. Ma, M. Dong, L. Zhong, and Z. Deng, “Statistical power 
consumption analysis and modeling for gpu-based computing”, in 
Workshop on Power-Aware Computing and Systems (HotPower), 
October 2009. 

[16] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and S. Matsuoka, 
“Statistical power modeling of gpu kernels using performance 
counters,” in Proceeding of 1st Green Computing Conference, August 
2010. 

[17] R. Picard and R. D. Cook, “Cross-validation of regression models”, in 
Journal of American Statistical Association, pp. 575 – 583, 1984. 

[18] D. Ren and R. Suda, “Investigation on the power efficiency of multi-
core and gpu processing element in large scale SIMD computation 
with CUDA”, in Proceeding of 1st Green Computing Conference, 
August 2010. 

[19] M. Rofouei, T. Stathopulous, S. Ryffel, W. Kaiser, and M. 
Sarrafzadeh, “Energy-aware high performance computing with 
graphics processing units”, in Workshop on Power-Aware Computing 
and Systems (HotPower), December 2008. 

[20] R. Taylor and X. Li, “A micro-benchmark suite for AMD GPUs”, in 
Proceedings of 39th International Conference on Parallel Processing 
Workshops, September 2010. 

[21] H. Wong, M. Papadopoulou, M, Alvandi, and A. Moshovos, 
“Demistifying GPU microarchitecture through microbenchmarking”, 
in Proceedings of International Symposium on Performance Analysis 
of Systems and Software (ISPASS), March 2010. 

[22] Y. Zhang and J. Owens, “A quantitative performance analysis model 
for GPU architectures,” in Proceedings of 17th IEEE Symposium on 
High Performance Computer Architecture (HPCA), February 2011. 

 

158


