
Exploiting Model-Level Parallelism in Recurrent Neural

Network Accelerators

Lu Peng, Wentao Shi, Jian Zhang, and Samuel Irving

Louisiana State University

ABSTRACT

Recurrent Neural Networks (RNNs) have continued to

facilitate rapid progress in a variety of academic and indus-

trial fields, though their complexity continues to make effi-

cient deployment difficult; when the RNN model size is not

properly matched to hardware resources, performance can

suffer from hardware under-utilization. In this work, we

propose to explore model-level parallelism for LSTM-RNN

accelerators in different levels of the model using a multi-

core design. The multi-core design proposed in this work

operates in three computing modes: multi-programming

mode in which independent models are executed; multi-

threading mode in which parallelism among layers of an

LSTM model is explored and properly scheduled; and

helper-core mode in which cores collaborate on a single

LSTM layer in a lower model level comparing with multi-

thread mode. Our design can achieve up to 1.98x speedup

in “multi-programming” mode, a 1.91x speedup in "multi-

threading" mode and a 1.88x speedup in "helper-core"

mode over the single-core design.

I. INTRODUCTION

Deep Neural Networks (DNNs) have recently made

revolutionary progresses in a variety of academic and in-

dustrial fields. Currently there are two dominating models:

Convolutional Neural Networks (CNNs) and Recurrent

Neural Networks (RNNs). Convolutional Neural Networks

(CNNs) have achieved remarkable performance and broken

the limits of previous algorithms for applications such as

image recognition and computer vision. Recurrent Neural

Networks (RNNs) have demonstrated superior performance

in applications with temporal components such as Natural

Language Processing (NLP). CNNs and RNNs can be

combined to realize applications which involve both image

and sequence, such as motional capture and video classifi-

cation and image captioning.

Along with the exceptional accuracy improvements of

the DNN models came a dramatically increased burden on

hardware. Computing the output of the convolutional layers

of a typical CNN is computationally intensive [1], requiring

a relatively large amount of computing resources, while the

fully-connected layers of CNNs or RNNs are memory-

intensive [1], requiring high memory bandwidth. In conse-

quence, traditional CPU-based platforms are no longer the

best choices for deploying these algorithms because they do

not provide sufficient parallelism. GPUs can provide im-

proved performance but at the cost of higher power con-

sumption. FPGAs and ASICs have garnered attention due

to their application-specific nature, ability to achieve high

degrees of parallelism, and high energy efficiency.

Significant work has been done designing CNN accel-

erators for FPGAs and ASICs [2-7]. However, according to

Jouppi et al. [8], CNNs comprise only 5% of the workload

of Google’s data center, while networks that use Long

Short-Term Memory (LSTM) make up 29%. There is exist-

ing work on LSTM-RNNs accelerators [9-13]. The overall

architecture of these work is considered as single-core ac-

celerators because their ALU/DSP arrays cannot be used

simultaneously by different jobs.

Single core LSTM-RNN accelerators have a disad-

vantage: all computing resources are arranged to form a

single accelerator core with a large size, leveraging data-

level parallelism. However, the accelerator is only able to

process one job at a time - leading to potential inefficiency

when multiple job requests occur at the same time, espe-

cially in large data centers. Secondly, when the size of the

Figure 1. Motivating Example

1

2
3

1 2

2

3b

3a 3b

1

2

1 2 3a 3b

3 jobs scheduled to dual-core

3 jobs scheduled to single core

Time

3 3

3 3

target LSTM model is small, the hardware resources will

not be fully utilized. As illustrated in Figure 1, three jobs

are scheduled to a single core accelerator. All three jobs are

independent jobs with no mutual data dependencies. The

single-core accelerator processes the three jobs individually

in a sequence over three timesteps. Using a dual-core ac-

celerator, job 1 and job 2 can be processed simultaneously

before processing job 3 during the second timestep.

Based on the motivating example mentioned above, we

present a multi-core design for the inference process of

LSTM-RNNs. This paper presents dual-core design for

simplicity purposes. However, it can be extended to system

with more than two cores.

This design is made to utilize hardware resources more

efficiently and can operate in two kinds of modes: In multi-

programming mode, the two cores run freely, processing

independent jobs at the same time. In multi-threading mode

and helper-core mode, the two cores run cooperatively on a

single job in different approaches. Our design methodology

can be applied either to generate FPGA designs according

to the requirements of specific applications or implemented

as an ASIC with fixed design parameters that have been

optimized according to the application requirements. Our

contributions are listed below:

1. We explore opportunities for LSTM model-level

parallelism during the inference process.

2. We propose a dual-core LSTM accelerator design

to leverage the parallelism based on existing single-

core designs.

3. Optimizations are conducted to improve the per-

formance of the dual-core accelerator under differ-

ent scenarios.

II. RNN BACKGROUND

RNNs are an evolved version of an Artificial Neural

Network (ANN) that possesses the ability to handle tem-

poral information. In RNNs, the output of hidden layers

will be cycled back to previous hidden layers as input dur-

ing the next time step. Thus, connections can be formed as

directed cycles between hidden layers, allowing for the de-

tection of dynamic temporal behavior. Using these unique

features, RNNs can be trained to learn from past infor-

mation. However, RNNs have disadvantages limiting their

use on real-life applications. According to Hochreiter and

Schmidhuber [13], traditional RNNs suffer from gradient

vanishing and gradient exploding. LSTM-RNNs address

this problem by adding gates to control the amount of in-

formation memorized and forgotten by the network.

LSTM-RNNs make the training process easier because they

converge more quickly, allowing the model to learn from

long-term dependences and past information.

Generally Neural Network algorithms contain two

phases: training and inference. Training is used to find the

best performing parameters (weights and biases) for a given

model. After training is concluded, the model can be used

to process input and generate output during the inference

phase. Training is usually done offline i.e. the models are

well-trained before being deployed to various platforms. In

this work, we focus on the inference process for LSTM-

RNNs. The unfolded inference process of a typical LSTM-

RNN is illustrated in Figure 2. This figure shows that the

input vector xt is fed to the LSTM sequentially, and the

outputs ct and ht, generated by the LSTM cells, are fed to

the same LSTM cell during the next time step. The LSTM

architecture shown in Figure 2 is a 2-layer architecture. Ar-

chitectures with more layers can be achieved by stacking

additional layers on top of this model and using its output

as input. The detailed inference process of LSTM-RNNs

can be found in [13].

III. OPPORTUNITIES FOR PARALLELISM

One intuitive parallelism can be achieved by letting two

independent LSTM models run simultaneously in a system.

Of course, the models can be the same such that parallelism

for a particular model is improved. This kind of parallelism

is not limited by the data dependencies inside an LSTM-

RNN model since the granularity of parallelism is outside

the LSTM-RNN models.

Batch parallelism is achieved by feeding multiple inputs

into a Neural Network to generate multiple outputs in one

inference round. Batching allows the parameters of the

Neural Network model to be shared by multiple inputs such

that parallelism among the inputs is realized. One benefit of

batch processing is that the computation to communication

ratio of the system can be improved, reducing the memory

bandwidth burden for the system, potentially improve sys-

tem throughput.

The two techniques mentioned above can be general-

ized to other types of models since they explore parallelism

outside of the models. Inside-model-level parallelism is al-

so feasible. For example, parallelism among the layers and

logical time steps of the LSTM model can be explored.

When exploring the parallelism opportunities inside LSTM

Figure 2. A Two-layer LSTM Model

LSTM

x0 x1 x2

Hidden
Layer 1

Input

Ouptut

h1
0

c1
0 LSTM LSTM

h1
2

c1
2

h1
1

c1
1

xt

LSTM

h1
t-1

c1
t-1

LSTM

h2
0 h2

1 h2
2

h2
0

c2
0 LSTM LSTM

h2
2

c2
2

h2
1

c2
1

h2
t

LSTM

h2
t-1

c2
t-1

Hidden
Layer 2

models, the data dependencies of the model should not be

altered. From Figure 2 we can see that the computation of

LSTM layers has several data dependencies. First, the

computation that require ct-1 cannot start until ct is available

from the previous time step. Second, computations using ht

cannot start until ht-1 is generated. Third, if the LSTM lay-

er takes output from bottom layer as its input, the computa-

tions using the input vectors must wait until bottom layer is

finished. Figure 3 illustrates the data flow of a three-layer

LSTM as an example to explore the parallelism. In Figure

3, each box in the vertical direction represents an LSTM

layer and the horizontal boxes are the copies of these layers

in different time steps. The arrows represent the data de-

pendencies. The execution order is not necessarily restrict-

ed by the logical timing of the LSTM model. These boxes

in Figure 3 can be launched as soon as the corresponding

data dependencies are met. Figure 3 illustrates a possible

execution scheme. As can be seen in Figure 3, the grey

boxes which are finished are marked with grey, boxes

which are being executed are marked with red and boxes to

be executed are marked with blue. The execution order is

indicated by the numbers in the boxes. The box marked

with “1” is executed first, followed by the boxes marked

with “2”. After boxes with “2” are finished, the data de-

pendencies of all the boxes marked with “3” are met, so

they are executed in parallel. Similar rules applied to the

rest of the boxes. This inter-layer parallelism is used by the

“multi-threading” implementation, as will be described in

Section 5.

Parallelism inside an LSTM layer is also feasible under

the constrain that data dependencies should not be broken.

Figure 4 shows the data flow inside an LSTM layer. As

shown in Figure 4, the results of matrix-vector multiplica-

tions are added with the biases then passed through the ac-

tivation functions. The results of these activation functions

are then processed by the element-wise operations to get

the final output. Based on this data flow, several possible

ways to improve parallelism are shown in Figure 4. We ob-

serve that all the eight matrix-vector multiplications which

are marked with yellow are independent, so that those ma-

trix-vector multiplications can be processed in parallel.

Similarly, the additions of the biases which are marked in

read and the following activation functions are also paral-

lelizable. Note that it is not necessary for all the parallelism

opportunities illustrated in Figure 4 to be exploited. For ex-

ample, if the computing capability of the system only sup-

ports executing two matrix-vector multiplications at the

same time, then the eight matrix-vector multiplications

should be divided into two groups which will be processed

in parallel. This intra-layer parallelism is used by the “help-

er-core” implementation, as will be described in Section 5.

IV. ACCELERATION SCHEMES

Three acceleration schemes for the dual-core system are

discussed in this section: “multi-programming” mode,

“multi-threading” mode, and “helper-core” mode. They

leverage parallelism at different levels and appropriately

schedule computing tasks for the dual-core system. As de-

scribed in Section 3, “multi-programming” mode runs dif-

ferent models or duplicates of the same model independent-

ly on the two cores, increasing the flexibility of the system.

The “multi-programming” acceleration scheme has a criti-

cal limitation: one of the cores stays idle when there is only

one computing job running in the system. An acceleration

scheme in which both cores participate in a single job is

necessary to improve hardware utilization in the single-job

scenario. Two such acceleration schemes are described in

this section: “multi-threading” mode in Section 4.1 which

leverages parallelism among LSTM layers and time steps;

and “helper-core” mode in Section 4.2 which leverages

parallelism inside an LSTM layer.

4.1 Multi-threading Mode

As described in Section 3, the parallelism among the

layers and time steps of a multi-level LSTM model can be

leveraged. For a dual-core system, it is necessary to proper-

ly schedule the computation tasks to the two cores to real-

Figure 4. Parallelism inside an LSTM Layer

Figure 3. Parallelism among Layers and Logical Timesteps

xt/ht from bottom layer

ht-1

+

+

+

+

σ

σ

σ

tanh

mul

mulct-1

+ tanh

mul
ht

ct

Whf

×

×

×

×

bi bc bo bf

Who

Whc

Whi

× × × ×

Whi Whc Who Whf

× +

Model Parameters Matrix-vector Multiplications Vector Additions Element-wise Operations

1 2 3 4 5 6

2 3 4 5 6 7

3 4 5 6 7 8

Time (logical)

ize high efficiency. One intuitive scheme is to execute the

layers in parallel. The 3-layer LSTM model is executed in

this manner in the example of Figure 3. However, this

scheme has a disadvantage. For example, if this three-level

LSTM is executed by a dual-core system using this scheme,

layer 1 and layer 3 are assigned to core 0 and layer 2 is as-

signed to core 1. Core 1 can start to execute layer 2 as soon

as core 0 has finished the first step of layer 1, thus these

two layers are executed in parallel. However, after the

completion of first two layers, only one core can be used to

compute layer 3 since there is a data dependency chain

connecting each step. This situation happens when the

number of layers is not divisible by the number of cores. In

other words, this scheme fails to generalize for all combina-

tions of models and hardware resources.

We observe that the sequence length of an LSTM model

is usually larger or much larger than the number of layers.

For example, the LSTM model used to perform a transla-

tion task [14] is a 4-layer LSTM which has a sequence

length of 20 to 30 or sometimes larger than 100. Based on

this observation, the efficiency of the dual-core system can

be improved by a new scheduling scheme. In this schedul-

ing scheme, the computation tasks of each logical time step

of the LSTM model are grouped into different threads. The

threads are assigned to cores in an interleaved manner ac-

cording to thread ID and then scheduled based on data de-

pendencies. In the case where there are two cores, the

threads with odd thread IDs are assigned to core 0 and the

threads with even thread IDs are assigned to core 1. The

execution process is divided into timeslots, each core pro-

ceeds one step for the current thread during each timeslot.

Note that this scheduling scheme also has hardware under-

utilization when the number of threads is not divisible by

the number of cores. Since the number of layers is usually

much smaller than the sequence length, the length of the

remaining thread is much shorter than an entire layer, thus

the time with an idle core is shorter.

Figure 5 demonstrates an example that a 3-layer LSTM

with sequence length 3 being executed by a dual-core sys-

tem. In this case, thread 1 and 3 are assigned to core 0 and

thread 2 is assigned to core 1. Core 0 executes layer 1 of

thread 1 and core 1 stays idle during timeslot 1 because of

the data dependency. In timeslot 2, core 0 executes layer 2

of thread 1 and core 1 executes layer 1 for thread 2. Both

cores proceed one step in timeslot 3. In timeslot 4, core 0

jumps to first layer of thread 3 and core 1 executes layer 3

of thread 2. Core 0 finishes thread 3 at the end of timeslot 6

and core 1 stays idle during timeslot 5 and 6. Note that the

sequence length is 3 only in this example, the typical se-

quence length of real-life LSTM model is normally much

larger than number of layer, so the last two timeslots in

which only one core is utilized is trivial comparing to the

entire execution time.

4.2 Helper-core Mode

The multi-threading mode leverages the parallelism

among layers and logical time steps of an LSTM model, the

underlying parallelism inside a layer is not explored. The

helper-core mode leverages parallelism at this level.

There are three observations that can be made: First, the

amount of data transferred for the matrix-vector multiplica-

tion is much larger than the element-wise part for an LSTM

model. Let M denote the size of an LSTM layer and let N

denote the input size of this layer. The amount of data

transferred for matrix-vector multiplications is 4MN + N +

4MM + M + 4M, the number of data reads for element-

wise operations is 0 in our implementation since it, ft, ot and

ct̃ are stored in the on-chip buffer. Second, the amount of

computation for matrix-vector multiplication is much larger

than that of element-wise operations. The number of opera-

tions for matrix-vector multiplication is 4MN + 4MM + 8M

while the number of operations for element-wise operations

is 4M. Third, as mentioned in Section 3, the eight matrix-

vector multiplications are independent of each other. Based

on these three observations, we conclude that the primary

task to accelerate an LSTM model is to parallelize the ma-

trix-vector multiplications since they are the bottleneck of

both the computing and reading phases. Another observa-

tion is that the matrix-vector multiplications involving xt

are not on the data dependency chain. According to this ob-

Figure 5. Multi-threading Mode Scheduling

0 1

0

0 1

0 1

0

0 0 1 0

0 1

0 1

0 1 0

0 1 0

0 1

Time
Slot 1

0 1 0

0 1 0

0 1 0

Time
Slot 2

Time
Slot 3

Time
Slot 4

Time
Slot 5

Time
Slot 6

Unexecuted Executed 0
Executing by

core 0 1
Executing by

core 1

Thread 1 Thread 2 Thread 3

Layer 1

Layer 2

Layer 3

servation, the “helper-core” design decouples the matrix-

vector multiplications involves xt and ht-1 and assign them

to two cores. The core which runs matrix-vector multiplica-

tions using xt is called “helper-core” and the other core

which runs matrix-vector multiplications using ht-1 is the

main core.

4.2.1 Scheduling

In this scheduling scheme, two cores run simultaneous-

ly to boost the performance of a single LSTM layer. The

helper core always runs ahead of the main core, computing

all the matrix-vector multiplications of using xt in advance

so that the main core only needs to compute the matrix-

vector multiplications using ht-1 and the element-wise oper-

ations. As a result, the overall system performance is better

than that of a single core. If the main core runs too fast, it

will have to stall until the helper core generates the neces-

sary data. If the helper core outpaces the main core and

there are multiple layers, it is going reach the point where

input vector xt of the helper core is the output ht of the main

core and data dependency could possibly be violated.

Therefore, synchronization between the main and helper

cores is needed to make sure that the two cores are always

advancing at the same pace. Computing tasks are scheduled

in using the "time slots" as a unit. A fixed number of com-

puting tasks for each core are scheduled for each time slot.

The cores do not proceed to the next time slot until both

cores finished their current computing tasks.

Figure 6 illustrates an example in which the helper core

runs ahead of the main core too boost performance. Each

row in Figure 6 represents the status of an LSTM layer.

Gray boxes represent work that has not yet been finished.

Yellow and blue boxes represent work completed by the

main and helper cores respectively. At the beginning none

of the jobs have been finished. In time slot 1, the helper

core has completed the first half of step 1 and step 2 and

the main core stays idle. In time slot 2, the main core com-

pletes the remaining half of step 1 and step 2 while the

helper core finishes the first half of step 3 and 4. Again, in

time slot 3, the main core finishes the second half of step 3

and step 4 started by the helper core while the helper pro-

ceeds to the next cell. By making the main and helper cores

run in such a synchronized manner, the helper core always

stays ahead of the main core and maintain data dependen-

cies.

V. EVALUATIONS

5.1 Experimental Setup

Figure 7 shows the overall experimental setup; first, we

train the LSTM model using Keras [17]; then, the well-

trained model is ready to be read by the code generator.

The code generator has two functions: firstly, to read the

input data and parameters of the LSTM model and arrange

them in the memory initialization file; secondly, the code

generator generates instructions for the accelerator, also

stored in the memory initialization file. The host program

on the host PC reads the memory initialization file and

sends it to the FPGA through PCIE. The system manager

on the FPGA transfers the data received from the host PC

to the main memory during the initialization phase. After

execution on the FPGA, the output of the LSTM-RNN are

stored in main memory are sent back to the host PC which

performs post-processing to get the results.

Figure 6. Scheduling of Helper core

Figure 7. Experimental Setup

Benchmark Layers
Input

Size

Layer

Size

Application

Domain

IMDB [15] 1 128 128
Sentiment

Classification

LRCN [16] 1 320 256
Activity

Recognition

Show & Tell [21] 1 512 512
Image Cap-

tioning

Shakespeare-2 [22] 2 65 128
Text Genera-

tion

CTC-3L-421-UNI

[23]
3 121 421

Speech

Recognition

Translation [24] 3 1024 1024 Translation

Table 1. Benchmark Information

Core 0
(Helper)

Core 1
(Main)

Not
executed

Time
Slot 1

Time
Slot 2

Time
Slot 3

Trained LSTM
 Model

Memory
initialization file Host

Program

PCIE

Memory
Controller

DDR3
LSTM

Accelerator

System
Manager

Keras
Code

Generator

FPGA

The hardware implementation of the single- and dual-

core designs are built on the Xilinx VC707 Evaluation

board using a Virtex-7 485t FPGA chip and runs at 125

MHz. The design entry is SystemVerilog and the develop-

ing environment is Vivado (2016.4). The MAC units and

activation functions are implemented using the DSP48 Mi-

cro IP core. On-chip buffers are implemented with the

Block Memory Generator IP core. The memory controller

is implemented using the Memory Interface Generator IP

core. The PCIE logic is implemented with Xillybus [18].

The data format used in this work is Q8.8 fixed-bit

number format. As mentioned in work [12], the error gen-

erated by Q8.8 fixed-bit format is insignificant. In their

work, the average error for ct and ht are 3.9% and 2.8% re-

spectively. Another work [19] studies the relationship be-

tween number of quantization bits and the error rates. The

authors use different numbers of quantization bits to opti-

mize the LSTM model. The largest quantization width used

is 8. Therefore, we choose Q8.8 fixed-point number in our

implementation based on these previous works.

5.2 Performance Analysis

We benchmark our implementations with the 6 bench-

marks listed in Table 1. Three of them are single-layer

models and the other three are multi-layer models. The

multi-threading implementation is only benchmarked with

the multi-layer models since it does not boost performance

of single-layer models. Figure 8 shows the normalized

overall speedup of our implementations when the batch size

is configured as 32. The reuse factor for the helper-core

implementation is set to 4. We show the speedups normal-

ized against the single core design. The legend MP denotes

the multi-programming mode while legend Helper repre-

sents the helper-core implementation and MT is short for

multi-threading. The MP mode is configured to run the

same benchmark on the two cores independently and it

achieves best performance among our implementations on

all benchmarks except the “Translation” benchmark. The

helper-core mode has performance loss in comparison with

MP and MT implementations, but outperforms them on the

“Translation” benchmark. The performance of MT is be-

tween MP mode and helper-core mode on “Shakespeare-2”

and “CTC-3L-421-UNI” benchmarks but is outperformed

by the helper-core on “Translation” benchmark.

To better understand Figure 8, we profile the run-time

status of our implementations on those benchmarks and the

results are shown in Figure 9. A core can be in one of the

following four states: performing computing only, perform-

ing memory operations only, performing both, and neither.

A hardware profiler is deployed to record the durations of

each status. The profiler is implemented using simple state

machines and counters; we use the debug probes to observe

the states of each core. For the single core implementation,

the ratio is simply the corresponding cycles divided by total

cycles. For dual-core implementations, the ratio is obtained

by averaging the corresponding cycles of the two cores

then dividing by total execution cycles.

The time breakdowns for single-core implementation

shows that the single-core implementation is working well

because at least 99% of the time the computing units are

busy which means the computing units are efficiently uti-

lized.

Speedups of MP on IMDB and “Shakespeare-2” are

slightly lower because the control overhead is relatively

more significant in smaller models. Speedups on large

models such as “Show & Tell” and the “Translation” are

also slightly lower. As can be seen in Figure 9, memory

operations of single-core implementation take over more

than 50% of the execution time for “Show & Tell” and the

“Translation” benchmarks. The MP implementation can be

treated as two identical single cores sharing the same bus to

access the main memory. When memory operations take

less than 50% of the time for single-core, the memory inter-

face can offer enough off-chip bandwidth to both cores.

However, the off-chip memory bandwidth is not sufficient

for two cores when memory operations take more than 50%

of the time for single-core, so one core may have to start

computing stage first and wait for another core finishes us-

ing the bus. In this case, the delayed memory operations

will finish after the computing stage finishes, which is why

MP implementation has more “memory only” time on

“Show & Tell” and “Translation” benchmarks and the

overall performance is slightly reduced.

There are 2 reasons that causes the performance loss for

helper core implementation. The first reason is that only

one core is busy during the first and last time slot of “help-

er-core” mode as mentioned in Section 5. The second rea-

son is that all the element-wise operations are assigned to

main core, which makes the amount of jobs assigned to two

cores slightly unbalanced. Therefore, the core which is as-

signed fewer jobs will finish first and then wait until the

other core finish, which creates synchronization gaps. As

Figure 8. Normalized Speedup over Single-core

0

0.5

1

1.5

2

2.5

Normalized Speedup

Single MP Helper MT

we can see in Figure 9, the idle state takes part of the exe-

cution time for helper-core mode, which means that one of

the cores stays idle while waiting for the other core to fin-

ish within a time slot. An observation can be made that the

idle time of helper-core on “LRCN” and “Translation”

benchmarks is shorter, and better speedup is achieved, re-

spectively. For “LRCN”, the reason is that the input vectors

xt of “LRCN” is larger than ht-1, so the helper-core is as-

signed more matrix-vector multiplication jobs, which, to

some extent, balances the tasks assigned to the cores. As

for the “Translation” benchmark, as can be seen in Figure

9, the ratio of idle state and read-only state is lower than

other benchmarks, and the helper core get better perfor-

mance improvement. The reason for this is related to the

size of the model. The size of LSTM model in “Transla-

tion” benchmark is 1024 with input vectors of size 1024,

which makes it a relatively larger model than other bench-

mark models. According to the analysis in Section 5, the

amount of computing tasks required for matrix-vector mul-

tiplications increases quadratically with the size of the

model while the amount of computing tasks for element-

wise operations increases linearly with the size of model.

The time to execute element-wise operations on main core

becomes even more trivial when the size of model is in-

creased to 1024. Therefore, the computing tasks on the

cores are more balanced than other benchmark models. In

such case where the amount of computing on the two cores

are balanced, the hardware utilization on helper-core im-

plementation is higher, so it achieves better performance.

Also note that MP and MT meet memory bandwidth bot-

tleneck on “Translation” benchmark as explained before,

but helper-core does not have such bottleneck here because

of reusing of parameters in on-chip buffers. Another obser-

vation that can be made from Figure 9 is that the fraction of

the idle time on benchmarks “Shakespeare-2” and “CTC-

3L-421-UNI” is more than other benchmarks, and that the

speedups of helper-core are lower. The reason for this is

that the input vectors xt for these 2 benchmarks are smaller

than ht-1, which means that the helper-core is assigned few-

er jobs in terms of matrix-vector multiplications. The as-

signment of the computing tasks is further unbalanced due

to this reason, so the synchronization gaps for these two

benchmarks are larger.

The speedup performance of MT mode is between the

MP mode and helper-core mode on “Shakespeare-2” and

“CTC-3L-421-UNI”. The reason is straightforwardly

shown in Figure 9: the idle durations for MT is shorter than

those of helper-core because the jobs are assigned in a more

balanced manner, so MT is faster than helper-core; and it is

slower than MP because MP has no such idle states caused

by synchronization. The MP is outperformed by helper-

core on the “Translation” benchmark for the same reason as

MP: the bottleneck of the system now is off-chip memory

bandwidth and helper-core does not have such issue.

5.3 Comparing with CPU and GPU

We compare our implementations with CPU and GPU

in this section. The metrics for performance is GOPS and

the metrics for power efficiency is GOPS/W. The power

consumption is obtained with Yokogawa WT210 power

meter. The software configuration of FPGA is the same as

Section 6.2. We run the benchmarks on 4-Core CPU (Intel

i7 7700K) and GPU (NVIDIA 1080Ti) using Keras [17]

with Tensorflow [20] as backend. The software configura-

tions for CPU and GPU are the same as FPGA. Figure 10

shows the performance and power efficiency comparison

with CPU and GPU. MP, Help-core, and MT outperform

the 4-Core CPU in performance ranging from 3.92x-5.98x,

3.05x-5.38x, and 4.26x-5.10x respectively. The sizes of the

models and data dependency chain in LSTM limit the utili-

zation of massive computing resources of GPU whose per-

formance is lower than FPGAs for most of benchmarks.

For large models such as the “Translation” benchmark, it

achieves higher performance.

As shown in Figure 10, MP, Helper-core, and MT have

better power efficiency than that of the CPU ranging from

7.79x-12.19x, 8.90x-15.66x, and 10.87x-13.67x respective-

ly. Compared with GPU, MP, Helper-core, and MT have

better power efficiency ranging from 2.18x-23.19x, 2.96x-

26.47x, and 2.58x-21.02x respectively.

Figure 9. Execution Time Break Down

0%

20%

40%

60%

80%

100%

IMDB LRCN Show & Tell Shakespeare-2 CTC-3L-421-UNI Translation

Time Breakdown

compute only both memory only neither

VI. CONCLUSION

In this paper, we observe that single-core accelerators

for LSTM-RNNs thwart the use of model-level parallelism.

Thus, we propose a dual-core accelerator for LSTM-RNN:

able to execute multiple jobs simultaneously or have cores

collaborate on a single job. According to our experimental

results and analysis, the ratio of computation to communi-

cation ratio is critical to the overall performance of the sys-

tem. Model-level parallelism along with batch processing

can be leveraged to improve performance. The “multi-

programming” implementation increases throughput up to

1.98x when the system is computation-bound. However, it

has no improvement on latency. The “multi-threading” im-

plementation achieves a good throughput improvement and

reduces latency as well when system is computation-bound;

the “helper-core” reduces the off-chip memory bandwidth

bottleneck via the reuse of model parameters when the sys-

tem is memory-bound and can achieve up to a 1.64x

speedup when the batch size is 1.

REFERENCES
[1] L. Huimin, et al., “A high performance FPGA-based accelerator for
ge-scale convolutional neural networks,” in 2016 26th International Con-

ference on Field Programmable Logic and Applications (FPL), pp. 1–9,
2016.

[2] T. Chen, et al.,“Diannao: A small-footprint high-throughput accelera-

tor forubiquitous machine-learning,” in ACM Sigplan Notices, vol. 49, pp.
269–284.

[3] Y. Chen, et al., “Dadiannao: A machine-learning supercomputer,” in
2014 47th Annual IEEE/ACM International Symposium on Microarchi-
tecture, pp. 609–622, Dec 2014.

[4] Y. H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for

energy-efficient dataflow for convolutional neural networks,” in 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architec-
ture (ISCA), pp. 367–379, 2016.

[5] C. Zhang, et al., “Optimizing fpga-based accelerator design for deep
convolutional neural networks,” in Proceedings of the 2015 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, pp. 161–
170, ACM.

[6] J. Albericio, et al., “Cnvlutin: Ineffectual-neuron-free deep neural net-

work computing,” in 2016 ACM/IEEE 43rd Annual International Sympo-
sium on Computer Architecture (ISCA), pp. 1–13, 18-22 June 2016.

[7] Y. Ma, et al., “Optimizing loop operation and dataflow in FPGA accel-
eration of deep convolutional neural networks,” in FPGA 2017, pp. 45–54.

[8] N. P. Jouppi, et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proceedings of the 44th Annual International Sympo-
sium on Computer Architecture, pp. 1–12.

[9] S. Li, et al., “FPGA acceleration of recurrent neural network based

language model,” in 2015 IEEE 23rd Annual International Symposium on

Field-Programmable Custom Computing Machines, pp. 111–118, 2-6 May
2015.

[10] E. Nurvitadhi, S. Jaewoong, D. Sheffield, A. Mishra, S. Krishnan,and
D. Marr, “Accelerating recurrent neural networks in analytics servers:

Comparison of FPGA, CPU, GPU, and ASIC,” in 2016 FPL, pp. 1–4,

Aug. 29 2016-Sept. 2 2016.

[11] S. Han, et al., “ESE: Efficient speech recognition engine with sparse
LSTM on FPGA,” in FPGA, pp. 75–84.

[12] A. X. M. Chang and E. Culurciello, “Hardware accelerators for recur-

rent neural networks on FPGA,” in 2017 IEEE International Symposium
on Circuits and Systems (ISCAS), pp. 1–4, 28-31 May 2017.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neu-
ral Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[14] I. Sutskever, et al., “Sequence to sequence learning with neural net-
works,” in Advances in Neural Information Processing Systems 27.

[15] https://github.com/keras-
team/keras/blob/master/examples/imdb_lstm.py.

[16] J. Donahue, et al., “Long-term recurrent convolutional networks for

visual recognition and description,” IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, vol. 39, no. 4, pp. 677–691, 2017.

[17] https://keras.io

[18] http://xillybus.com/

[19] S. Shin, K. Hwang and W. Sung, "Fixed-point performance analysis
of recurrent neural networks," 2016 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), Shanghai, 2016, pp.
976-980. doi:10.1109/ICASSP.2016.7471821

[20] https://www.tensorflow.org/

[21] https://doi.org/10.1145/3061639.3062187

[22] Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015). Show and
tell: A neural image caption generator. 2015 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 3156-3164.

[23] https://github.com/karpathy/char-rnn.

[24] A. Graves, A. r. Mohamed and G. Hinton, "Speech recognition with
deep recurrent neural networks," 2013 IEEE International Conference on

Acoustics, Speech and Signal Processing, Vancouver, BC, 2013, pp. 6645-
6649. doi: 10.1109/ICASSP.2013.6638947

Figure 10. Performance and Power Efficiency

305.83

0

50

100

150

IMDB LRCN Show & Tell Shakespere-2 CTC-3L-421-UNI Translation

G
O

P
S

Performance

CPU (7700K) GPU (1080Ti) Single MP Helper MT

0

2

4

6

8

10

IMDB LRCN Show & Tell Shakespere-2 CTC-3L-421-UNI Translation

G
O

P
S/

W

Power Efficiency

CPU (7700K) GPU (1080Ti) Single MP Helper MT

