
13

Long Short-Term Memory Network Design

for Analog Computing

ZHOU ZHAO, ASHOK SRIVASTAVA, LU PENG, and QING CHEN, Louisiana State University

We present an analog-integrated circuit implementation of long short-term memory network, which is

compatible with digital CMOS technology. We have used multiple-input floating gate MOSFETs as both the

front-end to obtain converted analog signals and the differential pairs in proposed analog multipliers. Analog

crossbar is built by the analog multiplier processing matrix and bitwise multiplications. We have shown

that using current signals as internal transmission signals can largely reduce computation delay, compared

to the digital implementation. We also have introduced analog blocks to work as activation functions for

the algorithm. In the back-end of our design, we have used current comparators to achieve the output to be

readable to external digital systems. We have designed the LSTM network with the matrix size of 16 × 16 in

TSMC 180nm CMOS technology. The post-layout simulations show that the latency of one computing cycle

is 1.19ns without memory, and power dissipation of the single analog LSTM computing core with 2 kilobytes

SRAM at 200MHz is 460.3mW. The overhead of power dissipation due to SRAM access is 8.3%, in which the

computing of each LSTM layer requires one computing cycle. The energy efficiency is 0.95TOP/s/W.
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1 INTRODUCTION

Algorithms and circuit designs that support neural computation are the subjects of intense research
(Stewart and Eliasmith 2014; Wang et al. 2014; Wang et al. 2016; Taigman et al. 2014). Recurrent
neural network (RNN) is one of the artificial neural networks (ANN) that can process real-time
data (Pearlmutter 1989). As an extension of various RNNs, long short-term memory (LSTM) is
highly desirable to avoid the long-term dependency problem (Pulver and Lyu 2017; Hochreiter
and Schmidhuber 1997). In hardware implementation of LSTM, the involved matrix multiplica-
tion and non-linear activation functions take the most time, and related blocks consume the most
power, compared to the rest of blocks in LSTM. The challenge of combining the algorithm and the
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corresponding design implementation depends on how to efficiently address matrix multiplication
of large size, and obtaining accurately the output through activation functions. Current work on
VLSI implementation of neural computation has been focused mainly on convolution neural net-
work (CNN) (Ni et al. 2017; Moons et al. 2017; Sim et al. 2016; Chen et al. 2016) in digital design.
The hardware implementations of LSTM mostly use FPGA (Guan et al. 2017a; Guan et al. 2017b;
Ferreira and Fonseca 2016). The computation speed of LSTM in FPGA-based implementations is
mainly restricted by digital gates operating at ∼100MHz global clock, which is lower than that
in ASIC design. Shin et al. (2017) presented a neural processor that can implement LSTM in deep
sub-micron CMOS technology. In this work, both lookup table (LUT) and register array are used
in advance to store all possible results of product and quantization codes to avoid large latency
introduced by matrix multiplication and activation functions.

Recently, analog signal processing (ASP) has emerged for neural computation. Neuron-like ana-
log cells have been reported to implement neural computation (Bong et al. 2017; Maliuk and Makris
2015; Corradi et al. 2014; Maliuk and Makris 2012). Amant et al. (2014) proposed an analog com-
putation method to make ASP work for complex neural networks reliably. However, the signal in-
terface implemented by digital-to-analog converter (DAC) and analog-to-digital converter (ADC)
increases circuit area and power dissipation. The large overhead of power dissipation due to both
DACs and ADCs working for ASP is also seen in the work of Shafiee et al. (2016), in which the
internal ASP can largely accelerate CNN computing at the cost of over half of the entire power
dissipated by signal interface. The interface circuit also restricts the maximum frequency due to
tradeoff between effective number of bits (ENOB) and sample rate in ADC. If we do not take signal
interface into consideration and only compare ASP and DSP in addressing complex neural com-
putation, then ASP has several advantages over DSP: (a) A single analog signal can represent the
digital signal with multiple bits; (b) Current neural algorithms involve many non-linear activation
functions, which are easier to implement in analog than in digital circuits; c) Matrix multiplication
(which is widely used in neural computations) implemented in analog design is much faster than
in digital design. However, DACs and ADCs connecting external blocks add real estate to the chip
and computation latency.

In the past, analog ICs implemented with multiple-input floating gate (MIFG) MOSFETs
simulating biological neurons have been reported (Holler et al. 1989; Shimabukuro et al. 1991;
Aslam-Siddiqi et al. 1998). In the work of Holler et al. (1989), the neuron-based analog circuit
gives the variable gain to obtain the desired performance. However, the feedback loop increases
the computation latency. The work in Shimabukuro et al. (1991) shows a novel current-mode
analog neuron-like cell with floating gate MOSFETs fabricated in silicon on sapphire (SOS)
CMOS technology. The output swing is very small, which is not suitable in multi-bit applications.
The work in Aslam-Siddiqi et al. (1998) has used switch-capacitor (SC) circuits using floating
gate MOSFETs to build a programmable neuron circuit. The output swing is large and can be
used for multi-bit computations. However, the voltage-mode process reduces the computation
latency and the SC circuit requires a high-accuracy clock block under high-frequency operation.
In this work, we propose an analog VLSI implementation of LSTM without DAC or ADC. The
main work in this article is presented as follows: (a) We have analyzed the algorithm of LSTM
and modified it to be used in our implementation based on analog IC design; (b) Compared to
traditional data conversion costing high-analog IC, we have proposed an energy-efficient and
simple method of data conversion that uses MIFG MOSFETs simulating biological neurons at the
front-end to obtain analog signals from digital input, and current comparators at the back-end to
achieve ADC function. This method makes the designed system fully compatible with the digital
environment. The LSTM network includes a crossbar network built by analog multiplication
cells, current/voltage converters, and analog cells to implement sigmoid and hyperbolic tangent
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Fig. 1. Standard cell of LSTM network.

functions. In internal operation of LSTM, we have mainly used the current carry signal as the
transmission signal; (c) Physical design of the LSTM computing core with 16 × 16 matrix is done
in TSMC 180nm CMOS technology and the results of core are presented.

The article is organized as follows: Section 2 and Section 3 present description of LSTM and
MIFG MOSFETs, respectively; Section 4 presents the analog implementation of LSTM; Section 5
presents simulation results and further discussion. Section 6 summarizes the work.

2 LONG SHORT-TERM MEMORY NETWORK

RNN is a cycle network that allows data processing with the dependency of past information, and
LSTM is one of the extensions of RNN. When the time span between two instances is large, the
network will lose the ability of connecting two points used for processing and prediction. LSTM
can solve the problem of long-term dependency, and so it can be used in a variety of applications
(Hochreiter and Schmidhuber 1997). LSTM uses the pipelined method, utilizing the same standard
cells. The output of current state influences the next state. The standard cell of LSTM is shown in
Figure 1, which consists of six independent steps to follow dotted ellipses.

The first four steps in Figure 1 represent forget gate layer, input gate layer, cell gate layer, and
output gate layer, respectively. In these, the argument of each activation function is the sum of
two matrix multiplications and a bias, Wx xt +Whht-1 + b, where Wx, xt, Wh, ht-1, and b are
weighted matrix of input vector, input vector; weighted matrix of output vector, output vector;
and bias, respectively. Considering the analog implementation of LSTM, there are two additions
of column vectors in a single argument going through an activation function. To simplify the
circuit design, we can convert these two additions into a single addition. If the dimensions of all
weighted matrices are N × N and the dimensions of the rest of column vectors are N × 1 in LSTM,
then we can embed the last bias term into the first term in the argument of the first four steps.
Based on the Equations (3)–(8) in the work of Guan et al. (2017b), the new form of LSTM can then
be expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ft = siдmoid (Ŵxf x̂t + Ŵhf ĥt−1)

it = siдmoid (Ŵxl x̂t + Ŵhl ĥt−1)

c̃t = tanh(Ŵxc x̂t + Ŵhcĥt−1)

ot = siдmoid (Ŵxox̂t + Ŵhoĥt−1)
ct = ft

◦ct−1 + it
◦c̃t

ht = ot
◦tanh(ct )

, (1)
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In Equation set (1), each new weighted matrix of the input vector Ŵx represents [Wx, b], each
new input vector x̂ t represents [xt

T, 1]T, each new weighted matrix of the output vector Ŵh rep-

resents [Wh, 0], and each new output vector ĥt−1 represents [ht-1
T, 0]T. From Equation set (1), we

can see that all bias terms are integrated in Ŵxx̂ t and there is only one addition in the argument
of the first four layers. The dimensions of all new weighted matrices and column vectors in the
arguments are N × (N+1) and (N+1) × 1, respectively. It should be noted that in analog imple-

mentation, each element in both Ŵxx̂ t and Ŵhĥt-1 is an analog signal. The matrix multiplication
corresponding to Ŵxx̂ t is N × (N+1) matrix multiplied by (N+1) × 1 column vector to cover the

addition with the bias term. The matrix multiplication corresponding to Ŵhĥt-1 can be simplified
to N × N matrix multiplied by N × 1 column vector without the null multiplication. Through this
new form of LSTM shown in Equation set (1), we have removed one stage implementing the addi-
tion with the bias term to not only accelerate computation, but also to reduce both the circuit cost
and interconnection complexity. The output in every sub-equation is still an N × 1 column vector
as desired. All elements in matrices still do the same calculation. Thus, there is no error intro-
duced by the proposed modification. The computation flow as shown in Equation set (1) includes
matrix multiplication, bitwise multiplication to obtain Hadamard product, addition, and two acti-
vation functions, which are sigmoid and hyperbolic tangent. The first four steps can be computed
simultaneously. Section 4 will further introduce the circuit simplification to speed up the entire
computation flow through both specific data conversion and physical interconnection.

3 MULTIPLE-INPUT FLOATING GATE MOSFET

Traditional transistors have only one input connecting to the gate to control the current transport
in the channel (Nicollian and Brews 1982). In analog IC design, normal MOSFETs used in the input
stage only map injective functions to the output. To overcome this restriction, MIFG MOSFET is
introduced to increase both the inputs for a single transistor and the reconfigurable output (Shibata
and Ohmi 1992; Srivastava and Srinivasan 2002; Ramirez-Angulo et al. 2004; Subramanian 2005).
The MIFG MOSFET has two gate layers. The bottom gate layer is a floating gate that is over the
thin oxide of the transistor channel; and the top gate layer, which is over the floating gate and
isolated by another thin oxide, is to achieve the programmable input via multiple gate inputs. The
Equivalent capacitor-based circuit and a 3D view of a MIFG MOSFET are shown in Figures 2(a)
and 2(b), respectively. The surface potential on floating gate Φf decides turning on and off the
transistor and is expressed as follows (Venkata 2002):

∅f =
C1V1 +C2V2 + · · · +CnVn

Cox +C1 +C2 + · · ·Cn +Cp
, (2)

where V1, V2, . . . ,Vn represent multiple input voltages that are inputs to the top gate layer. Their
corresponding coupling capacitors are C1, C2, . . . ,Cn, all of which are contributed by the oxide layer
isolating the floating gate and each top input gate. Cox and Cp are the capacitors between the float-
ing gate and the substrate, and parasite capacitor, respectively. Cp can be safely removed, since
its value is much smaller than the rest of capacitors. When the dimension of a MIFG MOSFET is
small, we can neglect Cox. While in analog IC design using MIFG MOSFETs, dimensions of some
transistors may be relatively large to assure that all transistors work in their correct regions of
operation, Cox should be taken into consideration. Normally, one effective method to suppress the
non-linearity from Cp and Cox is to set C1, C2, . . . ,Cn to relatively large values. For the physical lay-
out design of MIFGs using the concept of Figure 2(b), a double-poly layer is used to form a floating
gate and coupling capacitive gates. Thus, we observe that this style of physical design can cause
the values of coupling capacitors to be restricted by the dimension of the transistor connected
with MIFGs, which reduces the design freedom of analog IC. To avoid the mutual restriction be-
tween coupling capacitors and customized ratio of the transistor with MIFGs in this work, for any
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Fig. 2. MIFG MOSFET: (a) equivalent capacitor-based circuit, (b) 3D view of overlapping-dual-poly structure,

and (c) 3D view of adjacent n-diffusion capacitor structure. Note that both poly and active contacts are

ignored in two 3D views.

transistor with MIFGs, we have used another structure shown in Figure 2(c) to achieve coupling
capacitors, which are implemented by standard n-diffusion capacitors. This design style of MIFG
MOSFETs is fully compatible with the fabrication flow of standard CMOS and already proposed,
fabricated, and tested in the work of Shibata and Ohmi (1992), Srivastava and Srinivasan (2002),
Srivastava and Venkata (2003), and Subramanian (2005). The essence of this structure is that the
coupling capacitors are designed in the area beside MIFG transistors but not over the floating gate.
Through this structure, the dimension of a MIFG transistor and values of coupling capacitors are
independent of each other. Another important issue is the method of simulating MIFG device and
circuit. In this work, we use the resistor-capacitor pairs with a large grounding resistor to achieve
signal synchronization and solve the “floating node” error which is due to multiple inputs with
the same electrical node in SPICE simulation (Sánchez-Sinencio 2010).

3.1 MIFG MOSFETs for DAC Design

The property of a MIFG MOSFET through which the output can be determined by multiple in-
puts, matches to the signal flow in DAC, which is the initial stage used for ASP. Therefore, we can
use MIFG MOSFETs to achieve a DAC function. For N-bit digital signal applied in a MIFG MOS-
FET, VD_N-1, VD_N-2, . . . VD_1, VD_0, if we set the ratio of their corresponding coupling capacitors
to 2N-1:2N-2: . . . :21:20, then the surface potential on the floating gate of a MIFG MOSFET can be
programmed as follows:

∅f =
2N−1CunitVD_N−1 + 2N−2CunitVD_N−2 + · · · + 20CunitVD_0

Cox + 2N−1Cunit + 2N−2Cunit + · · · + 20Cunit +Cp

, (3)

where Cunit is the unit capacitor implemented in physical design. If we neglect both Cox and Cp,
then the numerator in Equation (3) shows a function of DAC in which the multiple inputs and the
surface potential are digital and analog signals, respectively. If the denominator in Equation (3)
is Ctotal, then the step voltage for the conversion is VDD × Cunit/Ctotal. This implementation does
not require an independent circuit block to achieve a DAC function. Input transistors in analog
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multipliers of this work are directly connected to multiple digital inputs. Traditional DACs in ASP
systems need several feedback loops with operational amplifiers to achieve stability, the required
response time will largely increase the conversion latency. However, the proposed one, in which
the multiple inputs directly couple to the floating gate of a transistor, does not need response time
or the consideration of stability, and thus is much faster than traditional DACs. The output of
the proposed conversion is directly applied to the channel of the transistor to control its state to
achieve multiplication. In addition, the power dissipation of the proposed conversion is relatively
smaller than that in traditional DAC due to the cancellation of feedback loop. To increase the
precision in computation, it is feasible to increase the Cunit in Equation (3) at the cost of the area
due to coupling capacitors. In Section 4.1, the design of analog multiplier with the proposed DAC
function using MIFG MOSFETs will be described.

4 LONG SHORT-MEMORY NETWORK DESIGN

4.1 Analog Multiplier with Digital Signal Input

Analog multipliers are more suitable to process data with increasing bit length than digital multi-
pliers (Kim and Park 1987; Song and Kim 1990). However, it is very difficult to achieve rail-to-rail
input and output voltage swings. One feasible method to increase the signal swing of an analog
multiplier is to increase supply voltage at the cost of power dissipation (Babanezhad and Temes
1985; Soo and Meyer 1982). Another method is to allow transistors in analog multipliers to work
in the linear region (Han and Sinencio 1998). To save power, we scaled down the swing of input
signals. This is needed to make input digital signals and surface potential on the floating gate af-
ter data conversion compatible with the signal flow without increasing the supplied voltage. For
the input stage of an analog multiplier using MIFG MOSFETs, we introduced another coupling
capacitor, Cg connecting to the ground. Equation (3) can be expressed as follows:

∅f =
2N−1CunitVD_N−1 + 2N−2CunitVD_N−2 + · · · + 20CunitVD_0

Cox + 2N−1Cunit + 2N−2Cunit + · · · + 20Cunit +Cp +Cд

, (4)

Setting the allowable input swing to [0, αVdd], when all digital inputs are high logic, the surface
potential reaches to the upper bound, αVdd. This case can be expressed as follows:

αVdd =
2N−1CunitVdd + 2N−2CunitVdd + · · · + 20CunitVdd

Cox + 2N−1Cunit + 2N−2Cunit + · · · + 20Cunit +Cp +Cд

, (5)

Since Cox and Cp are small enough compared to other coupling capacitors, we can neglect these
two terms. Then, Equation (5) can be rewritten as the function of Cg as follows:

Cд =
1 − α
α

(2N−1 + 2N−2 + · · · + 21 + 20)Cunit , (6)

Depending on Equation (6), we can use Cg with other coupling capacitors shown in Equation (4)
to execute the function of DAC with the scaling down of the input voltage.

Based on the design presented in the work of Song and Kim (1990), we propose an analog mul-
tiplier with programmable MIFG MOSFETs guided by Equations (4) and (6) as shown in Figure 3.
It is a differential input pair mapping to differential output in four-quadrant. The two input pairs
generate the two square terms, [(V1+-V1-)+(V2+-V2-)]

2 and [(V1+-V1-)-(V2+-V2-)]
2. Then, through the

cross-interconnection of source followers with inputs, these two terms are subtracted with each
other so that the internal square terms such as (V1+-V1-)

2 and (V2+-V2-)
2 are cancelled and only the

term with the function of (V1+-V1-)(V2+-V2-) is left. The voltage output can be expressed as follows:

Vo+ −Vo− = Rload (Io+ − Io−) =
1

2
Kn

(W
L

)
sf
Rload [(V1+ −V1−) (V2+ −V2−)], (7)
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Fig. 3. Circuit diagram of the proposed analog multiplier with the functions of both voltage scaling and

DAC. Highlighted transistors are MIFG MOSFETs.

where Kn is the transconductance parameter of n-channel transistors and Rload is the resistance
of diode-connected transistors (M1 and M4) in the output load. (W/L)sf represents the dimension
ratio of the transistors (M5, M6, M7, and M8) in source followers. Looking into Equation (7), Kn

and (W/L)sf are determined by the fabrication process and the unit gain of the source follower,
respectively. Rload in the circuit is sensitive to temperature with a positive temperature coefficient
(Allen and Holberg 2002). If we use the current signal as the output, then Rload in Equation (7)
can be cancelled to mitigate the signal variation due to the temperature fluctuation. The most
significant advantage of using current signal as the transmission signal is that the addition of
two current signals can be achieved simply by the interconnection using Kirchhoff’s current law.
However, the addition of two voltage signals cannot be achieved by direct series connection and
results in a voltage sum with non-linear composition (Mead and Mohammed 2012). To obtain
an accurate sum of two voltage signals, the mixer is required at the cost of delay and power
dissipation. Therefore, considering the algorithm of LSTM and the hardware cost, it is better to
use current signal as the transmission signal than the voltage signal.

The feasibility of quantization used in LSTM to reduce hardware cost has been studied by Shin
et al. (2017) and Han et al. (2016). In our work, we set the single number in both matrices and
column vectors to be a 4-bit digital signal and α in Equation (5) to 0.5, which means the input
voltage is scaled down from 0V to 0.9V,which is half of the supplied voltage (1.8V) in the TSMC
180nm CMOS process. Combining the analysis from Equations (4), (6), and (7), the output current
signal can be expressed as follows:

Io+ − Io− =
1

4
Kn

(W
L

)
sf
γ (W/L ) (V1V2)
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Fig. 4. Voltage attenuation versus unit capacitor in MIFG-driven input transistor.

Table 1. W/L Ratio of Transistors in the

Proposed Analog Multiplier using MIFG

MOSFETs of Figure 3

Transistor W/L (nm/nm)
M1-4 10,000/400
M5-12 200/200
M13 400/400

M14-17 8,000/400

=
1

4
Kn

(W
L

)
sf
γ (W /L)

(
8CunitVA3 + 4CunitVA2 + 2CunitVA1 +CunitVA0

8Cunit + 4Cunit + 2Cunit +Cunit + 15Cunit

)

×
(

8CunitVB_3 + 4CunitVB_2 + 2CunitVB_1 +CunitVB_0

8Cunit + 4Cunit + 2Cunit +Cunit + 15Cunit

)
,

(8)

where γ (W/L) is the dimension ratio of two p-type MOSFETs in the current mirror used for the
output stage. The last two terms in brackets are two 4-bit digital signals to be multiplied. The ratio
of four coupling capacitors used in the function of DAC is 8:4:2:1, as shown in Equation (8). Cg

is 15Cunit, which is used for signal scaling. Using Equation (8), the external digital signals can be
multiplied.

For determining the value of Cunit, we need to study the signal attenuation at the surface poten-
tial due to the influence of Cox and Cp. Setting all digital inputs to high logic, Figure 4 shows the
signal attenuation dependence on varying Cunit. We can see that when the dimension of the driven
transistor is large (W/L = 2,000nm/200nm), it requires a large-unit capacitor to mitigate the sig-
nal attenuation at the surface potential, since Cox is proportional to the dimension of a transistor.
When the coupling capacitor is larger than that of Cp and Cox, the surface potential can accurately
reflect the programmable input using MIFG MOSFETs. We should consider circuit area also, be-
cause capacitors in MIFG MOSFETs occupy a larger area than in normal transistors. Therefore, we
choose 50fF as the unit-size capacitor as a tradeoff between area and signal accuracy.

Table 1 shows W/L ratios of transistors shown in Figure 3. Setting the resistor used for biasing
the tail current to 5kΩ and common mode voltage to 0.9V, we obtain the transient simulation of
the multiplier as shown in Figure 5(a). It can be seen that the proposed multiplier can process the
signal from standard digital interface, 4-bit digital signal (Vpp = 1.8V) to analog current signal with
the swing of ±180μA. Figure 5(b) is the dc transfer curve to observe the linearity of the proposed
multiplier. We observe that a smaller input leads to a better linearity of the output. Four curves can
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Fig. 5. The proposed analog multiplier with MIFGs: (a) transient simulation, two 4-bit inputs are from all

high logic (1.8V), flipping to all low logic (0V) periodically under 1GHz and 10MHz and (b) dc transfer curve.

be roughly seen as linear curves that ensure the correct multiplication. Total harmonic distortion
(THD) is another important metric to evaluate the performance of analog multipliers. THDs with
input of 0.9V and 0.3V swings are 1.52% and 0.93%, respectively; both are acceptable and so cannot
largely influence the multiplication due to harmonics. This analog multiplier will also be used for
both matrix multiplication and bitwise multiplication, which will be introduced later. Compared to
digital multiplier with multiple bits, the proposed method can implement both multiplication and
DAC function as the front-end of digital interface. The most attractive feature is that the analog
multiplier is much faster than the digital multiplier, since it uses only a single analog stage to
obtain the result instead of the pipelined topology in digital multiplication.

4.2 Design of Other Functional Blocks

Besides analog multipliers used for matrix and bitwise multiplications, there are circuits imple-
menting activation functions, current comparator, and current mirror required for the entire com-
putation flow of LSTM. The digital implementation of an activation function usually uses LUT
to search results or a step linear function to approximate the non-linear curve (Shin et al. 2017;
Piazza et al. 1993). The accuracy mainly relies on table capacity and search principle. In analog
design of an activation function, only one circuit block can execute the computation (Al-Ruwaihi
1997; Tabarce et al. 2005). In our design, the received signal from multiplication is a current signal,
and the output signal from an activation function is used for the following bitwise multiplication,
according to LSTM algorithm. Thus, we need to build a block of the activation function with the
current signal as an input and voltage signal as an output. The analog circuit design of sigmoid
and hyperbolic tangent functions is shown in Figures 6(a) and 7(a), respectively. The intermediate
block computing the activation function uses voltage signal as the input and current signal as the
output. It can be seen that there are two current/voltage converters to match to the correct signal
flow. Since the hyperbolic tangent function has a negative value, a reverse-voltage bias is used to
allow the output to drop to a negative value. Using the current signal as an input, the transfer
functions corresponding to these two circuits are expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vsiдmoid_out (Iin ) =
1

2
Kp

(W
L

)
5

	

�
дm6ro2ro4Iin −

√√√
д2

m6

KnKp

(
W
L

)
2

(
W
L

)
6

−Vdd − 2Vtp
�
�

2

ro10

Vtanh _out (Iin ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2
Kp

(W
L

)
5

	

�
дm6ro2ro4Iin −

√√√
д2

m6

KnKp

(
W
L

)
2

(
W
L

)
6

−Vdd − 2Vtp
�
�

2

− I11/12

⎫⎪⎪⎪⎬⎪⎪⎪⎭
ro10

,

(9)

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 1, Article 13. Pub. date: January 2019.



13:10 Z. Zhao et al.

Fig. 6. Analog implementation of sigmoid function: (a) circuit diagram and (b) transfer characteristics.

In the transfer function of sigmoid, the input current shows a square relation with output voltage
in effective input swing. Once the input current is out of effective input swing after front-end I/V
converter (M3 and M4) due to M5 as a feedback controlling the common source (CS) amplifier (M2

and M6), the output voltage will stop changing to go to cut-off region and form top and bottom
signal lines. This principle is also applied in the transfer curve of hyperbolic tangent function.
However, we have introduced a reverse voltage bias (M11 and M12) to pull down the swing of
output voltage in hyperbolic tangent function. The reason we let two transistors work in sub-
threshold region to generate the negative voltage bias is that the characteristic of a transistor in
sub-threshold region is less sensitive to external voltage variation than it is in linear or saturation
region. The W/L ratio of transistors in both circuits is listed in Table 2. RL in Figure 6(a) is 5kΩ, RL1

in Figure 7(a) is 20kΩ, and RL2 in Figure 7(a) is 5kΩ. Figure 6(b) and Figure 7(b) show the simulated
static characteristics of sigmoid and hyperbolic tangent functions, respectively.
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Fig. 7. Analog implementation of hyperbolic tangent function: (a) circuit diagram and (b) transfer

characteristics.

For the back-end of our design, in which the analog current signal is to be converted to a digital
voltage signal, we use current comparators for the signal conversion. The delay of a current com-
pactor is sensitive to the current resolution (Tang and Pun 2009; Traff 1992; Banks and Toumazou
2008). The design reported by Tang and Pun (2009) is an inverter chain that uses a passive device
such as a feedback loop to effectively boost the resolution to less than nano-ampere level. Since
the resolution in our work only reaches to a micro-ampere level, considering design area and ac-
ceptable resolution, we use the inverter-based circuit design without passive device as the current
comparator, shown in Figure 8(a). The input current is the current difference between the output
current of LSTM and reference current through the interconnection. The inverter chain in the bot-
tom is used for signal integrity and leaves enough time for the signal to reset. The inverter chain in
the top feedback loop is to reset the voltage signal after a single comparison cycle. Setting the W/L

of all n-channel MOSFETs and p-channel MOSFETs as 800nm/600nm and 1,200nm/200nm, respec-
tively, Figure 8(b) shows the relationship between input current and delay. We observe maximum
delay of 2.67ns when the current resolution is 1μA. For the design of current-mirror biasing the
reference current used for the function of DAC in the back-end, we used p-MOSFET current mirror
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Table 2. W/L Ratio of Transistors in the Circuits of Figures 6 and 7

Sigmoid Hyperbolic tangent
Transistor W/L (nm/nm) Transistor W/L (nm/nm)

M1 10,000/400 M1 12,000/400
M2 2,000/400 M2 2,000/400
M3 3,100/400 M3 3,000/400
M4 1,000/400 M4 1,200/200
M5 1,400/200 M5 5,000/200
M6 200/200 M6 200/200
M7 800/400 M7 800/400
M8 400/400 M8 400/400
M9 800/200 M9 1,000/200
M10 1,600/200 M10 1,800/200

M11 400/400
M12 400/400

Fig. 8. Current comparator used as back-end stage: (a) circuit diagram and (b) delay dependence on current

amplification.

to match the signal polarity in our design. An inevitable problem is the decrease of current accu-
racy due to the channel modulation effect in MOSFETs (Allen and Holberg 2002). The reference
current is the key signal to give correct digital signal output. Therefore, the channel lengths in all
p-channel transistors of current mirrors are set to 800nm.

4.3 LSTM Operation

Figure 9 shows the system-level design of LSTM. We have divided the entire signal flow into four
operations shown in Figure 9, which are described as follows: (a) Operation 1 uses front-end analog
multiplier-based crossbars and interconnections to achieve DAC function and the term Ŵxx̂ t +

Ŵhĥt-1; (b) In operation 2, results from the operation 1 will go through the blocks implementing
activation functions or I/V converters to obtain all internal gate layers in the LSTM network; (c)
Operation 3 uses analog multipliers without MIFG and the blocks of activation functions to obtain
both ct and ht; (d) Operation 4 uses current comparators with current mirrors to achieve ADC
function. In this flow, analog multipliers, sigmoid blocks, and hyperbolic tangent blocks use 0.9V
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Fig. 9. System-level diagram of the proposed LSTM network.

and -0.9V as power supply and ground levels, respectively. For the current comparators used as
back-end interface, they use 1.8V and 0V as power supply and ground levels, respectively.

The signal flow with slash arrows represents both input and output in standard digital domain.
Internal signal flow with wavy lines represents current signals. The signal flow with sigma function
mean the sum of current signals use the wire interconnection in physical implementation. For both
matrix multiplication and bitwise multiplication to obtain Hadamard product, we use the proposed
analog multiplier to build a crossbar, in which current results in each row are obtained by the
wire interconnection. Especially, the matrix multiplication uses MIFG MOSFETs as the front-end
to achieve DAC function. The rest of blocks do not use MIFG MOSFETs, since the signal flow has
already been converted to an analog signal. This structure with only one stage connecting to MIFG
not only avoids large loads for each analog block but also saves chip area. For the signal flow going
through activation functions, it is current signal as the input and voltage signal as the output as
described in the previous subsection. Note that for the term ct-1, it directly comes from the previous
cell without going through the matrix multiplication or an activation function. Thus, to obtain the
correct signal flow, we still allow ct-1 to go through matrix multiplication with MIFG MOSFETs,
which means ct-1 will be converted to an analog signal and multiplied by 1. Then current/voltage
converter is applied to make ct-1 connect to the following crossbar of bitwise multiplication.

In our structure, the single analog current is converted to a 4-bit digital signal based on suc-
cessive approximation. The method uses current signal to make a comparison with the reference
current step-by-step to obtain multiple-bit as the final output. The proposed conversion flow is
shown in Figure 9. First, we use the array of current mirrors as the current duplicator to generate
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Fig. 10. Layout view: (a) proposed analog multiplier, (b) sigmoid function, (c) hyperbolic tangent, (d) current

comparator, and (e) LSTM network.

four same-current signals representing ht. Then, using wire interconnection, we obtain the cur-
rent difference between the reference current and the current signal of ht. The reference current
in this step is set to 0μA, -90μA, -135μA, and -157.5μA, corresponding to MSB to LSB in our design.
The first reference current can be simply obtained via connecting to the ground. The rest of cur-
rent signals can be obtained through current mirrors. The last step is to use current comparators
to compute the final 4-bit output. When the current difference is a positive value, the digital bit is
high; otherwise, the digital bit is low. Compared to successive approximation register (SAR) ADC,
we used an independent comparison block for each analog output to speed up data conversion
instead of the single register with relative clock tree converting repeatedly. In addition, for the
conversion of N-bit in flash ADC, it requires 2N-1 voltage comparators; while in our proposed con-
version, it only requires N current comparators for each analog signal. In our design to implement
an LSTM network, we only use MIFG MOSFETs in the first stage that executes matrix multiplica-
tion to convert external digital signals to analog signals, which are processed in internal blocks. In
the internal computation, all addition behaviors are implemented by the simple physical intercon-
nection of current signals to speed up computation. Once the data computation is finished, we use
current comparators at low circuit cost instead of traditional methods as the back-end to achieve
ADC function.

5 RESULT AND DISCUSSION

This section will evaluate the performance of the proposed LSTM network based on the described
analog circuit design. The simulations and discussions cover the proposed computing core of the
analog LSTM network and the core with memory access.

5.1 Analog LSTM Core

The physical design (layout) of all required sub-blocks in TSMC 180nm CMOS are shown in Fig-
ures 10(a)-(d). The entire design of the LSTM network with the matrix dimension of 16 × 16 is
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Fig. 11. PDP comparison between the proposed analog multiplier and other digital multipliers.

shown in Figure 10(e). The dimension of the chip layout is 3.7mm × 2.7mm. The crossbar used for
both DAC function and matrix multiplication as the first stage contributes 92% of total chip area.
This is due to the proposed crossbar that uses multiple inputs at the cost of area of capacitors and
the use of dummy devices in the layout design of differential pairs and current mirrors in multi-
pliers, which is also seen in Figure 10(a). The entire network is built by 16 independent computing
paths to process analog signals of a 16 × 16 matrix in a parallel way. Thus, if some paths are set
without input, then the dimension of the matrix to be processed will be reduced, in which the only
power due to dc bias will be dissipated.

We have used analog multipliers instead of conventional digital multipliers to process the spe-
cific matrix multiplication, N ×N matrix times N-column vector, which is the dominant calculation
in computing of an LSTM network. It is necessary to compare two types of multipliers in terms of
performance. We illustrate the comparison of power-delay product (PDP) of the matrix multipli-
cation between the proposed analog multiplier and other digital multipliers, including the Booth
encoding multiplier and Wallace tree multiplier (Fadavi 1992; Wallace 1964), as shown in Figure 11.
We observe that when the operation frequency is low, both Booth-encoding and Wallace-tree mul-
tipliers show advantageous performance compared to the proposed one. With the work frequency
boosting, the PDP of the proposed multiplier will be less than that of two digital multipliers. When
the dimension is increased, the PDPs of two digital multipliers are much more sensitive to fre-
quency boosting than that of the proposed analog design. This is due to the switch current, which
is a strong function of frequency in high-speed digital circuits. For the proposed analog multiplier,
it is always inputted by dc bias signal, and the only term varied by frequency is the small signal
as the input signal to be computed. In the case of 16 × 16 matrix multiplication under 800MHz,
the growth rate of PDP of matrix multiplication using Booth-encoding and Wallace-tree multipli-
ers compared to that using the proposed one is 12.3% and 37.6%, respectively. From 200MHz to
800MHz, in cases of both 8 × 8 and 16 × 16 matrices, the growth rates of PDP of matrix multiplica-
tion using the proposed multiplier are all below 5%. In addition, the proposed design is capable of
implementing DAC function as the front-end of the signal interface compared to previous work of
analog multipliers. The proposed analog multiplier is suitable to work for large-dimension matrix
multiplication under high frequency. No matter what the bit length of input is, the analog multi-
plier requires only one stage to obtain the product after the implementation of DAC function using
multiple inputs. For the addition in matrix multiplication, the current carry signal going through
the metal interconnection is used to speed up the addition without additional circuit block.
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Fig. 12. Breakdown graph of power dissipation for each operation.

The single computation cycle in an analog LSTM network with no load is 0.87 to 1.19ns. The
delay contributed by current comparators varies from 0.48 to 0.8ns, depending on computed cur-
rent amplitude before the back-end. The rest of blocks contribute 0.39ns delay. Our design is a
purely computing core with a feed-forward path and does not need an internal clock, on-chip
memory, or internal sample and hold (S/H) circuit. Therefore, to avoid data competition, we re-
strict the maximum frequency of input signals to 800MHz. The total power dissipation of analog
LSTM network with no load is 425.5mW. The four defined operations in Figures 9 and 12 show
the breakdown graph of power dissipation for each operation. We see that the first operation to
implement matrix multiplications consumes 86.3% of the total power dissipation, which is much
larger than other operations. It is obvious, since matrix multiplication is the main calculation in
an LSTM network. However, the proposed analog multiplier without feedback loop significantly
reduces both power dissipation and latency, considering the design of signal interface. The com-
puting flow built by several important transient simulations including internal and final results are
shown in Figure 13. We see that the internal signals can be shifted fast as the input flipping con-
tinuously due to absence of S/H circuit. The final results of ct and ht including both logic high and
logic low can be recognized even though there are some unwanted signal components presented.

5.2 Memory Access

The proposed LSTM design is purely a computing core and can only deal with memory-free com-
puting of the 16× 16 matrices. It is necessary to apply memory access to achieve block multiplexing
extending the network depth. To address memory access, how to efficiently utilize the memory in
terms of hardware resource, computing latency, and power dissipation is to be considered. For one
weighted matrix in the proposed design, it has (16 × 17 × 4)/8 = 136 bytes. Therefore, for a single
computing cycle, the memory requires 136 × 8 = 1088 bytes for all weighted matrices. Besides,
for ct and ht, these are required to be stored temporarily in memory for the usage of input in the
next computing cycle, and x̂ t updated in each computing cycle also uses memory for data hosting.
Therefore, each of these three vectors requires the memory of 16 × 4/8 = 8 bytes. For the com-
puting core of an LSTM network in one computing cycle, the maximum memory size is 1088+8
× 3 = 1112 bytes. For a trained LSTM network, if the pipelined topology is used for computing
to extend the network depth, then these weighted matrices should be used for each computing
cycle uniformly. ht obtained from each computing cycle is not only used as the input of the next
computing cycle, but it is also required to be stored for final prediction. If we define the network
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Fig. 13. Transient simulation based computing flow of LSTM network using the proposed ASP design.

depth, which is corresponding to the number of computing cycle as DLSTM, based on the preceding
description, then the weighted matrices after training occupy 1,088 bytes constantly. The mem-
ory size of x̂ t, ct, and ht is 8 bytes, 8 bytes, and (8 + 8DLSTM) bytes, respectively. Thus, the size
of entire required memory is (1112 + 8DLSTM) bytes. Since the utilized memory is small, the static
random access memory (SRAM) in chip can be used considering overall latency. Figure 14 shows
the overview of the proposed analog LSTM network with on-chip SRAM. It is seen that the SRAM
block is the same as the normal one to operate write-in and read-out. The communication cycle
between computing and memory is described as follows: (a) All weighted matrices, x̂ t, ct, and ht

are written into SRAM. ht is written doubly for both computing in the next layer of the LSTM
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Fig. 14. Overview of the proposed analog LSTM network with on-chip SRAM access used for extending the

depth of network.

network and final prediction. The analog LSTM computing core is idle during this write cycle; (b)
All data stored in SRAM in the last cycle is read out to the analog LSTM core and the computing
begins during this read cycle; (c) Above two clock cycles are seen as one computing cycle and
repeated for obtaining a deeper LSTM network.

Using cycled flow represented in Figure 14, the network depth can be increased sequentially
with SRAM access. Except ht being stored for final prediction, the rest of useful data is stored only
temporarily in SRAM for the computing of the next cycle, which reduces the workload in SRAM. To
control the communication between the analog LSTM core and SRAM, the design of the memory
controller should also be considered. The timing diagram of the controller is also shown in Figure

14, in which OE,WE, CE, ME, and CLK are enable ports of read-out, write-in, analog LSTM core

and SRAM, and clock, respectively. In these enable ports, onlyCE is not the standard one. Figure 14

also shows the proposed circuit design of SRAM controller, in which CE is outputted by CLK. OE

andWE are generated by CLK and ME. OnceCE is obtained, it can control the dc bias of the inputs
of the proposed analog multipliers, which works for the analog LSTM network. During write-in,
the analog LSTM core is idle and dc bias is disconnected through transmission gates controlled by

CE to save energy. While SRAM is in read-out, dc bias is applied to the analog LSTM network via

CE to let the computing work.
Using the same structure of SRAM as shown in Figure 14, in which 6T-cell is used for the SRAM

cell, and the size of SRAM array is 128 × 128 = 2 kilobytes, as the test configuration of memory
access. Figure 15 shows the simulation results of the analog LSTM network with SRAM access,
depending on various network depths and frequencies. From Figure 15(a), we compare the power
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Fig. 15. Simulation results of the LSTM network with SRAM access: (a) power dissipation, (b) computing

latency, (c) utilization ratio of SRAM, and (d) throughput.

dissipation when DLSTM is 1. The overhead of power dissipation due to SRAM access is -6.5%, -1.7%,
and 8.3% corresponding to clock frequency of 100MHz, 150MHz, and 200MHz, respectively. The
reason that the overhead under 100MHz and 150MHz is negative during write-in is that the com-
puting core is in idle state executed by the controller in SRAM and so only consumes static power.
Therefore, from the view of average power dissipation given a full cycle of LSTM computing, the
use of the analog LSTM network with SRAM can save power, compared to the analog LSTM net-
work that works under non-clock without memory access. When the clock frequency increases
to 200MHz, the SRAM access brings overhead of power dissipation to the proposed computing
core due to the increase of dynamic power dissipation in SRAM. The overhead of power dissipa-
tion contributed by the proposed computing core is small. We can observe that from 100MHz to
200MHz, the increase of power dissipation in the proposed core is only 0.3% due to an increase
in frequency of small signal. In the cases that the proposed core works with SRAM access, the
growth rates of power dissipation due to frequency boosting are all increased. In the case that
DLSTM is 8, this growth rate is up to 28.9%. Figure 15(b) shows the overhead of latency due to
SRAM access, in which the maximum overhead is × 8.4 under 100MHz. Actually, the introduced
SRAM restricts the computing speed of the proposed analog LSTM core due to clock constraint
and the access time of SRAM. As reported earlier, the peak latency of the proposed analog LSTM
core without memory access is only 1.19ns, which means the maximum frequency can be up to
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Table 3. Performance Comparison with Prior Work of LSTM

Guan et al.
2017b

Ferreira
and

Fonseca
2016

Chang
et al. 2017

Rybalkin
et al. 2017

Conti et al.
2018

Han et al.
2016

Shin et al.
2017 Present work

Platform FPGA FPGA FPGA FPGA
ASIC
65nm

ASIC
45nm

ASIC
65nm

ASIC
180nm

Function LSTM LSTM LSTM LSTM LSTM
CNN;
LSTM

CNN;
LSTM

LSTM

Memory
type

DDR3 SRAM
LUT;
DDR3

LUT SRAM SRAM LUT; REG SRAM

Clock
frequency

(MHz)
150 158.2 142 166 20 800 200 200

Latency
(ms)

390 4.6 × 10-4 - 2.37 × 103 - 7.5 × 10-3 - 10-5

Bit length 32-bit float
18-bit
fixed

16-bit
fixed

5∼16-bit
float

8∼16-bit
fixed

4-bit fixed 4-bit fixed 4-bit fixed

Depth of
network

- - 2 - 1 1 1 1 4 8

Peak
power

dissipation
(mW)

19.63 ×
103 420 2.3 × 103 104 1.24 590 21 460.3 481.6 557.4

Energy
efficiency

(TOP/s/W)
0.37 × 10-3 - 1.46 × 10-4 1.5 × 10-2 3.08 0.17 1.1 0.95 0.9 0.78

800MHz. However, with the help of introduced SRAM, the LSTM core can be multiplexed to extend
the depth of network. Since we have set the size of SRAM that is 2 kilobytes, the utilization ratio
of SRAM should be studied. Figure 15(c) shows the results of these metrics. The utilization ratio
of SRAM is from 54.6% to 57.4% corresponding to DLSTM is from 1 to 8, respectively. Thus, the rest
of unused SRAM cells suffers leakage current. Through the simulation of static power dissipation,
this resource waste contributes 20 to 43mW as the variations of network depth and frequency.
As predicted, when DLSTM is 117, SRAM will be fully used. Another important issue is throughput
between the proposed LSTM core and SRAM. Figure 15(d) shows these metrics. Here, we only con-
sider the computed data for the computing in the next cycle, ht and ct, and data stored in SRAM
for the final prediction, ht. When the proposed core works uniquely, throughput is up to 20.1GB/s.
Accessed with SRAM, the throughput is reduced due to clock constraint. In addition, the depth
of network constrains the throughput. In the fastest operation at 200MHz, when DLSTM is 8, the
throughput is 0.3GB/s. However, under 100MHz, when DLSTM is 8, the throughput is 0.15GB/s. The
proposed LSTM core with on-chip SRAM can extend the depth of network at the cost of lowering
computing speed. For the power issue, the proposed work sequence and its controller can let the
LSTM core be idle during write-in state to save power. The disadvantage of the proposed design
is low utilization ratio of SRAM, which also contributes to static power dissipation. But the size
of SRAM in this work is only 2 kilobytes, and the utilization ratio of SRAM can be increased by
increasing the depth of network.

Table 3 shows the performance comparison between our work and other reported work of LSTM
based on digital implementation (FPGA and ASIC). The listed data of our work is from the com-
puting core accessed with SRAM under 200MHz and included DLSTM is 1, 4, and 8. Considering
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the performance metrics of LSTM, quantization-bit, we observe that the LSTM implementation in
FPGA platform is much more accurate than that in ASIC design, since the single computation block
is used repeatedly at the cost of computation latency in FPGAs. Work in Guan et al. (2017b) uses
off-chip memory to confirm accuracy when the matrix dimension becomes large. However, this
strategy largely increases computation latency and power dissipation. Another FPGA-based work
reported in Ferreira and Fonseca (2016) fully uses both logic units and memory cells in FPGA to
speed up computation and suppress the power dissipation. Work in Chang and Culurciello (2017)
balances the data communication that both on-chip LUT and off-chip DRAM are used for internal
storage of matrix multiplication to reduce the latency due to off-chip memory access and workload
of on-chip communication. Using digital signal to compute neural network, the longer bit length
can cause larger power and latency. In the work of Rybalkin et al. (2017), the LSTM network with
variable bit length is achieved to dynamically adjust both consumed energy and computing latency.
Therefore, its peak energy efficiency is higher than other LSTM networks designed in FPGA. Sum-
marizing this work based on FPGA, their energy efficiencies are all lower by at least 2 magnitudes
than cited ASIC designs, but the bit length in these designs is very high compared to ASIC de-
signs. For ASIC design, prior digital-based work (Shin et al. 2017; Han et al. 2016) and our presented
analog-based work use a 4-bit fixed-point number to balance computing error and circuit cost. Both
work of Han et al. (2016) and Shin et al. (2017) can compute both CNN and LSTM, which is more
functional than our design. Han et al. (2016) uses weight encoding and matrix sparsity to reduce
both power and required computing cycles when large matrices have to be processed. The error
due to sparsity can be reduced by weight decoding and multi-index. Compared to Han et al. (2016),
the boosting of energy efficiency of our design is 5.6 × corresponding to DLSTM = 1. As mentioned
in the introduction, the design in the work of Shin et al. (2017) mainly uses LUTs and registers to
store all possible results of multiplication and activation functions, which removes complex real-
time computing and its switching power. Thus, the energy efficiency of this work is higher than
in our work. However, the final results must be obtained through multiple cycles. In our design,
analog implementation without traditional data converters or feedback loop largely speeds up
computation, which gives on-chip SRAM enough time for data access. For computing of a single-
layer LSTM network (DLSTM=1), it needs only one computing cycle in our work. A digital-based
LSTM implementation called “Chipmunk” proposed in the work of Conti et al. (2018) shows higher
bit length and energy efficiency than Shin et al. (2017) and our work. This is due to sparsity and
matrix partitioning widely used in the design to largely reduce the unnecessary energy consumed
during logic switching at the cost of higher error and more epochs of training to increase accuracy
or perplexity. If our ASP-based design works for computing large matrices, then the strategy used
in “Chipmunk” is a potential one if slight error can be tolerated. Considering latency, the proposed
work has the least computing latency than any other LSTM work. Once again, our ASP-based work
only uses one cycle to finalize one-layer computing, which is different from other work.

In Table 4, we also compare the proposed design with other work of ASP based on neural net-
work (Bong et al. 2017; Amravati et al. 2018). In the work of Bong et al. (2017), ADC array is de-
signed in another chip considering limited power budget in a single chip. In the computing chip, it
uses multi-core to increase the computing efficiency. Since off-chip communication is introduced
to increase the communication delay, the allowable clock frequency cannot be very high to avoid
data race in the motherboard. Based on Table 4, the latency of this work is much higher than that
of our work. Compared to the work of Bong et al. (2017), the boosting of energy efficiency of our
design is 2 ×, corresponding to DLSTM=1. Design in the work of Amravati et al. (2018) is suitable
for applications in portable devices, and its energy efficiency is higher than in our work. In this
work, digital-to-pulse converter (DPC) is used as signal interface. Thus, counter array has to be
embedded for signal processing. Based on this principle, the final results cannot be obtained in a
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Table 4. Performance Comparison with Prior Work of ASP Based on Neural Network

Bong et al. 2017 Amravati et al. 2018 Present work

Platform ASIC 65nm ASIC 55nm ASIC 180nm

Function CNN Autonomous control LSTM

Memory type SRAM - SRAM

Data conversion type ADC DPC ADC; DAC

Clock frequency (MHz) 100 20 200

Latency (ms) 263 - 10-5

Power supply (V) 0.46∼0.8 0.4∼1 1.8

Bit length 16-bit fixed 6-bit 4-bit fixed

Depth of network 5 - 1 4 8

Peak power dissipation (mW) 211 0.69 460.3 481.6 557.4

Energy efficiency (TOP/s/W) 0.47 3.12 0.95 0.9 0.78

single computing cycle. Thus, the latency of this work cannot be lower than that of our design.
Compared to this work, the novelty of our work is that we have proposed a signal interface instead
of conventional ADC and DAC. For DAC, the only power consumed in the physical connection
between a transistor’s gate and MIFGs is due to resistances. For the back-end used as ADC, we
use the array of current comparators to speed up the conversion and save chip area. Besides, the
computing latency of the proposed LSTM core inside is fast without the restriction of clock or feed-
back loop, and we have used current signal to execute the row-addition for matrix multiplications
instead of analog mixer.

5.3 Sensitivity Study

Another important issue is that analog implementation is more sensitive to the variations of pro-
cess, voltage, and temperature (PVT) and noise than a digital implementation. The system used for
the simulations of these non-ideal factors is the same as the one in the study of memory access.
The work frequency is set at 200MHz. It is generally known that the real chip fabrication always
has device mismatch. Thus, in the following sensitivity study, based on the Monte Carlo method,
all simulations have a mismatch within ±20% distribution covering all transistors and passive de-
vices. For the evaluation of PVT variation, the corner cases in this work include TTTT, SSHL,
SFHL, FSHL, SSHH, SFHH, FSHH, and FFLH. Four letters from left to right in these cases represent
the variations of n-type MOSFET, p-type MOSFET, temperature, and voltage supply, respectively.
S and F located in the first two letters are slow and fast MOSFETs, respectively. T located in the
first two letters represents typical MOSFETs following the original SPICE model provided by the
foundry. We use the 3σ method to calculate the variable threshold voltage to define S and F for
MOSFETs (McConaghy et al. 2013; Asenov 1998; Pelgrom et al. 1989). In this method, the standard
deviation of threshold voltage can be represented by σ th=(qtox/ɛox) × (NAWd/4WL)1/2. H appearing
in the last two letters is high temperature, 340K, or oversupply voltage, 1.85V. Accordingly, L is low
temperature, 270K, or supply voltage with loss, 1.75V. T located in the last two letters represents
default temperature in SPICE simulation, 300K, or standard supply power, 1.8V. We have intro-
duced the fabrication mismatch and the corners representing variations of PVT. The last concern
is noise introduced in our design. For CMOS technology, it includes two types of noise. The first
one is device noise. For the analysis of a transistor or a resistor, it can be modeled using a paralleled
current source. For the analysis of a capacitor, it can be modeled using a cascade voltage source.
The detailed expressions of these noise sources have been deeply analyzed by Allen and Holberg
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Fig. 16. Simulation results of error rate with PVT variation and introduced noise. All simulations are im-

ported with mismatch of ±20% distribution of transistors, capacitors used for MIFGs and resistors.

Fig. 17. Simulation results using the proposed LSTM structure with PTB dataset: (a) training result and (b)

predictive results of perplexity and required epochs for stabilizing perplexity with matrix expanding.

(2002). The other one is the input noise that is imported from other blocks communicating with the
proposed computing core; this one can be assumed to approximately follow Gaussian distribution,
which is represented by Vin_noise = Vin_ideal × (1 + N(0,σ 2)), according to the work of Long et al.
(2018). We set σ 2 as 0.152V and 0.32V for the following simulations. Based on the configuration
shown in Figure 17, we use error rate to evaluate the performance influenced by the described
corner cases and noises. Figure 16 shows the simulation results. SSHL, FSHL, SSHH, and FSHH are
four corners in which the error rate is higher than other corners. This observation follows that SS
and FS for n-type and p-type transistors are the worst corners for digital VLSI. The performance of
digital-based memory access in our work can be seriously influenced by these two corners. Thus,
incorrect data communication can occur due to potential setup and hold violations. TTTT can be
seen as an ideal case in our study, and so its error rate is the lowest. Considering digital blocks,
FFLH is the fastest corner in our work. However, it shows a higher error rate than TTTT, which
is due to the signal asynchronization between analog network without obvious acceleration and

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 1, Article 13. Pub. date: January 2019.



13:24 Z. Zhao et al.

the faster memory access. Considering the variation of supplied voltage, the error rate under over
supplied voltage is less than that of undersupplied voltage with loss. Thus, it is necessary to avoid
the loss of power supplying the proposed design. For DLSTM = 1, the highest error rate is 3.4% cor-
responding to FSHL with the variance of input noise, σ 2 = 0.32V. For DLSTM = 4, the highest error
rate is 10.3%, also corresponding to FSHL with the variance of input noise, σ 2 = 0.32V.

5.4 Evaluation of Network Performance

We have used word-level language-prediction experiments to test the performance of the LSTM
network using our ASP architecture. For an input sequence, the task is to predict the next word,
given previous seen words. Our experiments are conducted on the Penn Tree Bank (PTB) dataset
(Marcus et al. 1993), which consists of 929k training words, 73k validation words, and 82k test
words. It has 10k words in its vocabulary. We stack our design to form a two-layer LSTM model
and train it for 30 epochs using stochastic gradient descent. The hidden units of each LSTM layer,
as our proposed architecture, is 16. Learning rate starts at 1.0, keeps steady for 4 epochs, and then
decays 0.5 after each epoch. The training results are shown in Figure 17(a). From this figure, we
can see that the perplexity keeps decreasing with epoch increases, and it almost remains stable
after the 10th epoch. The best validation perplexity is at the 25th epoch. Train, valid, and test
perplexities after being stable are 377.57, 408.94, and 383.87, respectively. The result shows that
our LSTM architecture is capable of handling the tasks of real-world sequence prediction.

We also perform another predictive simulation experiment with different sized hidden units of
the LSTM layer. The model is the same with the last experiment but only changes the number of
hidden units. As Figure 17(b) shows, the test perplexity becomes smaller as the size of hidden units
grows. When the matrix size is 256, the perplexity can be lowered to 174.06. The result verifies that
the bigger size of hidden units in LSTM is necessary for improving the performance of the LSTM
model. Considering the efficiency of training, we see that when the matrix size is 32, the proposed
structure uses 24 epochs, which is smaller than any other case, to let the perplexity be stable. Map-
ping this prediction that larger matrices are used for computing, we need to expand the proposed
ASP network. For N × N matrices used in the structure of our work, it requires N independent
channels from front-end analog multipliers to back-end current comparators without additional
power coupled by adjacent channels. Thus, the power overhead due to matrix expanding roughly
shows a linearity to the number of channels. The computing latency will be mainly increased by
current transportation in metals in the analog multiplier-based crossbar, which is very short com-
pared to signal going through digital blocks. Considering memory access, using our ASP structure
to connect with on-chip SRAM can increase the overhead of power and latency. Summarizing this
matrix expanding, the increase of power is much larger than that of computing latency.

6 CONCLUSION

We have proposed a strategy to implement an LSTM network in analog circuit design. The entire
analog-based computing core is compatible with external digital blocks. To speed up computing
and reduce power dissipation, we have introduced a novel signal interface including MIFG MOS-
FETs and current comparators to achieve data conversion. In the computing core inside, we have
used current-carry signal to reduce latency and remove the analog mixer used for row addition.
The final post-layout simulation results show that the proposed analog LSTM network is suitable
to work with on-chip standard memory. For the utilization of 2 kilobytes SRAM, the LSTM net-
work can be computed to 117 layers. The finalization of one-layer computing requires only one
computing cycle (two clock cycles). The overhead of power dissipation and computing latency
due to memory access at 200MHz are 8.3% and 3.2×, respectively. The energy efficiency can be up
to 0.95TOP/s/W. If more advanced CMOS technology is used for our design, then it is predicted
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that both clock frequency and energy efficiency can be obviously increased. The sensitivity simu-
lations considering noise, device mismatch, and PVT variation show that the worst case will lead
to a 10.3% error rate in the proposed design corresponding to 4-layer LSTM computing. Overall,
the proposed design shows acceptable performance amid these non-ideal factors. Using the same
network structure of the proposed LSTM design with PTB as dataset for performance evaluation,
the training requires 10 epochs to let all perplexities be stable. Besides, using the proposed LSTM
structure with matrix expanding, lower perplexity under the simulation using PTB dataset can be
obtained without large overhead of latency.
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