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Abstract The shrinking processor feature and operating voltages of processor circuits
are making them increasingly vulnerable to soft faults, which calls for fault resilience
techniques at both the software and hardware levels under the big data context. To
assist software developers in writing fault-resilient big data applications, we propose
the tool ErrorSight, which helps them to focus their efforts on code regions and
data structures that are most vulnerable to soft errors, understand how numerical
errors propagate through the program, and apply fault resilience techniques effectively.
ErrorSight achieves this through efficient generation of error profiles leveraging the
predictive power of the Boosted Regression Tree model. We use four big data kernels
to illustrate the modular analysis mechanism of ErrorSight and show its usefulness
in the development of numerical fault-resilience in Big Data.

Keywords Soft faults - High-performance computing - Numerical errors - Fault
resilience - Big data

1 Introduction

As the feature sizes of processor circuits shrink and operate at lower voltages they
become increasingly vulnerable to soft faults, which are transient interruptions in
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the correct operation of individual gates or circuits [3]. Soft faults may be caused
by a wide range of physical phenomena, including voltage variation, as well as the
impact of cosmic ray-induced neutrons or alpha particles from chip packaging. The
transient electric fields induced by these phenomena distort the flow of charge in
transistors and temporarily corrupt the state of the circuits they use them [4]. These
corruptions may propagate through processor logic to corrupt the state of the applica-
tions that execute on them, causing them to crash or silently return incorrect results.
Today the error rates in DRAMs have been reported to reach 70,000 FITs (failures
per billion device hours) per Mbits [18]. Further, since by the year 2020 processor
feature sizes are expected to shrink to just 5-7 nm (DRAM % pitch), which is just

10-14 silicon atoms (5 A per atom) across, soft faults are expected to become a
critical problem in these designs and the software that runs on them. This makes it
important for software developers to design ways to enable system and application
software to survive the impact of soft faults with minimal cost in power use and
performance.

Prior work in various application domains has demonstrated that it is possible
to build hardware and software that are resilient to soft faults. They range from
mechanisms that are generic and expensive (e.g. replication) to application-specific
techniques that have a low runtime overhead but require significant development effort
[9,11]. For general techniques, the user has to decide smartly when and where to
deploy them effectively at a reasonable cost. For algorithm-specific techniques, the
user needs to gain a thorough understanding of the algorithm in question to develop
fault resilience techniques. Both would require significant amount of efforts.

This paper focuses on the problem of reducing the amount of work needed for
application developers to design and deploy resilience techniques by presenting a
support tool named ErrorSight for this task. Similar to performance analysis tools
that quantify the resource utilization of various application regions, ErrorSight helps
developers understand the impact of soft faults on their application state and how their
impacts flow through application logic.

Developers can use this information to:

— Focus their efforts on code regions and data structures the errors in which have the
most significant impact on application results, and
— Understand how the errors propagate as the program runs,

and produce fault-resilient software more efficiently.

ErrorSight begins by running fault injection plans, where the program is exe-
cuted a large number of times (Table 5) with one error modelling physical soft faults
injected into its program state each time. The errors are injected into registers and
can propagate through expressions and memory operations as the program continues.
By observing the flow of these errors through application state and their impact on
application output, ErrorSight creates a profile of the errors that have the most signif-
icant impact on application output and how they propagate to the output. As the data
begin to accumulate, a statistical model is trained with the data in hand, which is then
cross-validated. This model captures the error propagation patterns and can predict
the magnitude of errors down through the propagation chain, thereby saving the cost
of fault injection experiments needed for an accurate characterization of the impact of
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soft errors on this program. The results are then presented to the user in an intuitive
way, informing the user of the necessary changes in the software needed to improve
fault resilience.

While fault injection is used ubiquitously to quantify application resilience prop-
erties, ErrorSight incorporates novel capabilities specifically designed to improve
developers’ ability to make their software resilient in addition to evaluate resilience
after the fact. First, ErrorSight quantifies the impact of errors on application state in
terms of high-level concepts using developer-specified distance metrics to measure
the difference between a given data structure in a fault injected run and the same data
structure at the same execution point in a reference application run. For example, errors
in numerical vectors may be quantified using the root mean square deviation metric,
while errors in strings may be measured using the edit distance metric. This enables
developers to reason about the impact of errors at the same level of abstraction they use
as part of their regular development efforts, which improves their productivity. Sec-
ond, ErrorSight tracks the propagation of errors through each fault injected execution
to make it possible for developers to query where the errors that most critically affect
application outputs originate from, and how they flow through application logic. This
enables developers to design resilience techniques that detect the most critical error
types (1) soon after they occur, (2) at application locations that are highly sensitive to
errors (e.g. control logic), or (3) at application locations where errors may be easily
identified (e.g. where critical errors induce usually large values in some application
variable). Finally, ErrorSight statistically models the propagation of errors from the
inputs to the outputs of individual code regions to (1) enable application developers
to understand application resilience properties in a modular fashion (e.g. important
for library writers and developers of large applications) and (2) reduce the number
of fault injection experiments needed to comprehensively analyze an applications
resilience properties. To ensure that developers can make well-grounded conclusions
based on these models ErrorSight reports confidence intervals for all model predic-
tions.

Overall, the main contribution in this paper are:

— We developed the tool ErrorSight, which provides useful guidance for the user in
writing fault-resilient software,

— We developed an algorithm that can substantially reduce the cost of fault injection
experiments,

— We observed three kinds of error propagation patterns, namely “maintaining”,
“shrinking” and “magnifying”, and

— We demonstrated the usage of ErrorSight and showed how to apply fault resilience
to one big data kernel.

The paper is organized in a way that follows the workflow of ErrorSight. Sect. 3
describes the design, from the error model to error propagation and the error charac-
terization algorithm. Section 4 discusses the Big Data kernels and the driver programs
used in this paper and gives an analytical analysis of the error propagation patterns
that will be corroborated with results in Sect. 5. We complete the paper by showing
how to add fault resilience using ErrorSight in Sect. 5.5.

@ Springer



Soft error resilience in Big Data kernels... 1573

2 Related works

ErrorSight complements the broad range of existing work done by software resilience
community. It can take advantage of existing fault injection tools such as NFTAPE
[19] and KULFI [1], as well as recent approaches such as Relyzer [12] that lever-
age redundancy in the way different errors propagate to reduce the number of fault
injections needed to comprehensively understand the impact of errors on applications.

ErrorSight supports developer efforts to design and deploy resilience mechanisms.
This includes the use of generic mechanisms such as redundancy [6] and OS segmen-
tation violation detection, as well as application-level techniques [8,9], both of which
require tools to quantify the flow of errors though key application sub-routines (e.g.
GMRES solver for Elliot et al. [9] and LU factorization for Du et al. [8]).

Finally, ErrorSight can be incorporated into emerging resilience-aware program-
ming models such as Containment Domains [7], which enables application developers
to organize their resilience mechanisms hierarchically. In this context ErrorSight can
serve the same role as debuggers and performance analyzers do in traditional pro-
gramming models.

3 Design of ErrorSight

ErrorSight performs fault injection campaigns, tracks the execution of a program and
log its program states, builds a non-parametric tree-based predictive model named
Boosted Regression Tree to predict the error propagation in the program, and then
obtains the error characteristics of an application at the source code level. This section
introduces each of these steps in order, as is illustrated in Fig. 1.

3.1 Error model

We use the KULFI [1] error injection framework throughout the experiments, which
is based on LLVM [13]. It uses a static single assignment (SSA) compilation strategy

Fig. 1 Workflow of ErrorSight I .
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Y

Verify Resilience Effectiveness

@ Springer



1574 S. Chen et al.

Table 1 Example of static fault site to source code mapping

Source Code ID Instruction (Static Fault Site)
120: for (i = 0; 1 < nlocal 4 %51 = load i64* %i, align 8
verts; ++1i) pred[i] = -1
5 %52 = load 164** %3, align 8
6 %53 = getelementptr inbounds
i64 %52, i64 %51
7 store 164 -1, i64* %53, align 8

Table 2 Example trace of K-means. A bitflip is injected at the 10054576’th dynamic fault site at iteration
2 and propagates through iteration 6

Run Dynamic Bit Static Is Num Error

ID FSID ID FSID Init iter metric

3 10054576 1 78 1 2 —4.667642
4 10054576 1 78 0 3 —6.3728438
5 10054576 1 78 0 4 —7.477853
6 10054576 1 78 0 5 —8.271486
7 10054576 1 78 0 6 —9.056564

which is capable of supporting arbitrary programming languages. The source code is
compiled into LLVM byte code representing the LLVM instruction set. As a result,
there is a one-to-many mapping between the entities in the source code (statements,
expressions) and the instructions, as is illustrated in Table 1.

The SSA semantics determine that instructions producing outputs write to at most
one register. We consider bit flips in these output registers and define one instruction
in the program image to be a static fault site. A dynamic instance of a static fault site
is defined as a dynamic fault site. There is a one-to-many mapping between static and
dynamic fault sites.

For each run in the fault injection campaign, a bit in a dynamic fault site is chosen
for fault injection. We only inject one bit flip per run because multi-bit flip events are
relatively rare.

To quantify and track the propagation of errors, the intermediate results and data
structures are compared with those of a fault-free run. For the applications in this
paper, error metrics defined in Table 4 are measured for the entities of interest at run
time. Table 2 is an example trace form the K-means program.

3.2 Modular analysis of a program

The modular analysis of a program is the theoretical basis the regression model is built
upon. A program consists of “entities” including values and expressions, operated
on by “modules” which read and store data and perform computation. A modular
structure of an application is a graph consisting of nodes representing “entities” and
arcs representing “routines.” The graph may be considered a coarse version of the data
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Fig. 2 Example of a module for (int iter=0; iter<10; iter++) {
for (int i=0; i<10; i++) {
b[i] = a[i]l + al[i+1] + £(b[il);
}
for (int i=0; i<10; i++) {
ali]l = bl[il;
}

0 ~N O O WN -

}

Static Module Dynamic Instances
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La l
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i - \ z
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dependency graphs generated by a compiler. To put this into perspective, consider the
program in Fig. 2.

We consider the loop body to be a module consisting of two entities, arrays a and
b. In Line 3 b is updated using values of a. This line corresponds to the dependency
arc flowing from a to b in Fig. 2. Similarly Line 6 corresponds to the arc flowing from
b to a. The dependency graph may be unrolled with entities a and b duplicated for
each iteration. In the unrolled form, self-loops in the graph are to be replaced by edges
between incarnations of the nodes in different iterations.

The effect the arcs have on the errors are captured by the regression model, described
in Sect. 3.5.

3.3 Error propagation

On the microscopic level, error propagation refers to the incident of an output affected
by bit flip is used as the input of other instructions.
On a higher level, we consider the following two cases in the model used in Error-

Sight:

— Propagation between entities: an error originates from a bit flip, and then propa-
gates from one entity to another entity following the arcs between them.

— Propagation between time steps: propagation between entities repeats as the main
loop in the program advances. Example is the propagation from b to the a in the
next iteration on Line 6 in Fig. 2.

The two types of propagation are complementary which can be used to model
most data flow found in iterative applications. By including relevant inputs/outputs of
modules and the time step into the set of dependent variables, we can build predictive
models to predict either type of error propagation. We consider two types of models,
named Model 1 and Model 2, as described in Fig. 3.

The details of the models are described in Table 3. Both models are realized using
the Boosted Regression Tree model described in Sect. 3.5.
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Model 1
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Fig. 3 Prediction models on the error propagation path

Table 3 Details of Model 1 and Model 2

Model Input Output Algorithms

#1 Static/Dynamic FSID, Error Metric Regression Tree
Bit ID

#2 Error Metric at Error Metric at Linear Regression, Segmented Linear
iteration i iteration j Regression or Regression Tree

The models correspond to two cases in which we need to characterize the error
of an application at iteration j, which may be affected by a bit flip that occurred in
iterations O through i, with different input to the model in each case:

— Model 1 relates the information of a bit flip to the error in the program state. It
requires the program be run to iteration j. This corresponds to Algorithm 1.

— Model 2 relates the error in program states in iteration i and iteration j. It needs to
observe the program states at iterations i and j. This step is involved in Algorithm
2.

For both models, the characterization output is an aggregate of error metrics, in
the form of histograms which conveniently represents the fault characteristics of the
whole application. Figure 4 shows how the distribution of the error metric RMSD
(Root Mean Square Distance) in the page weights of Pagerank (described in Sect. 4)
changes between iterations 4 and 14. We use the Earth Mover Distance [17] (EMD)
to quantify the difference between two histograms. As the name suggests, a greater
distance means a greater difference in the probability masses. In Sect. 5.3 it will be
used to quantify the goodness of prediction.

The two models are used to construct fault characterization algorithms.

3.4 Fault characterization algorithms

ErrorSight uses an efficient inter-iteration algorithm for fault characterization. It is
based on the baseline fault characterization algorithm.
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Fig. 4 Histogram of root mean square distances in the page weights in PageRank in iterations 4 and 14

3.4.1 Baseline fault characterization algorithm

Algorithm 1: Baseline Fault Characterization Algorithm

Input: Program p

Result: Empirical Error distribution at the end of iteration N
r'Sqprev < 0;

rsq < 0;

NF < Number of dynamic fault sites;

num_inj < 1000;

errors < (;

while rsq — rsqprey > € do

idi NF
for fszdtn(OtoNFstepW) do
Pfsid < p withbit flip at dynamic fault site # fsid;
run p f;q until completion ;

o e 3 AU AW N -

=
>

errors < errors Uerror(p fsiq);

—
-

end

RT < Modell(errors);

rSqprev < ISq;

rsq < CrossValidate(RT, errors) ;
15 num_inj < 2 -num_inj;

16 end

17 return (errors)

-
B W N

The baseline fault injection algorithm is listed in Algorithm 1. This algorithm incre-
mentally increases the number of fault injection experiments until the R-Squared value
measured from the validation step (Line 14) suggests the sample size is large enough
for an accurate model. Every fault injection run has to be executed to completion in
order to obtain the errors (Line 9). The number of dynamic fault sites is not directly
related to the number of experiments needed.

Cross-validation is achieved by splitting the collected errors into a training set used
to train the model and a test set use to evaluate the R-squared value. The R-squared
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value quantifies how much the model can explain the uncertainty of the real underlying
distribution of errors.

Most of the costin Algorithm 1 is incurred by Line 9 (running program to completion
after fault injection), which Algorithm 2 seeks to improve.

3.4.2 The efficient algorithm

Algorithm 2: Inter-Iteration Efficient Characterization Algorithm

Input: Program p; Fault site counts at iteration i, NF; (i € (0, 1,2, ..., N))
Result: Error distribution at the end of iteration N

1 NF <« Number of dynamic fault sites;

2 errorsy, errorsy, ...,errorsy < @;

3 errors < @;

4 fori =0,1,...,N do

5 num_inj < 100;rsqprev < 0;rsq < 0; runs; < 7,
6 while rsq — rsqprey > € do

. for fsid = (N Fijer 10 N Figeri1 step %) do
8 Pfsid < Program with bit flip inserted at fsid ;
9 runs; < runs; U p fgiq Tun p fg;q until iteration i;

10 errors; < errors; U error(pf:id);

11 end

12 ml < Modell(errors;);

13 rSqprev < rsq ;

14 rsq < CrossValidate(m1, errors;);

15 num_inj < 2 -num_inj;

16 end

17 rsq2prev < 0;

18 rsq2 < 0;

19 n2 < 1;

20 while rsq2 — rsqprey > € do

21 newruns < sample(runs;,2 - n2);

22 subset < sample(newruns, n2);

23 test < newruns \ subset; m2 <— Model2(error(subset));

24 run fest to completion;

25 1$q2prev < 15q2;

26 rsq2 < Validate(m?2, test);

27 n2 < 2-n2;

28 end

29 errors < errors Uerrors;;

30 end

31 return (errors)

In Algorithm 2, errors will be collected for every iteration (Line 2), just like in
Algorithm 1. Instead of running until completion, we only selectively run the program
until the end of the iteration where the error gets injected.

We confirm the number of experiments with the same validation procedure and
incremental increase of sample size (Lines 13 through 13) as in Algorithm 1. A subset
of the instances will be run to completion to build Model 2 (Line 21). Another subset
will be run to completion to serve as the validation set validation set (Line 22). The
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same validation procedure is also applied to Model 2 (Lines 25 through 27) and the
subset of instances run to completion is incrementally increased. When the trained
Model 2 has become accurate enough we project all the errors to the end of the pro-
gram. By doing this we save the cost of having to run the rest of the instances until
completion. The same procedure is repeated for all the iterations to obtain the fault
characteristics of the program.

3.5 Boosted regression trees

We propose to use the Boosted Regression Tree method for predicting the distribution
of errors at the output of modules and the propagation of modules. Being an aggregate
technique that aims to providing good prediction quality by combining the predictive
power of numerous weaker predictors, the Boosted Regression Tree is based on the
classic Classification And Regression Tree (CART) [5] and Boosting, which builds
and combines a collection of trees by penalizing erroneous predictions and preserving
correct predictions.

CART is arecursive binary partitioning algorithm and is an alternative to traditional
parametric models for regression problems. The term “binary” indicates it has the
power to split the input space into two regions and models the response by a constant
for each region. The region may be further subdivided to give a better fit of the input
space. To illustrate with Fig. 5, the data set with the Dynamic Fault Site ID as the

200 - i & Dynamic Fault Site IDs split
into 7 subregions (sub tree
a nodes)
wn
E 100
0 e SR
T T
OOecOO 506|08 1.0e+09 1.5e4+09
Dynamic fault site ID Instrrichions
folx)=y

FAlX)=Fo(X)+vXTy(x; a)
X< X <t 3 \ 2 ‘
. ! Famal XI=F X+ vXT (x5 0y )
K=t Xi=4 Farl X)=F 301 [ X)+ VXT (X5 ay)

T(x;a) is the fitted regression tree
with parameter a (splits and
estimates for each leaf)

e
fulx)

Fig. 5 Example of one iteration of the BRT training process
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independent variable and the error metric in question (RMSD is used as an example)
as response may be divided into 7 non-overlapping regions by a decision tree.

The detailed BRT algorithm used in our paper is described in Algorithm 3. In the
algorithm, 7 (-) is an indicator function which returns 1 if the condition is satisfied or
otherwise 0. The v, named as “shrinkage parameter”, controls the learning rate of the
BRT. In this study we use the value of 0.1 which results in faster learning speed and
better prediction accuracy.

From the user’s point of view, the BRT is capable of capturing complex,
multi-variate functions without the knowledge of the underlying distributions. Such
knowledge is not required by BRT. Also, BRT is unaffected by outliers.

The BRT is able to determine the relative importance of variables. The importance
is measured based on the number of times a variable is selected for splitting, weighed
by the squared improvement to the model as a result of each split, and then average
over all trees. A higher number indicates greater importance.

In this paper, we use the BRT to predict the propagation of errors after a certain
number of time steps. The process is described in Sect. 3.3.

4 The big data kernels

In this section we describe the big data kernels and do a simple analysis of the error
propagation characteristics based on our understanding of the underlying algorithms.
The patterns are captured by the statistical model described in Sect. 3.5.

Algorithm 3: BRT algorithm used in this paper

1 Initialize fo (x;) =y, where y is the average for {y;} ;

2 form=1,2,..,Mdo

3 Compute the current residuals rj,, = y; — fm,l(x,'), i=1,..,n

4 Partition the input space into H disjoint regions { Ry, }}I;I:l based on {r;,,, x; };’:1 ;
5 For each region, compute the constant fit yy,,, = argminy, > (rj, — y)2;

6 Update the fitted model fm (x) = f'm,l x) +v X ypml(x € Rpym);

7 end

For the benchmarks, The PageRank and Breadth-First-Search (BFS) algorithms are
Big Data algorithms by themselves; the classic K-means algorithm may serve as an
unsupervised clustering algorithm on its own and can also serve as a preprocessing
step in more complex learning tasks; the Stable Fluid Solver is based on linear solvers
that are also used in a variety of programs.

4.1 PageRank
4.1.1 Error propagation through the Pagerank loop

The PageRank algorithm computes the importance for each webpage in a network,
which is expressed as a graph. The PageRank loop can be expressed as a linear system
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Iteration n Iteration n+1

®

Q Entity Module —» Dependency

Fig. 6 Modular structure of Pagerank

I = GI. The G matrix is the “Google Matrix” which is derived from the graph
topology. The I vector is the importance ranking vector which the algorithm tries to
find out.

The algorithm used is a modified Power Method [2], which computes / <— G in
every iteration.

The algorithm has the following desirable properties:

— As the algorithm makes progress the I will always converge.
— I converges to a value independent of the initial value of /.
— Information of the graph will not get lost (i.e. / will not be a zero vector.)

The convergence property can be explained with eigenvalues. Assume a vector Iy
can be expressed as the sum of the eigenvectors of G, that is,

Iy =civi +cu2+---+cnvn
Applying the definition of eigenvectors (Gv,, = X,v,), we have:
I = le() = C])\.IICU] + Cz)nlzcvz + -4 CN)\];\/UN

Note that the eigenvalues A, are sorted by their magnitudes in descending order. One
characteristic of the Google Matrix is |A;| = 1 and |A2| = 0.85 and the magnitude
of all other eigenvalues are smaller than 0.85. This means I; converges to cjv;. After
normalization, it becomes vj.

When an error is injected it would only affect the convergence speed of the algorithm
rather than the destination of convergence, unless / or the graph data is corrupted. The
modular structure of PageRank is shown in Fig. 6.

4.2 K-means

The K-means is an unsupervised and iterative clustering algorithm. In this paper we
used the K-means implementation from [14]. The algorithm finds the K clusters by
minimizing the sum of intra-cluster distance S = Zle D e s X — il 2. The algo-
rithm consists of a loop of recomputation and reassignment routines which
update the cluster centers (j;) and cluster memberships (S;), as is shown in Fig. 7.
We quantify the correctness of two clustering results with the quantity Error Factor.

Given two clustering results S1 and Sy, the Error Factor is defined as EF = 1 — 25:11

Z];:i+1 [le1(D) = c1(ND] = [e2(i) = c2()1/k(k + 1), where ¢ (x) and 2 (x) denote
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Iteration n Iteration n+1

S

Q Entity |. Module  — Dependency

Fig. 7 Modular structure of K-means

the cluster x belongs to under clustering S; and S>. The [-] is a boolean function which
evaluates to 1 when the condition is satisfied and 0 otherwise. The nominator traverses
through all pairs. If the two pairs belong to the same cluster in both S; and $>, it is
incremented by 1. The denominator is the total number of pairs. If S; and $; are
identical clusters, EF will be zero. Note that the clusters need only contain the same
data points but not the same cluster ID. For example, cluster IDs [1,1,2,2] and [2,2,1,1]
assigned to four data points are identical because the first two points belong to the
same cluster and so do the last two points.

With Error Factor, we can quantitatively compare the results from two runs. We
also have the foundations to analyze the correlation between the error in the cluster
centers and the Error Factor.

4.2.1 Error propagation through the reassignment step

In the reassignment step, data points are assigned to clusters whose centers are
the closest as measured by Euclidean distance. Assume one cluster center is perturbed
by a small amount e towards the direction perpendicular to one of the boundaries of its
Voronoi cell, that boundary would move by an amount of %e, because the boundary is
the perpendicular bisector of the line segment connecting to the centers of the adjacent
cells.

Assuming the input dimensionality is N, the moving of the boundary sweeps
through an volume in the (N — 1) dimensional space of L|e|, where L is the area/length
of the boundary.

Assume the data points are evenly distributed in the regions with a probability p,
the swept volume contains Lp|e| data points. The cluster membership of these points
will be altered. This would cause the nominator in the Error Factor to decrease by
Lple|(n — 1), which is a linear function of |e|. Thus we expect EF to be the linear
function of the square root of the L2 norm when the error is small.

4.3 Stable fluid simulation
We implemented a 2D fluid simulation program based on the three algorithms

(Jacobi, Gauss—Seidel and Conjugate Gradient) described in [10]. The solvers update
the elements of a grid repeatedly by solving the Navier—Stokes (NS) equations
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Iteration n Iteration n+1

O Entity . Module  — Dependency

Fig. 8 Modular structure of stable fluid simulation
%—‘t' = —(u-Vu + vViu + f and % = —(-V)d + szp + S, where u rep-
resents the velocity field, and the d represents the density field. Since we simulate
fluid in 2 dimensions, ¥ may be written as (#, v) where u and v represent the veloc-
ity along the X and Y axis respectively. In this paper, we consider them two entities
because each of them goes through the routines listed below.

The Fluid Simulation program operates on the discretized form of the NS equation.
It consists the following routines as illustrated in Fig. 8:

— Dif fuse which solves the first term in the NS equation. It solves a sparse linear
system with elements scattering on a band spanning the main diagonal line. All
elements except the ones on the band are zeroes. This routine is applied on both
the density (d) and velocity (u and v) fields.

— Advect which moves the density through a static velocity field and solves the
second term in the NS equation.

— Project which subtracts the gradient field from the current velocities. It solves
another sparse linear system which is similar to the one in Diffuse.

For the Diffuse and Project routines, one of the Jacobi, Gauss-Seidel and
Conjugate Gradient solvers may be used.

The solutions produced by the Jacobi and Gauss-Seidel solvers are nearly identical.
The solution produced by the Conjugate Gradient is slightly different, with a L2-norm
of around 1e—07. This will affect the characteristics of the initial errors.

We start by discussing the Advect routine because it is a good example of how
errors can propagate between entities.

4.3.1 Error propagation through the advect routine

The Advect routine propagates the errors from the u and v arrays into the d array
and exhibits an easily understandable error propagation pattern. This is because of the
this routine computes for each cell the density mass which ends up at each of them at
the end of a time step.

For example, the center of the cell (10, 10) is (9.5, 9.5). Assume the velocity field
at this cell is (1, 1) and we use a time step of 1. The Advect routine traces the
center backwards to (9.5,9.5) — (1,1) - 1 = (8.5, 8.5), adds up the density at the
cells surrounding this point ((8, 8), (8, 9), (9, 8), (9, 9)) weighted by their distance to
(8.5, 8.5). If the velocity at this field contains an error e, the back-tracked point would
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Fig. 9 Modular structure of BFS

have become (9.5,9.5) — ((1, 1) + e) - 1. It can be seen that if the magnitude of the
error |e| is small it will only affect the weights of the cells surrounding the source
cells. Since the weights are a linear function of |e|, we can expect the error in d to be
a linear function of |e| as well.

If |e]| is larger it will alter the source cells or even make them go out-of-boundary.
In this case the error would not be linear to |e|. Depending on the way boundary
conditions are enforced, the erroneous subscripts may be clamped at the boundary of
the field.

4.3.2 Error propagation through the linear solvers

We can view the linear solvers in the Dif fuse and Project routines as solving the
equation Ax; = x;_1, where x could be substituted with d, u or v and A is the sparse
linear system. When an error e is added to the input x;_; we are essentially solving
A(x;j +e;) = x;—1. This means the system has become the sum of two systems, whose
starting value at time step i — 1 are x;_; and e.

The characteristics of the linear solver is not relevant to how e; would change unless
it is smaller than the precision bound of the solver. The characteristics of the solver
does affect the initial error e, if the bit flip occurs during its execution.

4.4 Breadth first search (BFS)

The BFS program is a reference implementation of the Graph500 benchmark [15]. It
is divided into two phases. In the first phase the program generates a graph, and in the
second phase a series of bread-first-search from randomly-chosen starting nodes (the
roots) are performed on the graph. The second phase is completed by building the BFS
tree, which is represented with a precedence list. In each iteration of the tree-building
process, the “frontier” of the current precedence list (p) is being pushed forward using
the topological structure of the graph (G). The modular structure is shown in Fig. 9.
When the BFS tree is completed, each node will be assigned a level, which is the
distance from the root of the tree.

4.5 Error metric

We list the error metrics used in the entities of the four Big Data kernels in Table 4.
The metrics are computed from the most relevant variables in each of the programs.
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Table 4 Error metrics used for
the programs (the root mean

square deviation, RMSD is by Fluid L2 Norm of the error in the density field (d)
definition the L2-Norm)

Program Error metric (s)

K-means L2 Norm of the cluster centers vector; Error
Factor of membership

PageRank L2 Norm of the page weights

BFS Proportion of nodes being assigned a wrong level

Table 5 Program inputs and number of iterations of the main loop

Program Input Iterations No. experiments
Fluid A 50 x 50 grid initialized with a 10 24,374
simple pattern
K-means Dimension-reduced data containing 15 75,075
1797 hand-written characters
PageRank Amazon web dump containing 14 15,057
65,536 nodes [20]
BFS Randomly-generated graph with 7 47,984

8192 nodes and 10,650 edges

5 Experimental results
5.1 Input configuration and input generation

The inputs to the Big Data kernels and the number of iterations of the main loop of
respective programs utilizing the kernels are listed in Table 5.

5.2 Propagation of errors

This section discusses how the error metrics change as the errors propagate during run
time.

5.2.1 PageRank

Figure 10 shows the traces of a subset of injected errors in the PageRank program.
Most errors monotonously decrease in a stable way as the iteration count increases.
In comparison, although using a similar linear-algebraic algorithm, the Fluid Simula-
tion program tends to see error metrics that preserve their magnitudes without either
magnifying or dampening.

5.2.2 K-means

Figure 11 shows the traces of a subset of injected errors in the K-means program. The
age of the error is mapped onto the X axis. The Error Factor is mapped to the Y axis.
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Fig. 10 Traces of a subset of injected errors in PageRank. X axis denotes the “age of a bit flip error” (number

of iterations after error injection). Y axis denotes the error metric. Different shades of grey represent different
runs
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Fig. 11 Traces of a subset of errors injected in K-means. Different shades of grey represent different runs

It can be seen that the propagation pattern is not uniform; some of the corrupted runs

would re-converge to the correct run in a short number of iterations but some could
not.

5.2.3 Fluid simulation

Figure 12 shows the trace of a subset of errors induced by bit flips in the Fluid Simu-
lation program. The age of the error, which is the number of time steps passed since
error injection, is mapped onto the X axis. The errors are injected at random positions,
which could be in any iteration. The RMSD in the d field is mapped to the Y axis.
From the figure it can be seen that the error magnitudes tend to change gradually
as time step advances. The magnitude also tends to stabilize. The trend at which the
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Fig. 12 Traces of a subset of errors injected in fluid simulation with the conjugate gradient (CG) solver
(top) and the Gauss-Seidel (GS) solver (bottom). Different shades of grey represent different runs

magnitudes change is dependent on the initial magnitudes. To illustrate, the initial
magnitude of CG are mainly distributed between [10~7, 10°], which is different
from that of GS, [10~2°, 10°]. The final magnitudes are also different.

5.2.4 Breadsth first search (BFS)

Figure 13 shows the trace of 100 errors induced by bit flips in the BES program. The
age of the error (number of iterations after injection) is mapped to the X axis. The
proportion of nodes that would receive a wrong level based on the intermediate BFS
search tree at individual time steps are mapped to the Y axis.

As we can see from the figure, most bit-flip induced errors in BES monotonously
increase. In some cases, the result would become completely incorrect due to critical
data structure being corrupt.

@ Springer



1588 S. Chen et al.

1.00 4

0.75+

0.50

Proportion of Nodes
with wrong level

0.25+

0.00+

Age of Error (#lterations after injection)

Fig. 13 Traces of a subset of errors injected in Breadth First Search. Different shades of grey represent
different runs

5.3 Model training and accuracy

This section discusses the accuracy of Model 1 and Model 2 described in Sect. 3.3.
For Model 1 we quantify how much it is able to model the relationship between the
dynamic fault site information to the distribution of errors, namely how a bit-flip
propagates to program states. For Model 2 we quantify how much it is able to model
the propagation of errors between time steps.

Accuracy for both models is quantified by comparing against ground truth. We
compute the earth mover distance (EMD) between the predictions and the actual
RMSD at the end iteration, denoted EM D1. We also compute the earth mover dis-
tance (EMD) between the RMSD distribution at the beginning iteration and the end
iterations, denoted EM D,. We compute the ratio g%g; . EM D, Thus, a smaller the
ratio means a more accurate prediction.

The beginning and ending iteration numbers are (4, 14) for PageRank, (1, 15) for
K-means, and (4, 10) for Fluid Simulation.

For each application, we vary the proportion of the examples used for training and
see how the prediction quality varies. We pick the traces by their unique combination
of fault injection parameters (DynamicFSID, BitID) into the training and test set. The
Static Fault Site ID (StaticFSID) is implied by DynamicFSID so it doesn’t need be
included.

We measure the prediction error on the entire data set. That means the training set
and the prediction output from the test set together make up the error distribution at
the ending iteration.

5.3.1 Pagerank

Due to the simplicity in the error propagation patterns, a segmented linear regression
model is enough for capturing the error propagation pattern of PageRank, as shown
in Fig. 14.
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Fig. 14 For Pagerank, Model 1 needs 75 % of the input data for training to reach the maximum predictive
power. Model 2 needs only a few data points to reach the maximum predictive power
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Fig. 15 For K-means, both Model 1 and Model 2 need 25 % of the input data for training to reach maximum
predictive power

5.3.2 K-means

We had to use a regression tree to capture the error propagation pattern of K-means,
because there is one segment in the range of the input RMSD that does not have a

one-to-one mapping. The correctness improves as training set size increases, as shown
in Fig. 15.

5.3.3 Fluid simulation

A segmented linear regression model is used for Fluid as is shown in Fig. 16 because
the RMSD propagation pattern is simple. Most of the changes in the RMSD are in
predictable directions. From the results we see the performance of Model 2 is very

stable. Even with very few training examples, Model 2 is able to capture the change
of the RMSD changes.

5.3.4 Breadsth first search (BFS)

The regression tree is used to capture the error propagation pattern of BFS because of
the non-linear pattern, as is shown in Fig. 17. It is worth noting that Model 2 suffers
from over-fitting when the proportion of data used for training is high.
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Fig. 16 For Fluid Simulation, Model 1 needs 25 % of the input data for training to reach the maximum
predictive power. Model 2 needs only a few data points to reach the maximum predictive power
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Fig. 17 For BFS, Model 1 needs about 60 % of the input data for training to reach the maximum predictive
power. Model 2 needs about 50 % of the input for training to reach the maximum predictive power

Table 6 Variable relevance in Model 1

Program DynamicFSID StaticFSID BitID Numlter
Fluid 0.523348 0.316858 0.118150 0.041644
K-means 0.016321 0.691838 0.290197 0.001644
Pagerank 0.445098 0.327972 0.129911 0.097019
BFS 0.940505 0 5.949493 0

5.4 Factors affecting model accuracy

5.4.1 Model 1

The independent variables of Model 1 are listed in Table 3. However, not all of the

variables are equally relevant to the final RMSD.

As Table 6 shows, the most relevant variable for Fluid and Pagerank is DynamicF-
SID, and for K-means, the most relevant variables are StaticFSID and BitID.

DynamicFSID being irrelevant in K-means suggests the shape of the error trajec-
tories is not affected by which iterations are being injected errors. In other words,
it is uncertain whether the error would be dampened or amplified across iterations.
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Fig. 18 Errors in program variables at the beginning and ending iterations (X and Y axis). Dashed lines
are prediction intervals of segmented linear models

In contrast, the patterns in Fluid and Pagerank are more stable, as can be seen from
Figs. 10, 11 and 12.

For BFS, DynamicFSID is most relevant, followed by BitID. StaticFSID and
Numlter are completely irrelevant. The reason is because error injected into all but
only a few of the static faults are masked and will not result in any observable error
in program states.

5.4.2 Model 2

Model 2 takes the error distribution at the beginning and end iterations. As a result,
the relationship between the errors, visualized in Fig. 18, determines the model’s
prediction quality.

Visually, there is linear correlation between the errors: greater errors at the beginning
iteration means greater errors at the ending iteration. The only exception is when the
error at the beginning iteration is small enough, the output error would be constant in
Fluid. Same for Pagerank if the error at the beginning iteration is large enough. For
these cases segmented linear regression would be enough for capturing the shapes.
To fix the effects caused by outliers, we have removed the top and bottom 5 % of the
input data.

However, there exists a non-linear region in K-means which affects the predictive
power of the segmented linear regression. The region is highlighted in Fig. 18. One X
co-ordinate in this region may correspond to two Y axis, which forces the predictive
interval to become larger and results in greater error in the predicted errors. To fix this
we decided to use the regression tree, which is more complex than line segments and
can better capture the shape by further subdividing the input data set.

Since there exists multiple program variables, we should find the ones that most
accurately capture the error propagation patterns with the best accuracy. Actually,
certain variable combinations may make prediction more difficult. Figure 19 shows
the choices that are not desirable for building Model 2.
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Fig. 19 Undesirable choices of variables for Model 2
Table 7 Cost to characterize the effect of soft faults on a program
Program Iter Fraction (%) Algorithm 1 Cost Algorithm 2 Cost Saving (%)
Fluid 10 1 100 55.45 45.6
K-means 15 25 225 146.25 35.0
Pagerank 14 1 196 105.91 459
BFS 7 50 49 42.00 14.3

5.4.3 Cost saved by the inter-iteration efficient fault characterization algorithm

Consider performing N F fault injection experiments into a program that runs for
N iterations. Algorithm 1 runs all instances to completion, and the cost measured
in number of program iterations is N F - N. Algorithm 2 picks a fraction from each
iteration and run to completion, and the cost measured in number of program iterations
is Zizllv i + (N —1i) - p, where p is the ratio between instances in an iteration run to
completion and the total number of instances with faults injected at that iteration.
With results from Sect. 5.3 we set | to 0.01 for Fluid and Pagerank and 0.25 for
K-means. By plugging in the numbers we could obtain the costs in Table 7.

5.5 Applying fault resilience techniques

With the results obtained in Sect. 5, ErrorSight produces the error profile of a pro-
gram and shows the expected error metric caused by a bit flip on the instructions that
correspond to eachsource line. With this information, the developer can use to decide
how to apply fault resilience techniques. In this table, column mean error (ME) shows
the expected error that would appear in the final output if a bit flip is injected into a
dynamic instruction that corresponds to this line of source code. The column Prob-
ability (P) shows the probability that a dynamic fault site belongs to this line. The
column Product (Prod) is a product of ME and P. Intuitively, the sum of all the entries
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Original Line 120 Fault-Resilient Line 120

for (i = 0; i < nlocalverts; ++i)
pred[i] = -1;

int64_t* pl = pred, *p2 = pl, *p3 = p2;
int64_t* endl = &(pred[nlocalverts]),
*end2=endl, *end3=end2;
while (pl < endl || p2 < end2 || p3 < end3) {
if ( !'(pl == p2 && pl == p3) ) {
if (p1 == p2) { p3 = p2; }
else if(p2 == p3) { pl = ;
else if(p1 == p3) { p2
else { goto retry; }
} else { *p1 = -1; }
pl++; p2++; p3++;
if ( !(endl == end2 && end2 == end3) ) {
if (endl == end2) { end3 = endl; }

p2; }
p3; }

else if (end2 == end3) { endl = end2; }
else if (end3 == endl) { end2 = end3; }
else { goto retry; }
}
}
0 001 002 003 004 0.05 # Mean Error

Original BFS -
BFS with line 120 madefault-tolerant il

Fig. 20 Triplication fault resilience mechanism used on Line 120 and the resultant change in the mean
error of the entire BFS program

in the Prod column is the weighted sum of the ME column, which is the expected
error in the final output of the program should a bit flip occurs randomly during its
run time. Columns without and with “FT” represent the metrics from the original and
the fault-tolerant versions of the program.

We choose to make the source code lines that are most vulnerable to the Breadth
First Search (BFS) shown in Table 8. In this Table the greatest value in the Prod column
belongs to Line 120 of the source code of BFS. This means that this line is the most
significant contributing factor to the overall resilience of the program.

We manually triplicated the pointer dereferencing and value assignment operations
in the loop, and performed a Byzantine error check [16] before incrementing the loop
index and writing to the pred array, namely, if one replica of a pointer is corrupt, the
other two are used to correct it, and if two or more replicas are corrupt, the loop is
restarted from the beginning. This effectively reduced the occurrence of out-of-loop-
boundary errors and the assignment of wrong values.

Figure 20 shows the fault-resilience source code and the resultant change in the
mean error of the entire program after fault resilience is applied to Line 120. The
mean error of the application is reduced by a magnitude, from 4.13e—2 to 3.44e—3.
Table 8 indicates the Mean Error resulting from the fault-resilient version of Line
120 has been reduced from 2.98e—2 to 6.42e—6. After this, Line 120 is no longer
the main contributor of errors in this BFS. In addition, the modification does not
introduce significant overhead because Line 120 was not a hotspot in the original
program.
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6 Summary

In this paper we have proposed ErrorSight, a tool aimed at helping the developers
to write fault-resilient programs. We demonstrated with four Big Data kernels that
it can efficiently capture the error propagation patterns that a human developer can
analytically obtain, and use the patterns to construct a predictive model to save the
error characterization cost, and showing the application developer which part of the
source code is the most significant vulnerable part of a numerical program. With this
information, the developer can then apply fault resilience mechanisms to the program
and significantly improve its resilience under a faulty environment.
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