
A Penalty-Sensitive Branch Predictor

Yue Hu David M. Koppelman Lu Peng

Department of Electrical and Computer Engineering

Louisiana State University, Baton Rouge, LA 70803

yhu14@lsu.edu, koppel@ece.lsu.edu, lpeng@lsu.edu

Abstract

Branch predictor design is typically focused only on
minimizing the misprediction rate (MR), while ignores
misprediction penalty.Because the misprediction penalty
varies widely from branch to branch, performance might
get improved by using a predictor that makes a greater
effort to predict high-penalty branches, at the expense of
the other, even if the total number of mispredictions
doesn't change.

A penalty-sensitive predictor was developed based
on this idea. It includes a penalty predictor to predict
whether a branch is high or low penalty. Then, a two-
class TAGE predictor is developed to favor high-penalty
branches at the expense of low-penalty branches.
Experiment shows although the overall performance
improvement is limited, the penalty-sensitive
mechanism successfully decreases the MR of the high-
penalty branches while increasing the MR of the low-
penalty branches by a small amount.

1. Introduction

Branch predictor design is typically focused only on
minimizing the misprediction rate, while ignores
misprediction penalty [1-7]. Penalty, the amount of time
the system is not fetching along the correct path,
includes pipeline refilling time plus any delay in
evaluating the branch condition, perhaps due to
dependencies. Because the misprediction penalty varies
widely from branch to branch, performance might get
improved by using a predictor that makes a greater
effort to predict high-penalty branches, at the expense of
the other, even if the total number of mispredictions
doesn't change. The design of such a penalty-sensitive
branch predictor is presented here.

The rest of this paper is organized as follows. In
section 2 we introduce our design which is composed of
three sub-predictors. Then, in section 3 some experiment
results about our branch predictor are presented. Next,
the storage requirement is listed in section 4. Finally,
section 5 concludes the paper.

2. Design Overview

As shown in Figure 1, the overall design is
composed of three sub-predictors: a penalty predictor, a
two-class TAGE predictor, and a loop predictor.

The two-class TAGE predictor is our main predictor.
It is connected to the penalty predictor which can predict
whether a branch is high penalty or low penalty. After

accessing the penalty information, the two-class TAGE
predictor is able to favor high penalty branches, while
only provide normal operations for low-penalty ones.
The loop predictor works as an assistant predictor to the
two-class TAGE predictor. It gives the final prediction
only when it is beneficial to the overall prediction.

2.1 . Penalty Predictor

The penalty predictor is used to determine, when a
branch is mispredicted, whether to make a normal or a
high-penalty allocation for this branch. The predictor
was designed to make a high-penalty prediction for a
branch that has more than one high-penalty recovery out
of every eight low-penalty ones. Once a branch is
predicted to be high-penalty it will keep that prediction
for over a hundred executions.

The penalty predictor uses a PC-indexed penalty
table; each entry holds an 8-bit penalty counter and a
state bit. The penalty counter is incremented by 8 for a
high-penalty branch and decremented by 1 otherwise. A
branch is regarded as a high-penalty branch if the time it
takes for this branch to flow from the fetch stage of the
pipeline (when gives a prediction) to the retire stage
(when the branch is resolved) exceeds a threshold, 120
cycles for the competition configuration. The state bit is
set to high-penalty when the counter reaches 192, and
will not reset to low-penalty until the counter reaches
zero. The table size was 1024 entries for the
competition.

2.2 . Two-class TAGE Predictor

A two-class TAGE predictor provides higher
prediction accuracy to branches that predicted high-
penalty than to the other branches. The TAGE predictor
[1-3], a former CBP winner, can easily be made into a
two-class predictor because it uses multiple tables and
these multiple tables can predict for the same branch
simultaneously.

Two-class

TAGE predictor

Loop predictor

PC
Resolve

cycles

Final

prediction

History

Penalty

predictor

PC

PC

Loop enabled?

Yes

No

 Figure 1. Overall structure of our design

mailto:koppel@ece.lsu.edu
mailto:lpeng@lsu.edu

The two-class TAGE predictor consists of several
banks, each containing a history-indexed table. The
history consists of branch outcomes and addresses.
Higher numbered banks are indexed using successively
longer history. Figure 2 shows the tables with entries
highlighted that are at the index for the current
branch/history pair. Only two (in Bank 0 and 2) of the
highlighted entries are actually for the current pair,
indicated by an H (hit), the others, marked M (miss), are
for other pairs; they are ignored when making a
prediction and might be overwritten when performing an
allocation. Table entries hold a 3-bit counter for
predicting branch direction, a varied-length tag for
detecting hits, and a 2-bit useful counter, described
below. Table entries are allocated on a misprediction;
the text beneath the banks refers to an allocation for the
current branch, which was mispredicted by the entry in
Bank 2.

A branch/history pair that was not found in any table
would be allocated in Bank 0 (a bimodal predictor), a
branch that had a mispredicted entry in an existing bank
would have a new entry allocated in a higher-numbered
bank, where the longer history might avoid the
misprediction [1-3]. The latter situation is illustrated in
the figure. Bank 2 holds the entry used to make the
prediction while the entries in higher-numbered banks
are allocation candidates.

The useful counter is initialized to zero on an
allocation and then later incremented when the entry
was used to make a useful and correct prediction. A
counter value is shown after the U in each highlighted
entry. An entry is considered useful only when the
useful counter is positive, otherwise it is considered
vacant for purposes of allocation.

The bank in which to make a normal allocation is
based on the largest bank number in which a matching
entry for the predicted branch is found; call that bank
number b; it is Bank 2 in the figure. The preferred bank
in which to allocate a new entry is Bank (b+r), where r
is 1, or 2, or 3, randomly chosen. The entry is placed in
the preferred bank if it is not occupied by a useful entry.
Otherwise, the entry is placed in the smallest numbered

bank in which the entry has a useful count of zero, Bank
4 in the figure. For further details see [1-3].

The TAGE predictor is made into a two-class
predictor by allocating two entries (rather than one) for
high-penalty branches. The entries are allocated in
different banks, the first bank is chosen in the same way
as for the normal low-penalty branches, the second bank
is chosen as close to the first bank as possible. This
double allocation increases the chance that a new entry
will survive long enough to establish its usefulness.

For a mispredicted high-penalty branch, the second
entry would be allocated if two conditions are met: First,
there must be at least one more bank with a vacant entry.
Second, the last two allocations at the preferred bank
had to be normal allocations; this is called the spacing
restriction. These restrictions were carefully chosen so
that a high-penalty allocation does not induce more
mispredictions than it avoids, including for the cases
where all branches double allocate. In the figure, the
second allocation is made to Bank 6.

2.3 . Loop Predictor

1) Prediction
The loop predictor is enabled to give the final

prediction only when three conditions are all satisfied:
 a) On the whole, the loop predictor is beneficial to the
main two-class TAGE predictor (it is beneficial when
the beneficial counter, named WITHLOOP in program
is positive, otherwise negative);
 b) The coming PC hits the loop table, at the same
time, the hit loop entry is high confident (the loop
pattern has already been detected);
 c) At fetch stage, the loop branch has been
synchronized. Or in another word, a not-taken branch of
this loop has been detected.
2) Update

At retire stage, the actual result of the current branch
and its two predictions made by the loop and two-class
TAGE predictors at fetch stage are used to update the
loop predictor. Since both the fetch and retire stages are
in-order, this can be implemented in hardware by simply
adding two prediction bits to each entry of the reorder

Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6

H

M U0

H U2

M U1

M U0

M U1 M U0

History

PC

hash hash hash hashhash hash

...

Longest

match

First

allocation

here

Not used

because

occupied

Second allocation

here(for high-

penalty branch)

Preferred bank,

not used because

occupied

Figure 2. Allocation illustration of the two-class TAGE predictor

buffer (ROB). The update of the loop predictor can be
divided into the following two classes.
 a) Loop pattern detection:

A loop pattern is detected, as known as being high
confident when the loop has already been successively
executed three times with the same number of iteration.

b) When the loop predictor is enabled:
 If the loop prediction is different from the two-class

TAGE prediction, increase the beneficial counter
WITHLOOP when the final prediction is right; or
decrease it otherwise. Once a loop prediction is found to
be wrong, the entry corresponding to that branch will be
cleared immediately.

3. Experiment Results

3.1 . Penalty Predictor Performance

The penalty predictor performed well on the
competition benchmarks. Its performance on individual
benchmarks together with their average appears in
Figure 3. Bar height above the x axis indicates the
percentage of branches that was predicted to be high-
penalty by our penalty predictor, while the height of the
lower gray segment shows the percentage of branches
that was actually high-penalty among all branches.
Below the x axis, the depth of the dark bar indicates the
percentage of high-penalty branches among those
predicted low-penalty.

On average, 50.2% of executions were predicted
high-penalty and about 27% of executions were actually
high-penalty. Only 1.3% of the executions which was
predicted low-penalty turned out to be high-penalty.
Overall, according to our statistics, among branches that
were falsely predicted by our penalty-sensitive
predictor, the average penalty of branches that predicted
high-penalty was 212 cycles, while the average penalty
of branches that predicted low-penalty was 121 cycles,
nearly half.

3.2 . Two-class TAGE Predictor Performance

The two-class TAGE predictor was designed so that
the prediction accuracy of the high-penalty branches

would improve at the expense of the low-penalty
branches. To verify this, the misprediction rate (MR)
was collected separately for branches predicted to be
low-penalty and high-penalty. This data appears in
Table 1. On average, the MR was 0.03213 for the low-
penalty branches and 0.03508 for the high-penalty
branches on the base LTAGE predictor. When the two-
class TAGE predictor was used, PSLTAGE, the average
MR of the low-penalty branches increased by 0.00003,
while that of the high-penalty decreased by 0.00006.
The overall MR dropped since about half of the
branches were predicted high-penalty. Compared with
the LTAGE, our design-PSLTAGE’s performance was
improved, although only a small amount.

To provide a reference on what sort of performance
improvement to expect, the performance of a larger
LTAGE predictor was measured, one in which all tables
except the bimodal and loop predictor, were twice as
large, shown as LTAGE2x in Table 1. For LTAGE2x,
the MR was 0.03151 and 0.03461 for low- and high-
penalty branches respectively. Looking again at the drop
of 0.00006 in the MR of the high-penalty branches, we
see that it is 12.8% of the decrease that one would get by
doubling the table sizes. Though this certainly is not a
large fraction of the potential it is respectable given that
there was no increase in the size of the TAGE predictor.

4. Storage Requirement

The storage requirement of our predictor is as
follows.

4.1 . Two-class TAGE Predictor

Table 2 shows the storage budget and configuration
of the two-class TAGE predictor. The base table is used

Figure 3. Penalty prediction statistics of the given 40 benchmarks

 (CL: Client, INT: Integer, MM: Multi-media, SER: Server, WS: Workstation)

-10
0

10
20
30
40
50
60
70
80
90

100

C
L

0
1

C
L

0
2

C
L

0
3

C
L

0
4

C
L

0
5

C
L

0
6

C
L

0
7

C
L

0
8

C
L

0
9

C
L

1
0

C
L

1
1

C
L

1
2

C
L

1
3

C
L

1
4

C
L

1
5

C
L

1
6

IN
T

0
1

IN
T

0
2

IN
T

0
3

IN
T

0
4

IN
T

0
5

IN
T

0
6

M
M

0
1

M
M

0
2

M
M

0
3

M
M

0
4

M
M

0
5

M
M

0
6

M
M

0
7

S
E

R
0

1

S
E

R
0

2

S
E

R
0

3

S
E

R
0

4

S
E

R
0

5

W
S

0
1

W
S

0
2

W
S

0
3

W
S

0
4

W
S

0
5

W
S

0
6

A
v
er

ag
e

Table 1. Performance statistics

Predictor

Low-latency Bran. High-latency Bran.

MR Penalty MR Penalty

LTAGE 0.03213 121.13 0.03508 212.12

PSLTAGE 0.03216 121.02 0.03502 213.64

LTAGE2x 0.03151 121.81 0.03461 212.76

by a bimodal predictor. With the help of hysteresis
technique, here each four entries share the same lower
bit of the conventional bimodal entries. Therefore, its
budget is (1+1/4)*32K = 40 Kbits. According to the
section 2.2, we can see for each table Ti (i=1-12), its
storage requirement is equal to (3 + 2 + Tag
width)*(Number of Entries). So, the total budget listed
in Table 2 is 503.5 Kbits.

Apart from the storage budget listed in Table 2, the
two-class TAGE predictor also has the following extra
budget. There are two 900-bit global history, two 16-bit
path history, a 4-bit “using alternate prediction on newly
allocated” counter, a 21-bit periodic reset counter and a
2-bit seed counter used for random number generation.
Therefore, these extra budget is equal to (2*900 + 2*16
+ 4 + 21 + 2) = 1852 bits.

4.2 . Loop Predictor

The loop predictor has 64 entries. For each entry, 14-
bit detected iteration counter + two 14-bit current
iteration counters individually for the fetch and retire
stage + 14-bit tag + 2-bit confidence + 8-bit age + 1-bit
prediction enable = 67 bits. In addition, there is a 7-bit
WITHLOOP counter to monitor whether the loop
predictor is globally beneficial or not. So, it requires
64*67 + 7 = 4295 bits.

4.3 . Penalty Predictor

The penalty predictor has 1024 entries. Each entry
consists of an 8-bit penalty counter and one penalty state
bit. Besides, for each two-class TAGE table Ti (i= 1-12),
there is a 2-bit counter to record the number of single-
entry allocations between each double-entry allocation.
So, 1024*(8+1) + 12*2 = 9240 bits in total.

4.4 . Others and Overall

In addition to the up-mentioned storage budget, at
retire stage, the two-class TAGE predictor and loop
predictor also need three prediction bits that made at the
fetch stage for update. There is one bit from the loop
predictor, two bits from the two-class TAGE predictor
(one for TAGE prediction, the other for alternate TAGE
prediction) [1-3]. According to the implementation
method introduced in section 2.3, we can implement this
by adding three bits to each entry of the ROB whose
size is 256 in the competition. So, it requires 256*3 =
768 bits.

Therefore, the total storage budget of our branch
predictor is 503.5*1024 + 1852 + 4295 + 9240 + 768 =
531747 bits which is no larger than the given storage
budget 65KB (65 * 1024 * 8 = 532480 bits).

5. Conclusion

The design for a penalty-sensitive branch predictor
has been presented, consisting of a penalty predictor, a
two-class TAGE predictor and a loop predictor.
Experiment shows the penalty predictor successfully
identifies high-penalty branches whose average
misprediction penalty is nearly as twice large as that of
the low-penalty branches. The two-class TAGE
predictor has been developed which is successful at
improving the prediction accuracy of the high-penalty
branches at the expense of the low-penalty one.

By one measure, it realizes 12.8% of the potential
improvement in MR. A natural question is whether more
of this potential can be realized. The high-penalty
allocation mechanism was designed conservatively so
that the second table entry is allocated only when the
entry to be replaced is useless. A variation, in which this
restriction was removed, so that the second entry can be
allocated every time, resulted in worse performance.
The double allocation mechanism gives high-penalty
branches an advantage when allocating new entries, but
does not make their established entries any less
vulnerable. In a possible design, alternative table entries
can have a class bit which indicates whether the branch
is high or low penalty; the bit can be used to prioritize
allocations. This class bit consumes storage, and so
reduces the performance when all branches fell into a
single class. For that reason it was not tried.

References

[1] A. Seznec, “The L-TAGE Branch Predictor,” Journal of
Instruction Level Parallelism, May 2007.

[2] A. Seznec, “A 256 Kbits L-TAGE branch predictor,” 2nd
Championship Branch Prediction, Dec 2006.

[3] A. Seznec, “A case fro (partially) Tagged Geometric history
length branch prediction”, Journal of Instruction Level
Parallelism, Feb 2006.

[4] H. Gao and H. Zhou, “Adaptive Information Processing: An
Effective Way to Improve Perceptron Predictors”, 1st
Championship Branch Prediction, Dec 2004.

[5] S. McFarling, “Combining Branch Predictors”, Technical
Report, DEC, 1993

[6] R. Amant, D. Jimenez and D. Burger, “ Low-power, High-
Performance Analog Neural Branch Prediction”, MICRO, Dec
2008

[7] H. Kim, O. Mutlu, J. Stark and Y. Patt, “Wish Branches:
Enabling Adaptive and Aggressive Predicated Execution”,
MICRO, Jan, 2006

Table 2. Storage budget and configuration of the two-class TAGE predictor

Table Name Base T1,2 T3,4 T5 T6 T7 T8,9 T10 T11 T12

History Length 0 5,8 13,21 33 53 85 136,218 350 561 900

Number of Entries 32K 2K 4K 4K 4K 2K 2K 1K 1K 0.5K

Tag Width 0 9 10 11 12 12 13 14 15 16

Storage Budget (bits) 40K 28K 60K 64K 68K 34K 36K 19k 20K 10.5K

