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Abstract 

Branch predictor design is typically focused only on 
minimizing the misprediction rate (MR), while ignores 
misprediction penalty.Because the misprediction penalty 
varies widely from branch to branch, performance might 
get improved by using a predictor that makes a greater 
effort to predict high-penalty branches, at the expense of 
the other, even if the total number of mispredictions 
doesn't change.  

A penalty-sensitive predictor was developed based 
on this idea. It includes a penalty predictor to predict 
whether a branch is high or low penalty. Then, a two-
class TAGE predictor is developed to favor high-penalty 
branches at the expense of low-penalty branches. 
Experiment shows although the overall performance 
improvement is limited, the penalty-sensitive 
mechanism successfully decreases the MR of the high-
penalty branches while increasing the MR of the low-
penalty branches by a small amount. 

1. Introduction 

Branch predictor design is typically focused only on 
minimizing the misprediction rate, while ignores 
misprediction penalty [1-7]. Penalty, the amount of time 
the system is not fetching along the correct path, 
includes pipeline refilling time plus any delay in 
evaluating the branch condition, perhaps due to 
dependencies. Because the misprediction penalty varies 
widely from branch to branch, performance might get 
improved by using a predictor that makes a greater 
effort to predict high-penalty branches, at the expense of 
the other, even if the total number of mispredictions 
doesn't change. The design of such a penalty-sensitive 
branch predictor is presented here. 

The rest of this paper is organized as follows. In 
section 2 we introduce our design which is composed of 
three sub-predictors. Then, in section 3 some experiment 
results about our branch predictor are presented. Next, 
the storage requirement is listed in section 4. Finally, 
section 5 concludes the paper. 

2. Design Overview 

As shown in Figure 1, the overall design is 
composed of three sub-predictors: a penalty predictor, a 
two-class TAGE predictor, and a loop predictor.  

The two-class TAGE predictor is our main predictor. 
It is connected to the penalty predictor which can predict 
whether a branch is high penalty or low penalty. After 

accessing the penalty information, the two-class TAGE 
predictor is able to favor high penalty branches, while 
only provide normal operations for low-penalty ones. 
The loop predictor works as an assistant predictor to the 
two-class TAGE predictor. It gives the final prediction 
only when it is beneficial to the overall prediction.  

2.1 . Penalty Predictor 

The penalty predictor is used to determine, when a 
branch is mispredicted, whether to make a normal or a 
high-penalty allocation for this branch. The predictor 
was designed to make a high-penalty prediction for a 
branch that has more than one high-penalty recovery out 
of every eight low-penalty ones. Once a branch is 
predicted to be high-penalty it will keep that prediction 
for over a hundred executions. 

The penalty predictor uses a PC-indexed penalty 
table; each entry holds an 8-bit penalty counter and a 
state bit. The penalty counter is incremented by 8 for a 
high-penalty branch and decremented by 1 otherwise. A 
branch is regarded as a high-penalty branch if the time it 
takes for this branch to flow from the fetch stage of the 
pipeline (when gives a prediction) to the retire stage 
(when the branch is resolved) exceeds a threshold, 120 
cycles for the competition configuration. The state bit is 
set to high-penalty when the counter reaches 192, and 
will not reset to low-penalty until the counter reaches 
zero. The table size was 1024 entries for the 
competition. 

2.2 . Two-class TAGE Predictor 

A two-class TAGE predictor provides higher 
prediction accuracy to branches that predicted high-
penalty than to the other branches. The TAGE predictor 
[1-3], a former CBP winner, can easily be made into a 
two-class predictor because it uses multiple tables and 
these multiple tables can predict for the same branch 
simultaneously. 
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 Figure 1. Overall structure of our design 
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The two-class TAGE predictor consists of several 
banks, each containing a history-indexed table. The 
history consists of branch outcomes and addresses. 
Higher numbered banks are indexed using successively 
longer history. Figure 2 shows the tables with entries 
highlighted that are at the index for the current 
branch/history pair. Only two (in Bank 0 and 2) of the 
highlighted entries are actually for the current pair, 
indicated by an H (hit), the others, marked M (miss), are 
for other pairs; they are ignored when making a 
prediction and might be overwritten when performing an 
allocation. Table entries hold a 3-bit counter for 
predicting branch direction, a varied-length tag for 
detecting hits, and a 2-bit useful counter, described 
below. Table entries are allocated on a misprediction; 
the text beneath the banks refers to an allocation for the 
current branch, which was mispredicted by the entry in 
Bank 2.  

A branch/history pair that was not found in any table 
would be allocated in Bank 0 (a bimodal predictor), a 
branch that had a mispredicted entry in an existing bank 
would have a new entry allocated in a higher-numbered 
bank, where the longer history might avoid the 
misprediction [1-3]. The latter situation is illustrated in 
the figure. Bank 2 holds the entry used to make the 
prediction while the entries in higher-numbered banks 
are allocation candidates. 

The useful counter is initialized to zero on an 
allocation and then later incremented when the entry 
was used to make a useful and correct prediction. A 
counter value is shown after the U in each highlighted 
entry. An entry is considered useful only when the 
useful counter is positive, otherwise it is considered 
vacant for purposes of allocation. 

The bank in which to make a normal allocation is 
based on the largest bank number in which a matching 
entry for the predicted branch is found; call that bank 
number b; it is Bank 2 in the figure. The preferred bank 
in which to allocate a new entry is Bank (b+r), where r 
is 1, or 2, or 3, randomly chosen. The entry is placed in 
the preferred bank if it is not occupied by a useful entry. 
Otherwise, the entry is placed in the smallest numbered 

bank in which the entry has a useful count of zero, Bank 
4 in the figure. For further details see [1-3]. 

The TAGE predictor is made into a two-class 
predictor by allocating two entries (rather than one) for 
high-penalty branches. The entries are allocated in 
different banks, the first bank is chosen in the same way 
as for the normal low-penalty branches, the second bank 
is chosen as close to the first bank as possible. This 
double allocation increases the chance that a new entry 
will survive long enough to establish its usefulness. 

For a mispredicted high-penalty branch, the second 
entry would be allocated if two conditions are met: First, 
there must be at least one more bank with a vacant entry. 
Second, the last two allocations at the preferred bank 
had to be normal allocations; this is called the spacing 
restriction. These restrictions were carefully chosen so 
that a high-penalty allocation does not induce more 
mispredictions than it avoids, including for the cases 
where all branches double allocate. In the figure, the 
second allocation is made to Bank 6. 

2.3 . Loop Predictor 

1) Prediction 
The loop predictor is enabled to give the final 

prediction only when three conditions are all satisfied:    
    a) On the whole, the loop predictor is beneficial to the 
main two-class TAGE predictor (it is beneficial when 
the beneficial counter, named WITHLOOP in program 
is positive, otherwise negative);  
    b) The coming PC hits the loop table, at the same 
time, the hit loop entry is high confident (the loop 
pattern has already been detected);  
    c) At fetch stage, the loop branch has been 
synchronized. Or in another word, a not-taken branch of 
this loop has been detected.  
2) Update 

At retire stage, the actual result of the current branch 
and its two predictions made by the loop and two-class 
TAGE predictors at fetch stage are used to update the 
loop predictor. Since both the fetch and retire stages are 
in-order, this can be implemented in hardware by simply 
adding two prediction bits to each entry of the reorder 
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Figure 2. Allocation illustration of the two-class TAGE predictor 



buffer (ROB). The update of the loop predictor can be 
divided into the following two classes.  
    a) Loop pattern detection: 

A loop pattern is detected, as known as being high 
confident when the loop has already been successively 
executed three times with the same number of iteration. 

b) When the loop predictor is enabled: 
 If the loop prediction is different from the two-class 

TAGE prediction, increase the beneficial counter 
WITHLOOP when the final prediction is right; or 
decrease it otherwise. Once a loop prediction is found to 
be wrong, the entry corresponding to that branch will be 
cleared immediately. 

3. Experiment Results 

3.1 . Penalty Predictor Performance 

The penalty predictor performed well on the 
competition benchmarks. Its performance on individual 
benchmarks together with their average appears in 
Figure 3. Bar height above the x axis indicates the 
percentage of branches that was predicted to be high-
penalty by our penalty predictor, while the height of the 
lower gray segment shows the percentage of branches 
that was actually high-penalty among all branches. 
Below the x axis, the depth of the dark bar indicates the 
percentage of high-penalty branches among those 
predicted low-penalty.  

On average, 50.2% of executions were predicted 
high-penalty and about 27% of executions were actually 
high-penalty. Only 1.3% of the executions which was 
predicted low-penalty turned out to be high-penalty. 
Overall, according to our statistics, among branches that 
were falsely predicted by our penalty-sensitive 
predictor, the average penalty of branches that predicted 
high-penalty was 212 cycles, while the average penalty 
of branches that predicted low-penalty was 121 cycles, 
nearly half. 

3.2 . Two-class TAGE Predictor Performance 

The two-class TAGE predictor was designed so that 
the prediction accuracy of the high-penalty branches 

would improve at the expense of the low-penalty 
branches. To verify this, the misprediction rate (MR) 
was collected separately for branches predicted to be 
low-penalty and high-penalty. This data appears in 
Table 1. On average, the MR was 0.03213 for the low-
penalty branches and 0.03508 for the high-penalty 
branches on the base LTAGE predictor. When the two-
class TAGE predictor was used, PSLTAGE, the average 
MR of the low-penalty branches increased by 0.00003, 
while that of the high-penalty decreased by 0.00006. 
The overall MR dropped since about half of the 
branches were predicted high-penalty. Compared with 
the LTAGE, our design-PSLTAGE’s performance was 
improved, although only a small amount.  

To provide a reference on what sort of performance 
improvement to expect, the performance of a larger 
LTAGE predictor was measured, one in which all tables 
except the bimodal and loop predictor, were twice as 
large, shown as LTAGE2x in Table 1. For LTAGE2x, 
the MR was 0.03151 and 0.03461 for low- and high-
penalty branches respectively. Looking again at the drop 
of 0.00006 in the MR of the high-penalty branches, we 
see that it is 12.8% of the decrease that one would get by 
doubling the table sizes. Though this certainly is not a 
large fraction of the potential it is respectable given that 
there was no increase in the size of the TAGE predictor. 

4. Storage Requirement 

The storage requirement of our predictor is as 
follows.  

4.1 . Two-class TAGE Predictor 

Table 2 shows the storage budget and configuration 
of the two-class TAGE predictor. The base table is used 

 
Figure 3. Penalty prediction statistics of the given 40 benchmarks 

 (CL: Client, INT: Integer, MM: Multi-media, SER: Server, WS: Workstation) 
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Table 1. Performance statistics 

 

Predictor 

Low-latency Bran. High-latency Bran. 

MR Penalty MR Penalty 

LTAGE 0.03213 121.13 0.03508 212.12 

PSLTAGE 0.03216 121.02 0.03502 213.64 

LTAGE2x 0.03151 121.81 0.03461 212.76 

 



by a bimodal predictor. With the help of hysteresis 
technique, here each four entries share the same lower 
bit of the conventional bimodal entries. Therefore, its 
budget is (1+1/4)*32K = 40 Kbits. According to the 
section 2.2, we can see for each table Ti (i=1-12), its 
storage requirement is equal to (3 + 2 + Tag 
width)*(Number of Entries). So, the total budget listed 
in Table 2 is 503.5 Kbits.  

Apart from the storage budget listed in Table 2, the 
two-class TAGE predictor also has the following extra 
budget. There are two 900-bit global history, two 16-bit 
path history, a 4-bit “using alternate prediction on newly 
allocated” counter, a 21-bit periodic reset counter and a 
2-bit seed counter used for random number generation. 
Therefore, these extra budget is equal to (2*900 + 2*16 
+ 4 + 21 + 2) = 1852 bits.  

4.2 . Loop Predictor 

The loop predictor has 64 entries. For each entry, 14-
bit detected iteration counter + two 14-bit current 
iteration counters individually for the fetch and retire 
stage + 14-bit tag + 2-bit confidence + 8-bit age + 1-bit 
prediction enable = 67 bits. In addition, there is a 7-bit 
WITHLOOP counter to monitor whether the loop 
predictor is globally beneficial or not. So, it requires 
64*67 + 7 = 4295 bits.  

4.3 . Penalty Predictor 

The penalty predictor has 1024 entries. Each entry 
consists of an 8-bit penalty counter and one penalty state 
bit. Besides, for each two-class TAGE table Ti (i= 1-12), 
there is a 2-bit counter to record the number of single-
entry allocations between each double-entry allocation. 
So, 1024*(8+1) + 12*2 = 9240 bits in total. 

4.4 . Others and Overall 

In addition to the up-mentioned storage budget, at 
retire stage, the two-class TAGE predictor and loop 
predictor also need three prediction bits that made at the 
fetch stage for update. There is one bit from the loop 
predictor, two bits from the two-class TAGE predictor 
(one for TAGE prediction, the other for alternate TAGE 
prediction) [1-3]. According to the implementation 
method introduced in section 2.3, we can implement this 
by adding three bits to each entry of the ROB whose 
size is 256 in the competition. So, it requires 256*3 = 
768 bits. 

Therefore, the total storage budget of our branch 
predictor is 503.5*1024 + 1852 + 4295 + 9240 + 768 = 
531747 bits which is no larger than the given storage 
budget 65KB (65 * 1024 * 8 = 532480 bits).  

5. Conclusion 

The design for a penalty-sensitive branch predictor 
has been presented, consisting of a penalty predictor, a 
two-class TAGE predictor and a loop predictor. 
Experiment shows the penalty predictor successfully 
identifies high-penalty branches whose average 
misprediction penalty is nearly as twice large as that of 
the low-penalty branches. The two-class TAGE 
predictor has been developed which is successful at 
improving the prediction accuracy of the high-penalty 
branches at the expense of the low-penalty one.  

By one measure, it realizes 12.8% of the potential 
improvement in MR. A natural question is whether more 
of this potential can be realized. The high-penalty 
allocation mechanism was designed conservatively so 
that the second table entry is allocated only when the 
entry to be replaced is useless. A variation, in which this 
restriction was removed, so that the second entry can be 
allocated every time, resulted in worse performance. 
The double allocation mechanism gives high-penalty 
branches an advantage when allocating new entries, but 
does not make their established entries any less 
vulnerable. In a possible design, alternative table entries 
can have a class bit which indicates whether the branch 
is high or low penalty; the bit can be used to prioritize 
allocations. This class bit consumes storage, and so 
reduces the performance when all branches fell into a 
single class. For that reason it was not tried. 

References 

[1] A. Seznec, “The L-TAGE Branch Predictor,” Journal of 
Instruction Level Parallelism, May 2007. 

[2] A. Seznec, “A 256 Kbits L-TAGE branch predictor,” 2nd 
Championship Branch Prediction, Dec 2006. 

[3] A. Seznec, “A case fro (partially) Tagged Geometric history 
length branch prediction”, Journal of Instruction Level 
Parallelism, Feb 2006. 

[4] H. Gao and H. Zhou, “Adaptive Information Processing: An 
Effective Way to Improve Perceptron Predictors”, 1st 
Championship Branch Prediction, Dec 2004. 

[5] S. McFarling, “Combining Branch Predictors”, Technical 
Report, DEC, 1993 

[6] R. Amant, D. Jimenez and D. Burger, “ Low-power, High-
Performance Analog Neural Branch Prediction”, MICRO, Dec 
2008  

[7] H. Kim, O. Mutlu, J. Stark and Y. Patt, “Wish Branches: 
Enabling Adaptive and Aggressive Predicated Execution”, 
MICRO, Jan, 2006 

 

Table 2. Storage budget and configuration of the two-class TAGE predictor 

Table Name Base T1,2 T3,4 T5 T6 T7 T8,9 T10 T11 T12 

History Length 0 5,8 13,21 33 53 85 136,218 350 561 900 

Number of Entries 32K 2K 4K 4K 4K 2K 2K 1K 1K 0.5K 

Tag Width 0 9 10 11 12 12 13 14 15 16 

Storage Budget (bits) 40K 28K 60K 64K 68K 34K 36K 19k 20K 10.5K 

 


