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ABSTRACT 

Recurrent Neural Networks (RNNs) have continued to 

facilitate rapid progress in a variety of academic and indus-

trial fields, though their complexity continues to make effi-

cient deployment difficult; when the RNN model size is not 

properly matched to hardware resources, performance can 

suffer from hardware under-utilization. In this work, we 

propose to explore model-level parallelism for LSTM-RNN 

accelerators in different levels of the model using a multi-

core design. The multi-core design proposed in this work 

operates in three computing modes: multi-programming 

mode in which independent models are executed; multi-

threading mode in which parallelism among layers of an 

LSTM model is explored and properly scheduled; and 

helper-core mode in which cores collaborate on a single 

LSTM layer in a lower model level comparing with multi-

thread mode. Our design can achieve up to 1.98x speedup 

in “multi-programming” mode, a 1.91x speedup in "multi-

threading" mode and a 1.88x speedup in "helper-core" 

mode over the single-core design. 

 

I. INTRODUCTION 

Deep Neural Networks (DNNs) have recently made 

revolutionary progresses in a variety of academic and in-

dustrial fields. Currently there are two dominating models: 

Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs). Convolutional Neural Networks 

(CNNs) have achieved remarkable performance and broken 

the limits of previous algorithms for applications such as 

image recognition and computer vision. Recurrent Neural 

Networks (RNNs) have demonstrated superior performance 

in applications with temporal components such as Natural 

Language Processing (NLP). CNNs and RNNs can be 

combined to realize applications which involve both image 

and sequence, such as motional capture and video classifi-

cation and image captioning. 

Along with the exceptional accuracy improvements of 

the DNN models came a dramatically increased burden on 

hardware. Computing the output of the convolutional layers 

of a typical CNN is computationally intensive [1], requiring 

a relatively large amount of computing resources, while the 

fully-connected layers of CNNs or RNNs are memory-

intensive [1], requiring high memory bandwidth. In conse-

quence, traditional CPU-based platforms are no longer the 

best choices for deploying these algorithms because they do 

not provide sufficient parallelism. GPUs can provide im-

proved performance but at the cost of higher power con-

sumption. FPGAs and ASICs have garnered attention due 

to their application-specific nature, ability to achieve high 

degrees of parallelism, and high energy efficiency. 

Significant work has been done designing CNN accel-

erators for FPGAs and ASICs [2-7]. However, according to 

Jouppi et al. [8], CNNs comprise only 5% of the workload 

of Google’s data center, while networks that use Long 

Short-Term Memory (LSTM) make up 29%. There is exist-

ing work on LSTM-RNNs accelerators [9-13]. The overall 

architecture of these work is considered as single-core ac-

celerators because their ALU/DSP arrays cannot be used 

simultaneously by different jobs. 

Single core LSTM-RNN accelerators have a disad-

vantage: all computing resources are arranged to form a 

single accelerator core with a large size, leveraging data-

level parallelism. However, the accelerator is only able to 

process one job at a time - leading to potential inefficiency 

when multiple job requests occur at the same time, espe-

cially in large data centers. Secondly, when the size of the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. Motivating Example 
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target LSTM model is small, the hardware resources will 

not be fully utilized. As illustrated in Figure 1, three jobs 

are scheduled to a single core accelerator. All three jobs are 

independent jobs with no mutual data dependencies. The 

single-core accelerator processes the three jobs individually 

in a sequence over three timesteps. Using a dual-core ac-

celerator, job 1 and job 2 can be processed simultaneously 

before processing job 3 during the second timestep. 

Based on the motivating example mentioned above, we 

present a multi-core design for the inference process of 

LSTM-RNNs. This paper presents dual-core design for 

simplicity purposes. However, it can be extended to system 

with more than two cores. 

This design is made to utilize hardware resources more 

efficiently and can operate in two kinds of modes: In multi-

programming mode, the two cores run freely, processing 

independent jobs at the same time. In multi-threading mode 

and helper-core mode, the two cores run cooperatively on a 

single job in different approaches. Our design methodology 

can be applied either to generate FPGA designs according 

to the requirements of specific applications or implemented 

as an ASIC with fixed design parameters that have been 

optimized according to the application requirements. Our 

contributions are listed below: 

1. We explore opportunities for LSTM model-level 

parallelism during the inference process. 

2. We propose a dual-core LSTM accelerator design 

to leverage the parallelism based on existing single-

core designs. 

3. Optimizations are conducted to improve the per-

formance of the dual-core accelerator under differ-

ent scenarios. 

II. RNN BACKGROUND 

RNNs are an evolved version of an Artificial Neural 

Network (ANN) that possesses the ability to handle tem-

poral information. In RNNs, the output of hidden layers 

will be cycled back to previous hidden layers as input dur-

ing the next time step. Thus, connections can be formed as 

directed cycles between hidden layers, allowing for the de-

tection of dynamic temporal behavior. Using these unique 

features, RNNs can be trained to learn from past infor-

mation. However, RNNs have disadvantages limiting their 

use on real-life applications. According to Hochreiter and 

Schmidhuber [13], traditional RNNs suffer from gradient 

vanishing and gradient exploding. LSTM-RNNs address 

this problem by adding gates to control the amount of in-

formation memorized and forgotten by the network. 

LSTM-RNNs make the training process easier because they 

converge more quickly, allowing the model to learn from 

long-term dependences and past information. 

Generally Neural Network algorithms contain two 

phases: training and inference. Training is used to find the 

best performing parameters (weights and biases) for a given 

model. After training is concluded, the model can be used 

to process input and generate output during the inference 

phase. Training is usually done offline i.e. the models are 

well-trained before being deployed to various platforms. In 

this work, we focus on the inference process for LSTM-

RNNs. The unfolded inference process of a typical LSTM-

RNN is illustrated in Figure 2. This figure shows that the 

input vector xt is fed to the LSTM sequentially, and the 

outputs ct and ht, generated by the LSTM cells, are fed to 

the same LSTM cell during the next time step. The LSTM 

architecture shown in Figure 2 is a 2-layer architecture. Ar-

chitectures with more layers can be achieved by stacking 

additional layers on top of this model and using its output 

as input. The detailed inference process of LSTM-RNNs 

can be found in [13].  

III. OPPORTUNITIES FOR PARALLELISM 

One intuitive parallelism can be achieved by letting two 

independent LSTM models run simultaneously in a system. 

Of course, the models can be the same such that parallelism 

for a particular model is improved. This kind of parallelism 

is not limited by the data dependencies inside an LSTM-

RNN model since the granularity of parallelism is outside 

the LSTM-RNN models. 

Batch parallelism is achieved by feeding multiple inputs 

into a Neural Network to generate multiple outputs in one 

inference round. Batching allows the parameters of the 

Neural Network model to be shared by multiple inputs such 

that parallelism among the inputs is realized. One benefit of 

batch processing is that the computation to communication 

ratio of the system can be improved, reducing the memory 

bandwidth burden for the system, potentially improve sys-

tem throughput. 

The two techniques mentioned above can be general-

ized to other types of models since they explore parallelism 

outside of the models. Inside-model-level parallelism is al-

so feasible. For example, parallelism among the layers and 

logical time steps of the LSTM model can be explored. 

When exploring the parallelism opportunities inside LSTM 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. A Two-layer LSTM Model 
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models, the data dependencies of the model should not be 

altered. From Figure 2 we can see that the computation of 

LSTM layers has several data dependencies. First, the 

computation that require ct-1 cannot start until ct is available 

from the previous time step. Second, computations using ht 

cannot start until ht-1 is generated. Third, if the LSTM lay-

er takes output from bottom layer as its input, the computa-

tions using the input vectors must wait until bottom layer is 

finished.  Figure 3 illustrates the data flow of a three-layer 

LSTM as an example to explore the parallelism. In Figure 

3, each box in the vertical direction represents an LSTM 

layer and the horizontal boxes are the copies of these layers 

in different time steps. The arrows represent the data de-

pendencies. The execution order is not necessarily restrict-

ed by the logical timing of the LSTM model. These boxes 

in Figure 3 can be launched as soon as the corresponding 

data dependencies are met. Figure 3 illustrates a possible 

execution scheme. As can be seen in Figure 3, the grey 

boxes which are finished are marked with grey, boxes 

which are being executed are marked with red and boxes to 

be executed are marked with blue. The execution order is 

indicated by the numbers in the boxes. The box marked 

with “1” is executed first, followed by the boxes marked 

with “2”. After boxes with “2” are finished, the data de-

pendencies of all the boxes marked with “3” are met, so 

they are executed in parallel. Similar rules applied to the 

rest of the boxes. This inter-layer parallelism is used by the 

“multi-threading” implementation, as will be described in 

Section 5.  

Parallelism inside an LSTM layer is also feasible under 

the constrain that data dependencies should not be broken. 

Figure 4 shows the data flow inside an LSTM layer. As 

shown in Figure 4, the results of matrix-vector multiplica-

tions are added with the biases then passed through the ac-

tivation functions. The results of these activation functions 

are then processed by the element-wise operations to get 

the final output. Based on this data flow, several possible 

ways to improve parallelism are shown in Figure 4. We ob-

serve that all the eight matrix-vector multiplications which 

are marked with yellow are independent, so that those ma-

trix-vector multiplications can be processed in parallel. 

Similarly, the additions of the biases which are marked in 

read and the following activation functions are also paral-

lelizable. Note that it is not necessary for all the parallelism 

opportunities illustrated in Figure 4 to be exploited. For ex-

ample, if the computing capability of the system only sup-

ports executing two matrix-vector multiplications at the 

same time, then the eight matrix-vector multiplications 

should be divided into two groups which will be processed 

in parallel. This intra-layer parallelism is used by the “help-

er-core” implementation, as will be described in Section 5.  

IV. ACCELERATION SCHEMES 

Three acceleration schemes for the dual-core system are 

discussed in this section: “multi-programming” mode, 

“multi-threading” mode, and “helper-core” mode. They 

leverage parallelism at different levels and appropriately 

schedule computing tasks for the dual-core system. As de-

scribed in Section 3, “multi-programming” mode runs dif-

ferent models or duplicates of the same model independent-

ly on the two cores, increasing the flexibility of the system. 

The “multi-programming” acceleration scheme has a criti-

cal limitation: one of the cores stays idle when there is only 

one computing job running in the system. An acceleration 

scheme in which both cores participate in a single job is 

necessary to improve hardware utilization in the single-job 

scenario. Two such acceleration schemes are described in 

this section: “multi-threading” mode in Section 4.1 which 

leverages parallelism among LSTM layers and time steps; 

and “helper-core” mode in Section 4.2 which leverages 

parallelism inside an LSTM layer. 

4.1 Multi-threading Mode 

As described in Section 3, the parallelism among the 

layers and time steps of a multi-level LSTM model can be 

leveraged. For a dual-core system, it is necessary to proper-

ly schedule the computation tasks to the two cores to real-

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. Parallelism inside an LSTM Layer 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Parallelism among Layers and Logical Timesteps 
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ize high efficiency. One intuitive scheme is to execute the 

layers in parallel. The 3-layer LSTM model is executed in 

this manner in the example of Figure 3. However, this 

scheme has a disadvantage. For example, if this three-level 

LSTM is executed by a dual-core system using this scheme, 

layer 1 and layer 3 are assigned to core 0 and layer 2 is as-

signed to core 1. Core 1 can start to execute layer 2 as soon 

as core 0 has finished the first step of layer 1, thus these 

two layers are executed in parallel. However, after the 

completion of first two layers, only one core can be used to 

compute layer 3 since there is a data dependency chain 

connecting each step. This situation happens when the 

number of layers is not divisible by the number of cores. In 

other words, this scheme fails to generalize for all combina-

tions of models and hardware resources.  

We observe that the sequence length of an LSTM model 

is usually larger or much larger than the number of layers. 

For example, the LSTM model used to perform a transla-

tion task [14] is a 4-layer LSTM which has a sequence 

length of 20 to 30 or sometimes larger than 100. Based on 

this observation, the efficiency of the dual-core system can 

be improved by a new scheduling scheme. In this schedul-

ing scheme, the computation tasks of each logical time step 

of the LSTM model are grouped into different threads. The 

threads are assigned to cores in an interleaved manner ac-

cording to thread ID and then scheduled based on data de-

pendencies. In the case where there are two cores, the 

threads with odd thread IDs are assigned to core 0 and the 

threads with even thread IDs are assigned to core 1. The 

execution process is divided into timeslots, each core pro-

ceeds one step for the current thread during each timeslot. 

Note that this scheduling scheme also has hardware under-

utilization when the number of threads is not divisible by 

the number of cores. Since the number of layers is usually 

much smaller than the sequence length, the length of the 

remaining thread is much shorter than an entire layer, thus 

the time with an idle core is shorter.  

Figure 5 demonstrates an example that a 3-layer LSTM 

with sequence length 3 being executed by a dual-core sys-

tem. In this case, thread 1 and 3 are assigned to core 0 and 

thread 2 is assigned to core 1. Core 0 executes layer 1 of 

thread 1 and core 1 stays idle during timeslot 1 because of 

the data dependency. In timeslot 2, core 0 executes layer 2 

of thread 1 and core 1 executes layer 1 for thread 2. Both 

cores proceed one step in timeslot 3. In timeslot 4, core 0 

jumps to first layer of thread 3 and core 1 executes layer 3 

of thread 2. Core 0 finishes thread 3 at the end of timeslot 6 

and core 1 stays idle during timeslot 5 and 6. Note that the 

sequence length is 3 only in this example, the typical se-

quence length of real-life LSTM model is normally much 

larger than number of layer, so the last two timeslots in 

which only one core is utilized is trivial comparing to the 

entire execution time.     

4.2 Helper-core Mode 

The multi-threading mode leverages the parallelism 

among layers and logical time steps of an LSTM model, the 

underlying parallelism inside a layer is not explored. The 

helper-core mode leverages parallelism at this level.   

There are three observations that can be made: First, the 

amount of data transferred for the matrix-vector multiplica-

tion is much larger than the element-wise part for an LSTM 

model. Let M denote the size of an LSTM layer and let N 

denote the input size of this layer. The amount of data 

transferred for matrix-vector multiplications is 4MN + N + 

4MM + M + 4M, the number of data reads for element-

wise operations is 0 in our implementation since it, ft, ot and 

ct̃ are stored in the on-chip buffer. Second, the amount of 

computation for matrix-vector multiplication is much larger 

than that of element-wise operations. The number of opera-

tions for matrix-vector multiplication is 4MN + 4MM + 8M 

while the number of operations for element-wise operations 

is 4M. Third, as mentioned in Section 3, the eight matrix-

vector multiplications are independent of each other. Based 

on these three observations, we conclude that the primary 

task to accelerate an LSTM model is to parallelize the ma-

trix-vector multiplications since they are the bottleneck of 

both the computing and reading phases. Another observa-

tion is that the matrix-vector multiplications involving xt 

are not on the data dependency chain. According to this ob-

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5. Multi-threading Mode Scheduling 
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servation, the “helper-core” design decouples the matrix-

vector multiplications involves xt and ht-1 and assign them 

to two cores. The core which runs matrix-vector multiplica-

tions using xt is called “helper-core” and the other core 

which runs matrix-vector multiplications using ht-1 is the 

main core. 

4.2.1 Scheduling 

In this scheduling scheme, two cores run simultaneous-

ly to boost the performance of a single LSTM layer. The 

helper core always runs ahead of the main core, computing 

all the matrix-vector multiplications of using xt in advance 

so that the main core only needs to compute the matrix-

vector multiplications using ht-1 and the element-wise oper-

ations. As a result, the overall system performance is better 

than that of a single core. If the main core runs too fast, it 

will have to stall until the helper core generates the neces-

sary data. If the helper core outpaces the main core and 

there are multiple layers, it is going reach the point where 

input vector xt of the helper core is the output ht of the main 

core and data dependency could possibly be violated. 

Therefore, synchronization between the main and helper 

cores is needed to make sure that the two cores are always 

advancing at the same pace. Computing tasks are scheduled 

in using the "time slots" as a unit. A fixed number of com-

puting tasks for each core are scheduled for each time slot. 

The cores do not proceed to the next time slot until both 

cores finished their current computing tasks. 

Figure 6 illustrates an example in which the helper core 

runs ahead of the main core too boost performance. Each 

row in Figure 6 represents the status of an LSTM layer. 

Gray boxes represent work that has not yet been finished. 

Yellow and blue boxes represent work completed by the 

main and helper cores respectively. At the beginning none 

of the jobs have been finished. In time slot 1, the helper 

core has completed the first half of step 1 and step 2 and 

the main core stays idle. In time slot 2, the main core com-

pletes the remaining half of step 1 and step 2 while the 

helper core finishes the first half of step 3 and 4. Again, in 

time slot 3, the main core finishes the second half of step 3 

and step 4 started by the helper core while the helper pro-

ceeds to the next cell. By making the main and helper cores 

run in such a synchronized manner, the helper core always 

stays ahead of the main core and maintain data dependen-

cies. 

V. EVALUATIONS 

5.1 Experimental Setup 

Figure 7 shows the overall experimental setup; first, we 

train the LSTM model using Keras [17]; then, the well-

trained model is ready to be read by the code generator. 

The code generator has two functions: firstly, to read the 

input data and parameters of the LSTM model and arrange 

them in the memory initialization file; secondly, the code 

generator generates instructions for the accelerator, also 

stored in the memory initialization file. The host program 

on the host PC reads the memory initialization file and 

sends it to the FPGA through PCIE. The system manager 

on the FPGA transfers the data received from the host PC 

to the main memory during the initialization phase. After 

execution on the FPGA, the output of the LSTM-RNN are 

stored in main memory are sent back to the host PC which 

performs post-processing to get the results. 

Figure 6. Scheduling of Helper core 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7. Experimental Setup 
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The hardware implementation of the single- and dual-

core designs are built on the Xilinx VC707 Evaluation 

board using a Virtex-7 485t FPGA chip and runs at 125 

MHz. The design entry is SystemVerilog and the develop-

ing environment is Vivado (2016.4). The MAC units and 

activation functions are implemented using the DSP48 Mi-

cro IP core. On-chip buffers are implemented with the 

Block Memory Generator IP core. The memory controller 

is implemented using the Memory Interface Generator IP 

core. The PCIE logic is implemented with Xillybus [18].   

The data format used in this work is Q8.8 fixed-bit 

number format. As mentioned in work [12], the error gen-

erated by Q8.8 fixed-bit format is insignificant. In their 

work, the average error for ct and ht are 3.9% and 2.8% re-

spectively. Another work [19] studies the relationship be-

tween number of quantization bits and the error rates. The 

authors use different numbers of quantization bits to opti-

mize the LSTM model. The largest quantization width used 

is 8. Therefore, we choose Q8.8 fixed-point number in our 

implementation based on these previous works. 

5.2 Performance Analysis 

We benchmark our implementations with the 6 bench-

marks listed in Table 1. Three of them are single-layer 

models and the other three are multi-layer models. The 

multi-threading implementation is only benchmarked with 

the multi-layer models since it does not boost performance 

of single-layer models. Figure 8 shows the normalized 

overall speedup of our implementations when the batch size 

is configured as 32. The reuse factor for the helper-core 

implementation is set to 4. We show the speedups normal-

ized against the single core design. The legend MP denotes 

the multi-programming mode while legend Helper repre-

sents the helper-core implementation and MT is short for 

multi-threading. The MP mode is configured to run the 

same benchmark on the two cores independently and it 

achieves best performance among our implementations on 

all benchmarks except the “Translation” benchmark. The 

helper-core mode has performance loss in comparison with 

MP and MT implementations, but outperforms them on the 

“Translation” benchmark. The performance of MT is be-

tween MP mode and helper-core mode on “Shakespeare-2” 

and “CTC-3L-421-UNI” benchmarks but is outperformed 

by the helper-core on “Translation” benchmark.   

To better understand Figure 8, we profile the run-time 

status of our implementations on those benchmarks and the 

results are shown in Figure 9. A core can be in one of the 

following four states: performing computing only, perform-

ing memory operations only, performing both, and neither. 

A hardware profiler is deployed to record the durations of 

each status. The profiler is implemented using simple state 

machines and counters; we use the debug probes to observe 

the states of each core. For the single core implementation, 

the ratio is simply the corresponding cycles divided by total 

cycles. For dual-core implementations, the ratio is obtained 

by averaging the corresponding cycles of the two cores 

then dividing by total execution cycles.  

The time breakdowns for single-core implementation 

shows that the single-core implementation is working well 

because at least 99% of the time the computing units are 

busy which means the computing units are efficiently uti-

lized. 

Speedups of MP on IMDB and “Shakespeare-2” are 

slightly lower because the control overhead is relatively 

more significant in smaller models. Speedups on large 

models such as “Show & Tell” and the “Translation” are 

also slightly lower. As can be seen in Figure 9, memory 

operations of single-core implementation take over more 

than 50% of the execution time for “Show & Tell” and the 

“Translation” benchmarks. The MP implementation can be 

treated as two identical single cores sharing the same bus to 

access the main memory. When memory operations take 

less than 50% of the time for single-core, the memory inter-

face can offer enough off-chip bandwidth to both cores. 

However, the off-chip memory bandwidth is not sufficient 

for two cores when memory operations take more than 50% 

of the time for single-core, so one core may have to start 

computing stage first and wait for another core finishes us-

ing the bus. In this case, the delayed memory operations 

will finish after the computing stage finishes, which is why 

MP implementation has more “memory only” time on 

“Show & Tell” and “Translation” benchmarks and the 

overall performance is slightly reduced. 

There are 2 reasons that causes the performance loss for 

helper core implementation. The first reason is that only 

one core is busy during the first and last time slot of “help-

er-core” mode as mentioned in Section 5. The second rea-

son is that all the element-wise operations are assigned to 

main core, which makes the amount of jobs assigned to two 

cores slightly unbalanced. Therefore, the core which is as-

signed fewer jobs will finish first and then wait until the 

other core finish, which creates synchronization gaps. As 

 
Figure 8. Normalized Speedup over Single-core  
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we can see in Figure 9, the idle state takes part of the exe-

cution time for helper-core mode, which means that one of 

the cores stays idle while waiting for the other core to fin-

ish within a time slot. An observation can be made that the 

idle time of helper-core on “LRCN” and “Translation” 

benchmarks is shorter, and better speedup is achieved, re-

spectively. For “LRCN”, the reason is that the input vectors 

xt of “LRCN” is larger than ht-1, so the helper-core is as-

signed more matrix-vector multiplication jobs, which, to 

some extent, balances the tasks assigned to the cores. As 

for the “Translation” benchmark, as can be seen in Figure 

9, the ratio of idle state and read-only state is lower than 

other benchmarks, and the helper core get better perfor-

mance improvement. The reason for this is related to the 

size of the model. The size of LSTM model in “Transla-

tion” benchmark is 1024 with input vectors of size 1024, 

which makes it a relatively larger model than other bench-

mark models. According to the analysis in Section 5, the 

amount of computing tasks required for matrix-vector mul-

tiplications increases quadratically with the size of the 

model while the amount of computing tasks for element-

wise operations increases linearly with the size of model. 

The time to execute element-wise operations on main core 

becomes even more trivial when the size of model is in-

creased to 1024. Therefore, the computing tasks on the 

cores are more balanced than other benchmark models. In 

such case where the amount of computing on the two cores 

are balanced, the hardware utilization on helper-core im-

plementation is higher, so it achieves better performance. 

Also note that MP and MT meet memory bandwidth bot-

tleneck on “Translation” benchmark as explained before, 

but helper-core does not have such bottleneck here because 

of reusing of parameters in on-chip buffers. Another obser-

vation that can be made from Figure 9 is that the fraction of 

the idle time on benchmarks “Shakespeare-2” and “CTC-

3L-421-UNI” is more than other benchmarks, and that the 

speedups of helper-core are lower. The reason for this is 

that the input vectors xt for these 2 benchmarks are smaller 

than ht-1, which means that the helper-core is assigned few-

er jobs in terms of matrix-vector multiplications. The as-

signment of the computing tasks is further unbalanced due 

to this reason, so the synchronization gaps for these two 

benchmarks are larger.  

The speedup performance of MT mode is between the 

MP mode and helper-core mode on “Shakespeare-2” and 

“CTC-3L-421-UNI”. The reason is straightforwardly 

shown in Figure 9: the idle durations for MT is shorter than 

those of helper-core because the jobs are assigned in a more 

balanced manner, so MT is faster than helper-core; and it is 

slower than MP because MP has no such idle states caused 

by synchronization. The MP is outperformed by helper-

core on the “Translation” benchmark for the same reason as 

MP: the bottleneck of the system now is off-chip memory 

bandwidth and helper-core does not have such issue.  

5.3 Comparing with CPU and GPU 

We compare our implementations with CPU and GPU 

in this section. The metrics for performance is GOPS and 

the metrics for power efficiency is GOPS/W. The power 

consumption is obtained with Yokogawa WT210 power 

meter. The software configuration of FPGA is the same as 

Section 6.2. We run the benchmarks on 4-Core CPU (Intel 

i7 7700K) and GPU (NVIDIA 1080Ti) using Keras [17] 

with Tensorflow [20] as backend. The software configura-

tions for CPU and GPU are the same as FPGA. Figure 10 

shows the performance and power efficiency comparison 

with CPU and GPU. MP, Help-core, and MT outperform 

the 4-Core CPU in performance ranging from 3.92x-5.98x, 

3.05x-5.38x, and 4.26x-5.10x respectively. The sizes of the 

models and data dependency chain in LSTM limit the utili-

zation of massive computing resources of GPU whose per-

formance is lower than FPGAs for most of benchmarks. 

For large models such as the “Translation” benchmark, it 

achieves higher performance.  

As shown in Figure 10, MP, Helper-core, and MT have 

better power efficiency than that of the CPU ranging from 

7.79x-12.19x, 8.90x-15.66x, and 10.87x-13.67x respective-

ly. Compared with GPU, MP, Helper-core, and MT have 

better power efficiency ranging from 2.18x-23.19x, 2.96x-

26.47x, and 2.58x-21.02x respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 9. Execution Time Break Down 
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VI.  CONCLUSION 

In this paper, we observe that single-core accelerators 

for LSTM-RNNs thwart the use of model-level parallelism. 

Thus, we propose a dual-core accelerator for LSTM-RNN: 

able to execute multiple jobs simultaneously or have cores 

collaborate on a single job. According to our experimental 

results and analysis, the ratio of computation to communi-

cation ratio is critical to the overall performance of the sys-

tem. Model-level parallelism along with batch processing 

can be leveraged to improve performance. The “multi-

programming” implementation increases throughput up to 

1.98x when the system is computation-bound. However, it 

has no improvement on latency. The “multi-threading” im-

plementation achieves a good throughput improvement and 

reduces latency as well when system is computation-bound; 

the “helper-core” reduces the off-chip memory bandwidth 

bottleneck via the reuse of model parameters when the sys-

tem is memory-bound and can achieve up to a 1.64x 

speedup when the batch size is 1. 
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Figure 10. Performance and Power Efficiency 
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