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Abstract

As chip multiprocessor (CMP) has become the mainstream in processor architectures, Intel and AMD have introduced their dual-core
processors. In this paper, performance measurement on an Intel Core 2 Duo, an Intel Pentium D and an AMD Athlon 64 � 2 processor
are reported. According to the design specifications, key derivations exist in the critical memory hierarchy architecture among these dual-
core processors. In addition to the overall execution time and throughput measurement using both multi-program-med and multi-
threaded workloads, this paper provides detailed analysis on the memory hierarchy performance and on the performance scalability
between single and dual cores. Our results indicate that for better performance and scalability, it is important to have (1) fast cache-
to-cache communication, (2) large L2 or shared capacity, (3) fast L2 to core latency, and (4) fair cache resource sharing. Three dual-core
processors that we studied have shown benefits of some of these factors, but not all of them. Core 2 Duo has the best performance for
most of the workloads because of its microarchitecture features such as the shared L2 cache. Pentium D shows the worst performance in
many aspects due to its technology-remap of Pentium 4 without taking the advantage of on-chip communication.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Due to advances in circuit integration technology and
performance limitations in wide-issue, super-speculative
processors, chip-multiprocessor (CMP) or multi-core tech-
nology has become the mainstream in CPU designs. It
embeds multiple processor cores into a single die to exploit
thread-level parallelism for achieving higher overall chip-
level instruction-per-cycle (IPC) [4,10,11,31,32]. Combined
with increased clock frequency, a multi-core, multi-
threaded processor chip demands higher on- and off-chip
memory bandwidth and suffers longer average memory

access delays despite an increasing on-chip cache size. Tre-
mendous pressures are put on memory hierarchy systems
to supply the needed instructions and data timely.

In this paper, we report performance measurement
results on three available dual-core desktop processors:
Intel Core 2 Duo E6400 with 2.13 GHz [11], Intel Pentium
D 830 with 3.0 GHz [15] and AMD Athlon 64 � 2 4400+
with 2.2 GHz [2]. The Core 2 Duo E6400 was manufac-
tured using 65 nm technology with 291 million transistors
[11], while the Pentium D 830 and the Athlon 64 � 2
4400+ were manufactured under 90 nm technology with
about 230 million transistors [1,25]. In contrast to existing
performance studies [9,23,24] that usually provide overall
execution time and throughput, this paper emphasizes on
the memory hierarchy performance. We measure memory
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access latency and bandwidth as well as cache-to-cache
communication delays. We also examine the performance
scalability between single and dual cores on the three tested
processors.

There are several key design choices for the memory
subsystem of the three processors. All three have private
L1 caches with different sizes. At the next level, the Intel
Core 2 Duo processor adapts a shared L2 cache design,
called Intel Advanced Smart Cache for the dual cores
[13]. The shared L2 approach provides a larger cache
capacity by eliminating data replications. It also permits
naturally sharing of cache space among multiple cores.
When only one core is active, the entire shared L2 can
be allocated to the single active core. However, the down-
side for the shared L2 cache is that it suffers longer hit
latency and may encounter unfair usage of the shared
L2 cache. Both the Intel Pentium D and the AMD Athlon
64 � 2 have a private L2 cache for each core, enabling fast
L2 accesses, but restricting any capacity sharing among
the two cores.

The shared L2 cache in the Core 2 Duo eliminates on-
chip L2-level cache coherence. Furthermore, it resolves
coherence of the two core’s L1 caches internally within
the chip for fast access to the L1 cache of the other core
[13]. The Pentium D uses an off-chip front-side bus
(FSB) for inter-core communications. Basically, the Pen-
tium D is basically a technology remap of the Pentium 4
symmetric multiprocessor (SMP) that requires to access
the FSB for maintaining cache coherence [15]. AMD Ath-
lon 64 � 2 uses a HyperTransport interconnect technology
for faster inter-chip communication [2]. Given an addi-
tional ownership state in the Athlon 64 � 2, cache coher-
ence between the two cores can be accomplished without
off-chip traffic. In addition, the Athlon 64 � 2 has an
on-die memory controller to reduce memory access
latency.

It would be easier to compare memory performance for
the three systems with a uniform measurement tool such as
the Intel VTune analyzer [16]. However, VTune cannot run
on AMD Athlon 64 � 2. Moreover, the performance coun-
ters on AMD present less functions compared with Intel’s
sophisticated performance counters. It is difficult to match
the performance counters across the three processors.
Therefore, we decided to use a macro memory benchmark
suite, lmbench [30] to examine memory bandwidth and
latency of the three processors. Lmbench attempts to mea-
sure the most commonly found performance bottlenecks in
a wide range of system applications. These bottlenecks can
be identified, isolated, and reproduced in a set of small
microbenchmarks, which measure system latency and
bandwidth of data movement among the processor, mem-
ory, network, file system, and disk. In addition, we ran
STREAM [21] and STREAM2 [22] recreated by using
lmbench’s timing harness. These kernel benchmarks mea-
sures memory bandwidth and latency using several com-
mon vector operations such as matrix addition and copy
of matrix.

To understand the data transfer among individual core’s
caches, we used a small lockless program [26]. This lockless

program records the duration of ping–pong procedures of
a small token bouncing between two caches to get the aver-
age cache-to-cache latency. Finally, we run a set of single-
and multi-threaded workloads on the three systems to
examine the dual-core speedups over a single core. For sin-
gle-thread programs, we experiment a set of mixed SPEC
CPU2000 and SPEC CPU2006 benchmarks [28]. For
multi-threaded workloads, we select blastp and hmmpfam

from the BioPerf suites [6], SPECjbb2005 [29], as well as
a subset of SPLASH2 [34]. Based on the experiment results,
we can summarize a few interesting findings.

(1) In general, Core 2 Duo and Athlon 64 � 2 have bet-
ter overall memory bandwidth and lower latency than
Pentium D. The Core 2 Duo processor handles cache
coherence between L1 caches on chip and employs
aggressive memory dependence speculation. Its
shared L2 generates less off-chip traffic than the other
two. Athlon 64 � 2 handles private L2 coherence
through on-chip system interfaces. It benefits from
its on-chip memory controller for lower memory
latency.

(2) The cache-to-cache latency plays an important role in
multi-threaded workload with heavy data sharing.
The cache-to-cache latencies of the selected Core 2
Duo, Pentium D and Athlon 64 � 2 processors are
measured at 33 ns, 133 ns and 68 ns, respectively.
Core 2 Duo benefits from its on-chip access to the
other L1 cache. Pentium D requires off-chip FSB
for inter-core communications. Athlon 64 � 2
employs on-die communication through crossbar
switch. The execution time of the selected dual-
threaded programs range from 6.3 to 490, 8.7 to
526, and 7.3 to 621 in second for Core 2 Duo, Pen-
tium D and Athlon 64 � 2, respectively.

(3) For single-thread benchmarks, Core 2 Duo shows the
best performance for most of selected SPEC
CPU2000 and CPU2006 workloads running on one
core because the core can utilize the entire shared
L2 cache. Execution time of single thread of all work-
loads range from 56 to 1500, 75 to 1703, and 73 to
1993 in second for Core 2 Duo, Pentium D, and
Athlon 64 � 2, respectively. All three processors dem-
onstrate limited performance scalability for dual-
core, where Athlon 64 � 2 has the best. Core 2 Duo’s
speed-ups are constraint due to its fast single-thread
performance in using the entire L2 cache.

This paper is organized as follows. Section 2 briefly
introduces the architectures of the three processors. Section
3 describes the methodology and the workloads of our
experiments. Section 4 reports the detailed measurement
results and the comparison between the three processors.
Section 5 describes related work. Finally, we give a brief
conclusion in Section 6.
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2. Architectures of dual-core processors

The Intel Core 2 Duo (Fig. 1a) E6400 emphasizes
mainly on cache efficiency and does not stress on the clock
frequency for high power efficiency. Although clocking at
a slower rate than that of the Pentium D, a shorter and
wider issuing pipeline compensates the performance with
higher IPCs. In addition, the Core 2 Duo processor has
more ALU units [9]. Core 2 Duo employs a shared L2
cache to increase the effective on-chip cache capacity.
Upon a miss from the core’s L1 cache, the shared L2
and the L1 of the other core are looked up in parallel
before sending the request to the memory [14]. The cache
block located in the other L1 cache can be fetched without
off-chip traffic. Both memory controller and FSB are still
located off-chip. The off-chip memory controller can adapt
the new DRAM technology with the cost of longer mem-
ory access latency. Core 2 Duo employs aggressive mem-
ory dependence speculation for memory disambiguation.
A load instruction is allowed to be executed before an
early store instruction with an unknown address. It also
implements a macro-fusion technology to combine multi-
ple micro-operations. Other important features involve
support for new SIMD instructions called Supplemental
Streaming SIMD Extension 3, coupled with better power
saving technologies.

The Pentium D 830 (Fig. 1b) glues two Pentium 4 cores
together and connects them with the memory controller
through the north-bridge. The off-chip memory controller
provides flexibility to support the newest DRAM with
the cost of longer memory access latency. The MESI coher-
ence protocol from Pentium SMP is adapted in Pentium D
that requires a memory update in order to change a mod-
ified block to a shared block. The system interconnect for
processors remains through the front-side bus (FSB). To
accommodate the memory update, the FSB is located off-
chip that increases the latency for maintaining cache
coherence.

The Athlon 64 � 2 is designed specifically for multiple
cores in a single chip (Fig. 1c). Similar to the Pentium D
processor, it also employs private L2 caches. However,
both L2 caches share a system request queue, which con-
nects with an on-die memory controller and a HyperTrans-

port. The HyperTransport removes system bottlenecks by
reducing the number of buses required in a system. It pro-
vides significantly more bandwidth than current PCI tech-
nology [3]. The system request queue serves as an internal
interconnection between the two cores without involve-
ments of an external bus. The Athlon 64 � 2 processor
employs MOESI protocol, which adds an ‘‘Ownership”

state to enable modified blocks to be shared on both cores
without the need to keep the memory copy updated.

An important aspect to alleviate cache miss penalty is
data prefetching. According to the hardware specifications,
the Intel Core 2 Duo includes a stride prefetcher on its L1
data cache [13] and a next line prefetcher on its L2 cache
[9]. The L2 prefetcher can be triggered after detecting con-
secutive line requests twice. The Pentium D’s hardware pre-
fetcher allows stride-based prefetches beyond the adjacent
lines. In addition, it attempts to trigger multiple prefetches
for staying 256 bytes ahead of current data access locations
[12]. The advanced prefetching in Pentium D enables more
overlapping of cache misses. The Athlon 64 � 2 has a next
line hardware prefetcher. However, accessing data in incre-
ments larger than 64 bytes may fail to trigger the hardware
prefetcher [5].

Table 1 lists the specifications of the three processors
experimented in this paper. There are no hyper-threading
settings on any of these processors. The Intel Core 2 Duo
E6400 has separate 32 kB L1 instruction and data caches
per core. A 2MB L2 cache is shared by two cores. Both
L1 and L2 caches are 8-way set associative and have 64-
byte lines. The Pentium D processor has a Trace Cache
which stores 12Kuops. It is also equipped with a write-
through, 8-way 16 kB L1 data cache with a private 8-way
1MB L2 cache. The Athlon 64 � 2 processor’s L1 data
and instruction cache are 2-way 64 kB with a private 16-
way 1MB L2 cache for each core. Athlon 64 � 2’s L1
and L2 caches in each core is exclusive. All three machines
have the same size L2 caches and Memory. The Core 2
Duo and the Pentium D are equipped with DDR2 DRAM
using advanced memory controllers in their chipsets. The
Athlon 64 � 2 has a DDR on-die memory controller. All
three machines have 2GB memory. The FSB of the Core
2 Duo is clocked at 1066 MHz with bandwidth up to
8.5 GB/s. The FSB of the Pentium D operates at

Fig. 1. (a) Intel Core 2 Duo; (b) Intel Pentium D; and (c) AMD Athlon 64 � 2.
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800 MHz and provides up to 6.4 GB/s bandwidth. The
Athlon 64 � 2 has a 2 GHz I/O HyperTransport with
bandwidth up to 8 GB/s. Bandwidth of hard drive interface
for the three machines are 375 MB/s, 150 MB/s and
300 MB/s, respectively. Because of our experiments are
all in-memory benchmarks, difference in hard drives should
have little impact.

3. Evaluation methodology

We installed SUSE linux 10.1 with kernel 2.6.16-smp on
all three machines. We used O3 level GCC optimization to
compile all the C/C++ benchmarks including lmbench,
SPEC CPU2000, SPEC CPU2006, SPLASH2 and blastp

and hmmpfam from BioPerf. SPECjbb2005 was compiled
using SUN JDK 1.5.0.

We used lmbench suite running on the three machines to
measure bandwidth and latency of memory hierarchy.
Lmbench attempts to measure performance bottlenecks in
a wide range of system applications. These bottlenecks
have been identified, isolated, and reproduced in a set of
small microbenchmarks, which measure system latency
and bandwidth of data movement among the processor,
memory, network, file system, and disk. In our experi-
ments, we focus on the memory subsystem and measure
bandwidth and latency with various memory operations
listed in Table 2 [30]. Among them, we ran variable stride
accesses to get average memory latency. In addition, we
ran multi-copies lmbench, one on each core to test the
memory hierarchy system. We also ran STREAM [21]
and STREAM2 [22] that are recreated by using lmbench’s
timing harness. Each version has four common vector
operations as listed in Table 3. During execution, a
24 MB array stream was allocated. Each vector operation
processed array elements one by one. Average memory
latencies for these vector operations were reported. Total
data size processed in one second was reported as opera-
tion bandwidth.

We measured the cache-to-cache latency using a small
lockless program [26]. It does not employ expensive read-
modify-write atomic instructions. Instead, it maintains a
lockless counter for each thread. The c-code of each thread
is as follows:

*pPong = 0;
for (i = 0; i < NITER; ++i)
{

while (*pPing < i);
*pPong = i+1;

}

Each thread increases its own counter pPong and keeps
reading the peer’s counter by checking pPing. The counter
pPong is in a different cache line from the counter pPing.
A counter pPong can be increased by one only after verify-
ing the update of the peer’s counter. This pure software syn-
chronization code generates a heavy read–write sharing
between the two cores and produces a Ping–Pong procedure

Table 1
Specifications of the selected systems

CPU Intel Core 2 Duo E6400 (2 � 2.13 GHz) Intel Pentium D 830 (2 � 3.00 GHz) AMD Athlon64 4400+ (2 � 2.20 GHz)
Technology 65 nm 90 nm 90 nm
Transistors 291 millions 230 millions 230 millions
Hyper-threading No No No
L1 cache Code and data: 32 kB � 2, 8 way, 64-byte

cache line size, write-back
Trace cache: 12Kuops � 2, data:
16 kB � 2, 8-way, 64-byte line size, write-
through

Code and data: 64 kB � 2, 2-way, 64-byte
cache line size, write-back

L2 cache 2MB shared cache (2 MB � 1), 8-way, 64-
byte line size, non-inclusive with L1 cache

2 MB private cache (1 MB � 2), 8-way, 64-
byte line size, inclusive with L1 cache

2 MB private cache (1MB � 2), 16-way,
64-byte line size, exclusive with L1 cache

Memory 2 GB (1 GB � 2) DDR2 533 MHz 2 GB (512 MB � 4) DDR2 533 MHz 2 GB (1 GB � 2) DDR 400 MHz
FSB 1066 MHz data rate 64-bit 800 MHz data rate 64-bit HyperTransport 16 bit up/down 2 GHz

data rate (up + down)
FSB bandwidth 8.5 GB/s 6.4 GB/s 8 GB/s
HD interface SATA 375 MB/s SATA 150 MB/s SATA 300 MB/s

Table 2
Memory operations from Lmbench

Operation Description

Libc bcopy
unaligned

Measuring how fast the processor can copy data blocks
when data segments are not aligned with pages using a
function bcopy()

Libc bcopy
aligned

Measuring how fast the processor can copy data blocks
when data segments are aligned with pages using a
function bcopy()

Memory
bzero

Measuring how fast the processor can reset memory
blocks using a function bzero()

Unrolled
bcopy
unaligned

Measuring how fast the system can copy data blocks
without using bcopy(), when data segments are not
aligned with pages

Memory
read

Measuring the time to read every 4 byte word from
memory (stride 32 bytes)

Memory
write

Measuring the time to write every 4 byte word to memory
(stride 32 bytes)

L. Peng et al. / Journal of Systems Architecture 54 (2008) 816–828 819



Author's personal copy

between the two caches to test processors in handling heavy
cache-to-cache traffic.

For multiprogrammed workloads, the cross-product of
mixed SPEC CPU2000/2006 benchmarks were run on the
three machines to examine the dual-core speedups over a
single core. All the SPEC CPU2000/2006 programs were
run with their respective ref inputs. In our simulations,
when two programs were run together, we guaranteed that
each program was repeated at least four times. The shorter
programs may run more than four iterations until the
longer program completes its four full iterations. We dis-
carded the results obtained in the first run and used the
average execution time and other metrics from the remain-
der three runs. We calculated the dual-core speedup for
multiprogrammed workloads similarly to that used in
[25]. The single program’s running time were collected indi-
vidually. Afterwards, the average execution time of each
workload when run simultaneously was recorded. The
dual-core speedup of each workload is calculated by find-
ing the ratio of average run time when run individually
(single core) by the average runtime when run together
(dual core). Finally, we add the speedups of the two pro-
grams run together to obtain the dual-core speedup. For
example, if the speedups of two programs are 0.8 and 0.9
when run simultaneously, the respective dual-core speedup
will be 1.7.

We used the same procedure for homogeneous multi-
threaded workloads including blastp and hmmpfam from
the BioPerf suites, a subset of SPLASH2, as well as SPEC-

jbb2005. The BioPerf suite has emerging Bioinformatics
programs. SPLASH2 is a widely used scientific workload
suite. SPECjbb2005 is a java based business database pro-
gram. Table 4 lists the input parameters of the multi-
threaded workloads. We ran each of these workloads long
enough to compensate overheads of sequential portions of
the workloads.

4. Measurement results

4.1. Memory bandwidth and latency

4.1.1. Lmbench

We first ran the bandwidth and latency test programs
present in the lmbench suite. Fig. 2 shows memory band-
width of several operations from lmbench. Fig. 2a, c and
e shows the data collected while running one copy of
lmbench on the three machines while Fig. 2b, d and f pre-
sents the 2-copy results. Several observations can be made:

(1) In general, Core 2 Duo and Athlon 64 � 2 have bet-
ter bandwidth than that of Pentium D. Only excep-
tion is that Pentium D shows the best memory read

bandwidth when the array size is less than 1MB.
The shared cache of Core 2 Duo demands longer
access latency though providing larger effective
capacity. For Athlon 64 � 2, because the DRAM
has lower bandwidth, its memory read bandwidth is
lower than that of Pentium D when memory bus is
not saturated. The memory read bandwidth for the
three machines drops when the array size is larger
than 32 kB, 16 kB and 64 kB, respectively. These
reflect the sizes of their L1 cache. When the array size
is larger than 2 MB, 1 MB and 1 MB for the respec-
tive three systems, we can see another dropping,
reflecting their L2 cache sizes.

(2) The memory bzero operation shows different behav-
iors: when the array size is larger than their L1 data
cache sizes, i.e., 32 kB for Core 2 Duo and 64 kB
for Athlon 64 � 2, the memory bandwidth drops
sharply. This is not true for Pentium D. The L1 cache
of Core 2 Duo and Athlon 64 � 2 employ a write-
back policy while the L1 cache of Pentium D uses a
write-through policy. When the array size is smaller
than their L1 data cache sizes, the write-back policy
updates the L2 cache less frequently than the write-
through policy, leading to higher bandwidth. How-
ever, when the array size is larger than their L1 data
cache sizes, the write-back policy does not have any
advantage as indicated by the sharp decline of the
bandwidth.

(3) For Athlon 64 � 2, libc bcopy unaligned and libc

bcopy aligned show a big difference while alignment
does not have much difference for Core 2 Duo and
Pentium D. ‘Aligned’ here means the memory seg-
ments are aligned to the page boundary. The opera-
tion bcopy could be optimized if the segments are

Table 4
Input parameters of the selected multi-threaded workloads

Workload Input parameters

blastp Swissprot database, large input
hmmpfam Large input
Barnes 104,8576 bodies
Fmm 524,288 particles
ocean-

continuous
2050 � 2050 grid

fft 224 total complex data points transformed
lu-continuous 4096 � 4096 node matrix
lu-non-

continuous
4096 � 4096 node matrix

radix 134,217,728 keys to sort
SPECjbb2005 Default ramp up time 30 s, measurement time 240 s,

from 1 to 8 warehouses

Table 3
Kernel operations of the STREAM and STREAM2 benchmarks

Set Kernel Operation

STREAM copy c[i] = a[i]
STREAM scale b[i] = scalar * c[i]
STREAM add c[i] = a[i] + b[i]
STREAM triad a[i] = b[i] + scalar * c[i]
STREAM2 fill a[i] = q
STREAM2 copy a[i] = b[i]
STREAM2 daxpy a[i] = a[i] + q * b[i]
STREAM2 sum sum = sum + a[i]
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page aligned. In Fig. 2a, c and e, Core 2 Duo and
Pentium D show optimizations for unaligned bcopy

access while Athlon 64 � 2 does not.
(4) Fig. 2b, d and f plots the bandwidth while running

two copies of lmbench. The scale of the vertical axis
of these three figures is doubled compared to their
one-copy counterparts. We can observe that memory
bandwidth of Pentium D and Athlon 64 � 2 are
almost doubled for all operations. Core 2 Duo has
increased bandwidth, but not doubled. This is
because of the access contention when two lmbench

copies compete with the shared cache. When the
array size is larger than its L2 cache size 2MB, Athlon
64 � 2 provides almost doubled bandwidth for two-
copy lmbench memory read operation compared with
its one-copy counterpart. Athlon 64 � 2 benefits from

its on-die memory controller and separate I/O Hyper-
Transport. Intel Core 2 Duo and Pentium D proces-
sors suffer FSB bandwidth saturation when the array
size exceeds the L2 capacity. Note that the line libc

bcopy unaligned coincides with libc bcopy aligned in
Fig. 2f.

Next, we examine memory load latency for multiple
sizes of stride access and random access for all the three
machines. Fig. 3a, c and e depicts the memory load latency
lines of the three machines running with one copy of
lmbench. Several observations can be made:

(1) For Core 2 Duo, latencies for all configurations jump
after the array size is larger than 2 MB while for
Pentium D and Athlon 64 � 2 latencies for all the
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Fig. 2. Memory bandwidth collected from the lmbench suite with one or two copies.
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configurations jump after the array size is larger than
1MB. This relates to the L2 cache sizes of the mea-
sured machines.

(2) As described in Section 2, when hardware prefetchers
on all machines work, the memory bus bottleneck
will not be reflected. When the stride size is equal to
128 bytes, Pentium D still benefits partially from its
hardware prefetcher but the L2 prefetchers of Core
2 Duo and Athlon 64 � 2 is not triggered. This leads
to better performance for Pentium D.

(3) When the stride size is larger than 128 bytes, all
hardware prefetchers do not take effect. Multiple L2
cache misses put pressures onto the memory buses.
Athlon 64 � 2’s on-die memory controller and sepa-
rate I/O HyperTransport show the advantage. Pen-
tium D’s memory latency has a large jump for these
operations but Athlon 64 � 2’s latency almost keeps
unchanged.

(4) We increased pressure on memory hierarchy by
running two copies of lmbench simultaneously
shown in Fig. 3b, d and f. We found that Core 2
Duo and Athlon 64 � 2 have a slight increase in
the latencies for stride sizes larger than 128 bytes
while Pentium D’s latencies increases a lot. Core 2
Duo benefits from its shared cache, which generates
lower external traffic, while Athlon 64 � 2 take the
advantage of on-chip memory controller and sepa-
rate I/O Hyper-Transport. However, Pentium D’s
latencies jump due to suffering from memory bus
saturation.

4.1.2. STREAM/STREAM2

We also ran eight kernel operations from STREAM and
STREAM2. Fig. 4a shows memory bandwidth of
STREAM and STREAM2 operations when running with
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Fig. 3. Memory load latency collected from the lmbench suite with one or two copies.
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a single copy of each operation. From this figure, we can
see that Intel Core 2 Duo shows the best bandwidth for
all operations because of L1 data prefetchers and the faster
Front Side Bus. Pentium D has better bandwidth than that
of Athlon 64 � 2. This is again because the Pentium D sys-
tem is equipped with better DRAM than the Athlon 64 � 2
system.

Fig. 4b depicts memory bandwidth when running with
two copies of each operation in STREAM/STREAM2,
one on each core. From this figure, we can see that Core
2 Duo and Athlon 64 � 2 have better bandwidth than
that of Pentium D. This is due to the fact that Pentium
D’s FSB is saturated when running two copies of each
operation. Athlon 64 � 2 benefits from its on-die memory
controller and separate HyperTransport for I/O although
its main memory DDR bandwidth is worse than that of
Pentium D. Core 2 duo benefits from the presence of its
L1 data prefetchers and the faster FSB. Fig. 4c and d
shows the memory latencies for the three machines. Sim-
ilar to the bandwidth figures, memory latency of Core 2
Duo and Pentium D are shorter than that of Athlon
64 � 2 when a single copy of the STREAM/STREAM2

benchmark is running. Apparently, the shorter latency
from on-die memory controller does not pay off in com-
parison with an off-die controller with better DRAM
technology. However, while running the 2-copy version,
memory latency of Pentium D is higher than the other
two.

4.2. Multiprogrammed workload measurements

We measured execution time of a subset of SPEC
CPU2000 and CPU 2006 benchmarks. In Fig. 5a and c,
the Core 2 Duo processor runs fastest for almost all work-
loads executed along, especially for memory intensive
workloads art and mcf. Core 2 Duo has a wider pipeline,
more functional units, and a shared L2 cache that provides
bigger cache for single thread running along. Athlon 64 � 2
shows the best performance for ammp. ammp has large
working set, resulting in high L2 cache misses. Athlon
64 � 2 benefits from its on-chip memory controller.

Fig. 5b and d depicts average execution time of each
workload when mixed with another program in the same
SPEC suite. There is an execution time increasing for each
workload. For memory bounded programs art, mcf and
ammp, execution time increasing is large while CPU
bounded workloads such as crafty, mesa, perl and sjeng
show little impact.

The multi-programmed speedup of the cross-product of
mixed SPEC CPU2000 and CPU2006 programs for the three
machines are given in Fig. 6, where C2D, PNT and ATH
denote the measured Core 2 Duo, Pentium D, and Athlon
64 � 2, respectively. We can see that Athlon 64 � 2 achieves
the best speedup for all workloads. Crafty, eon, mesa in CPU
2000 and perl in CPU2006 have the best speedup when run
simultaneously with other programs because they are CPU-
bound programs. On the other hand, in most cases, art shows
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Fig. 4. Memory bandwidth and memory latency collected from the STREAM and STREAM2 benchmarks. The benchmark runs with 1 or 2 copies.

L. Peng et al. / Journal of Systems Architecture 54 (2008) 816–828 823



Author's personal copy

the worst speedup because it is a memory bounded program.
Its intensive L2 cache misses occupy the shared memory bus
and block another program’s execution. In the extreme case,
when an instance of art was run against another art, the
speedups were 0.82, 1.11 and 1.36 for Core 2 Duo, Pentium
D and Athlon 64 � 2. Other memory bounded programs,
ammp and mcf, present similar behaviors.

Comparing the three machines, the multi-programmed
Athlon 64 � 2 outperforms those of Core 2 Duo and Pen-
tium D for almost all workload mixes. It is interesting to
note that even though Core 2 Duo has better running time
than the other two machines, the overall speedup is lesser.
The reason again is due to its L2 shared cache that boosts
single-core performance.
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Fig. 5. SPEC CPU2000 and CPU2006 benchmarks execution time.
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4.3. Multi-threaded program behaviors

We used the lockless program to measure the dual-core
cache-to-cache latency. The average cache-to-cache laten-
cies are significantly different among Core 2 Duo, Pentium
D, and Athlon 64 � 2, with 33 ns, 133 ns and 68 ns, respec-
tively. This is again due to the fact that Core 2 Duo
resolves L1 cache coherence within the chip, while Pentium
D requires external FSB for cache-to-cache transfer. Ath-
lon 64 � 2 uses on-chip system request interface and the
MOESI protocol for cache-to-cache communication.

Next, we experiment with blastp and hmmpfam from the
BioPerf suite and a set of the SPLASH2 workloads. Fig. 7a
and b illustrates execution time of single thread version of
the programs and the speedup when running with 2-thread
version. In general, Core 2 Duo and Athlon 64 � 2 do not
show performance advantages over Pentium D on bioin-
formatics and scientific workloads because of limited data
communication between two cores. Similar results were
also reported on Multimedia programs [9]. Among all
applications, Core 2 Duo shows the best speedup over
other processors for ocean due to its high cache-to-cache
transfers [34]. We verified this behavior using Intel’s VTune
Performance Analyzer 8.0 [16]. Fig. 8 illustrates the aver-
age number of CMP_SNOOP.ANY events, which repre-
sents the remote cache access, per 1 K retired instructions
on Core 2 Duo. Among all workloads. Ocean has the high-
est remote cache accesses per 1 K retired instructions. Pen-
tium D shows the best speed up for barnes because of the
low cache miss rate [34]. Recall that Pentium D processor
also has the best memory read bandwidth when the array
size is small. Bioinformatics workloads have high speedups
for all three machines due to small working sets [6].

High data sharing workloads, such as SPECjbb2005
also benefit from fast cache-to-cache latency. Fig. 9 shows
the transaction per second (TPS) throughput with one
(denoted by 1w-1c) and two (denoted by 2w-1c) ware-
houses of SPECjbb2005 on the three systems. For a fair
speedup comparison, we also run two copies of a single
warehouse on two cores (denoted by 1w-2c). These two

copies on the two cores compete with the shared L2 cache
so that Core-2-Duo loses its unique advantage of taking
the entire L2 capacity with a single warehouse. As can be
observed, Core-2-Duo shows the worst performance degra-
dation (about 20%) from 1w-1c to 1w-2c. Using 1w-2c as
the basis, the 2w-1c speedups for the respective three sys-
tems are 1.97, 1.80, and 1.87 where Core-2-Duo is the
winner.

5. Related work

The emergence of Intel and AMD dual-core processors
intrigues hardware analysts. There are many online reports
which compare performance of processors from both com-
panies [9,23,24]. Most of them simply present the perfor-
mance metrics such as running time and throughput
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without detailed analysis. In this paper, we focus on the
memory hierarchy performance analysis and understand-
ing the underlying reasons.

Chip multiprocessor (CMP) or multi-core technology
was first reported in [10]. Companies such as IBM and
SUN applied it on their server processors [18,31,32]. In
2005, Intel announced to shelve its plan in pursuing higher
frequency and instead switch to building multi-core proces-
sors [15]. Similarly, AMD also made the same decision
about the same time [4].

Tuck and Tullsen [33] studied thread interactions on an
Intel Pentium 4 hyper-threading processor. They used
multi-programmed and multi-threaded workloads to mea-
sure speedup and synchronization and communication
throughput. Bulpin and Pratt [7] measured an SMT proces-
sor with consideration about fairness between threads. They
also showed the performance gap between SMP and Hyper-
threaded SMT for multi-programmed workloads.

In [20], we did a case study on memory performance and
scalability of the selected processors. In this journal version
paper, we provide more detailed results and analysis.

There are several recent proposals to study the issues of
CMP shared cache fairness and partitioning. In [19], the
authors proposed and evaluated five different metrics such
as shared cache miss rates, which can be correlated to exe-
cution time, used for CMP fairness and proposed static and
dynamic caches partitioning algorithms that optimize
fairness. This dynamic algorithm can help the operating
system thread scheduling and to avoid thread thrashing.
Other works proposed OS driven policy [27], cache man-
agement framework (CQoS) [17] and prediction models
[8] for inter-thread cache contention in a shared CMP
cache.

6. Conclusion

In this paper, we analyzed the memory hierarchy of
selected Intel and AMD dual-core processors. We first
measured the memory bandwidth and latency of Core 2
Duo, Pentium D and Athlon 64 � 2 using lmbench. In gen-
eral, Core 2 Duo and Athlon 64 � 2 have better memory
bandwidth than that of Pentium D.

We measured individual execution time of SPEC
CPU2000 and CPU2006. We also measured the average
execution time of each application when mixed with other
programs on the dual cores. In general, Core 2 Duo runs
fastest for all single and mixed applications except for
ammp. We also observed that memory intensive workloads
such as art, mcf and ammp have worse speedups. We mea-
sured the cache-to-cache latencies. Core 2 Duo has the
shortest, while Pentium D has the longest. This generic
memory performance behavior is consistent with the per-
formance measurement results of multi-threaded work-
loads with heavy data sharing between the two cores.

The Core 2 Duo, with its shared L2, demonstrates dis-
tinct advantages when running a single program on one
core. However, to manage the shared cache resource effi-

ciently is a challenge especially when two cores have very
different demands for caches. In summary, for the best per-
formance and scalability, the following are important fac-
tors: (1) fast cache-to-cache communication, (2) large L2
or shared capacity, (3) fast L2 access latency, and (4) fair
resource (cache) sharing. Three processors that we studied
have shown benefits of some of them, but not all of them.
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